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KYBERNETIKA —VOLUME // (1975). NUMBER 3 

A Note on the Exponential Stability 
of a Matrix Riccati Equation 
of Stochastic Control 

JERZY ZABCZYK 

A general matrix Riccati equation of stochastic control is considered. It is proved by a new 
method that, under certain assumptions, the solution of such equation tends to the equilibrium 
point exponentially fast. 

1. INTRODUCTION 

The object of this paper is to prove a theorem concerning the asymptotic behaviour 
of the solution of the following matrix Riccati equation 

(1) — = A*P + PA + JT,(P) + Q - PB[R + n2(P)yi B*P, f § 0 , 
dt 

with the initial condition P 0 ^ O. Here nt, n2 are linear and monotonic transforma
tions, which map the space S„ of all symmetric n x n matrices into the spaces S„ 
and Sm respectively of all n x n and m x m symmetric matrices. A and B are respec
tively n x n and n x m matrices. We shall assume that n x n matrix Q and m x m 
matrix R are positive definite. This assumption is rather restrictive (see, for instance, 
the appropriate theorems in [1]), but the aim of the paper is to present a new method 
rather than to prove the strongest theorem. The point (b) of the Theorem below is new. 

2. STATEMENT AND PROOF OF THE BASIC RESULT 

Let J f „ denote the cone of all positive semi-definite n x n matrices and let S be 
a transformation S : J f „ -» S„ given by the following formula: 

S(P) = A*P + PA + Jit(P) + Q - PB[R + n2(P)Yl B*P. 



We are going to prove the following theorem: 

Theorem. Let Q > 0, R > 0. 

a) There exists at least one solution P > 0 oj the equation: 

(2) S(P) = 0 . 

b) IJ P > 0 is the solution to (2) and P 0 > 0 then the solution {P,; t ^ 0} oj ( l) 
tends to P exponentially fast as t -» +oo. 

Remark 1. The point a) of Theorem is a special case of well known results (see 
[1]), it is also a consequence of b), therefore it remains to prove the point b). 

Lemma 1. Thre transformation S is concave. 

Proof . We have to prove that if a ^ 0, j8 ^ 0, a + j? = 1, U £ 0, V 1 0, then 

S(aU + pV) ^ a S(U) + /? S(V) . 

For any m x n matrix K let us define the transformation WK : $„ -> <f„ by the 
following formula: 

^ ( P ) = (A - BK)* P + P(A - BK) + Q + JT.(P) + K*[R + 7t2(P)] K . 

Then, see [1, identity 3.2], 

S(P) = <FK(P) -(K- KP)* [R + n2(P)] (K - KP), 
where 

KP = [R + 7 i 2 (P) ] - 1 P*P. 

From this we obtain that for all K and P ^ 0: S(P) ^ ^ ( P ) , and that S(P) = 
= ^ ( P ) . Thus 

S(aU + pv) = y , . D + , > l / + /5V) = <-^ .„ + ,v(£/) + /^.^(V) ^ 

^ a<FKu(U) + pvKv(V) ^ a S(U) + P S(V) . 

Remark 2. A special case of the above lemma (nt = 0, n2 = 0) has been proved 

by many authors (see for instance [2]) but by different methods. 

The proof of the lemma below was given (implicitely) in [ l ] . 

Lemma 2. / / P£ ^ P\ ^ 0, then the solutions {P1; t £ 0}, {P2
t; i S 0} cj (1) 

subject to the initial conditions P0, P0 satisjy 

P* 1 P? = 0 /o r all t £ 0 . 



220 P r o o f of T h e o r e m , b). Let us fix a number t, 0 < t < 1 and let {Pt; t ^ 0} 

be the solution to (1) with the initial condition: P 0 = IP. Let us define the function Q 

Q : [0, + oo) -> [0, 1] by the formula: 

g(t) = sup {s :sP = Pt} , t ^ 0 . 

Evidently Q is a continuous function, and g(0) = i. Moreover the function X = 1 — Q 

satisfies the differential inequality (4) below. Namely let t >. 0, and let {P,jU; w ^ 0} 

be the solution of (l) subject to the initial condition g(t)P. That means 

P,,„ = e(/)P+ ["s(PtiV)dv. 

Since P, 2: P, 0 we have (see Lemma 2) that 

(3) Pt+u=-Pt,, = o(t)P+ \*S(Pt>v)dv. 

The concavity of the function S implies: 

s(Q(t)F) = s(Q(t)p + (i - e(0) o) l e(t) s(P) + (l - <?(.)) s(o) ^ 

^ (i - e(O) e = (i - e(0) yI5, 

where y is a positive number such that Q ^ yP. From (3) 

1 (I 3 , + „-e( t)P)^ i rs(P,,„)d t ; . 
u u J0 

But 

- f"s(P. .) dv -> S(e(f) P") >, (1 - g(t)) yP as u [ 0. 
" J o 

Therefore, for sufficiently small u > 0 . 

ifs(P,,„) d t ^ ( l -Q(t))yP 
."Jo 

where 0 < y < y. 

Thus for small u > 0 

Pг+u-g(t)P = u(í -в(t))ӯP 



and the definition of the function e implies 

e(t + u) > e(t) + uy(i - e(t)) • 

Consequently 

(4) m* + u)-W<-n(t) 
u|0 u 

and Theorem 4.1 together with Remark 2 of the monograph [3] imply 

1 -e(t)^(l -i)e~r" , r > 0 . 

Applying the same method as above we obtain that if s > 1, {Pt; t > 0} is the 
solution to (l) with the initial condition sP and fi(t) = inf {s; Pt ^ sP} then 

fi(t) - 1 ^ (s - l ) e ~ f ' , t > 0 . 

To finish the proof let P 0 > 0 and let t, s be numbers such that IP < P0 < sP, 
0 < I < 1, 1 < s. Then 

0 S P, ^ P, ^ P, for all t > 0 , 

because of Lemma 2, and 

|P, - P\ S \P, - P,\ g |P - P,| + |.P, - P| ^ 

< [ ( 1 _ f ) + ( s - _ ] ) ] | p | e ^ . 

This completes the proof of Theorem. 

Remark 3. The analogous method of the proof was applied first in the paper [4], 
in which discrete time systems were considered. The definitions of the functions e 
and fi, were borrowed from [5, Theorem 6.7] 

Remark 4. For the different proof valid only in the case nt = 0, n2 = 0 and based 
on the method of Liapunov function, we refer to [6, pp. 73 — 74]. 

Remark 5. The Theorem is true in the case of infinite dimensions under the condi
tion that A is a bounded operator (the same proof as above). 

(Received July 30, 1974.) 
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