Kybernetika

Jan Vinař

A syntax directed translation algorithm for ALGOL-like languages

Kybernetika, Vol. 2 (1966), No. 5, (389)--396
Persistent URL: http://dml.cz/dmlcz/124960

Terms of use:

© Institute of Information Theory and Automation AS CR, 1966
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

A Syntax Directed Translation Algorithm for ALGOL-like Languages

Jan Vină̆

This paper deals with the translation of ALGOL-like languages using well-translatable grammars in the sense of [1], [2]. The notions and symbolism of these papers will be used without explicit reference. A translation algorithm is presented which, while giving essentially the same results as the translation algorithms of [1], [2], is simpler and better suited for computer usage. An example is used to clarify its function.

DEFINITIONS AND NOTATION

We shall be concerned with a pair of grammars $G=\left\langle V_{t}, V_{t}, \mathcal{M}\right\rangle$ and $G^{*}=$ $=\left\langle V_{t}^{*}, V_{n}^{*}, \mathfrak{R}^{*}\right\rangle$ generating the languages $L\langle E, S\rangle$ and $L^{*}=\left\langle E^{*}, S^{*}\right\rangle$ respectively. We suppose that G is well-translatable into G^{*}, i.e. that there exist two mappings $\tau: V_{p} \cup V_{n} \rightarrow V_{p}^{*} \cup V_{n}^{*}$ and $\Phi: \mathfrak{R} \rightarrow \mathfrak{R}^{*}$ such that:
(1) $\tau\left(V_{p}\right) \subset V_{p}^{*}, \tau\left(V_{n}\right) \subset V_{n}^{*}$,
(2) if $a_{0}::=b_{0} a_{1} b_{1} \ldots a_{k} b_{k}$ is the standard form of a rule $\mathfrak{r} \in \mathfrak{R}$, then the rule $\Phi(\mathfrak{r})$ has the standard form $c_{0}::=d_{0} c_{1} d_{1} \ldots c_{k} d_{k}$ where $c_{0}::=\tau\left(a_{0}\right)$ and there exists a permutation π of the set $\{1,2, \ldots, k\}$ such that $c_{\pi(i)}=\tau\left(a_{i}\right)$ for $i=$ $1,2, \ldots, k$,
(3) if $x_{i} \in G\left(a_{i}\right)$, where $a_{i} \in V_{n}$ and $y_{i} \in G^{*}\left(c_{i}\right)$ where $c_{i} \in V_{n}^{*}$ and $\bar{S}\left(x_{i}\right)=\bar{S}^{*}\left(y_{i}\right)$, then

$$
S\left(b_{0} x_{1} b_{1} \ldots x_{k} b_{k}\right)=S^{*}\left(d_{0} y_{1} d_{1} \ldots y_{k} d_{k}\right) .
$$

THE CANONICAL REDUCTION SEQUENCE [3], [4]

Suppose that e_{0} is a string, $e_{0} \in E$. Then there exists a sequence $\left(e_{0}, e_{1}, \ldots, e_{m}\right)$ of strings with the following property: for $i=1,2, \ldots, k$ there exists a rule $\mathfrak{r}=$ $=(x::=y) \in \Re$ and two strings v_{i}, w_{i} (possibly empty) such that $e_{i-1}=v_{i} y w_{i}$,
$e_{i}=v_{i} x w_{i}$. Moreover, $e_{m} \in V_{n}$. This sequence is a derivation of e_{0} in $\left.G\right)$. The operation which produces e_{i} from e_{i-1} is called the reduction of e_{i-1} to e_{i} by the rule r. If there exists a rule \mathbf{r} by which we can reduce the string c to string d, we say that c is immediately reducible to $d\left(c \varrho_{0} d\right)$. The relation ϱ (reducibility) is the transitive closure of ϱ_{0}.

A sequence of reductions which produces a derivation of e_{0} in G is a reduction sequence of e_{0}. A pair of reductions of e_{i-1} to e_{i} by the rule $\mathfrak{r}=x_{1}::=y_{1}$ and of e_{i} to e_{i+1} by rule $\mathrm{r}=x_{2}::=y_{2}$ is termed canonical if $e_{i-1}=v_{1} y_{1} w_{1}, e_{i}=$ $=v_{1} x_{1} w_{1}=v_{2} y_{2} w_{2}, e_{i+1}=v_{2} x_{2} w_{2}, l\left(v_{2}\right) \geqq l\left(v_{1}\right)$.

Among all reduction sequences of e_{0} there exists at least one in which every two adjacent reductions form a canonical pair. This is a canonical reduction sequence of e_{0}.

Note: a) The canonical property of the reduction sequence has the following simple meaning: every reduction is applied to the leftmost substring of e_{0} that can be reduced, i.e. every initial substring is reduced as far as possible before proceeding to the next symbol.
b) A string e_{0} which has more than one canonical reduction sequence is an ambiguity of L.

THE TRANSLATION ALGORITHM

The translation algorithm consists of three parts:

1. Table construction algorithm which produces a table of correspondence used by the actual translation algorithm. This table is produced once for ever, then the other two parts are used independently.
2. Syntactic analysis algorithm.
3. Actual translation algorithm.

Table construction algorithm

a) Let the rules $r \in \mathfrak{R}$ and $\Phi(\mathfrak{r}) \in \mathfrak{R}^{*}$ have the standard forms described in (2). We define the following operation of bracketing:
(5) We number the symbols of the right part of \mathfrak{r} (including auxiliary symbols) by the numbers $1,2, \ldots$ from right to left, starting with the last symbol, which is thus numbered by 1.
(6) To bracket the rule $\Phi(\mathrm{r})$ we substitute for $c_{\pi(i)}$ the bracket $\left\{C_{n}\right\}$ where n is the number assigned to a_{i} in (5).
b) The correspondence table has two columns and r rows $(r$ being the number of rules in \mathfrak{R}). In the left column we place the rules $r_{1}, r_{2}, \ldots, r_{r}$ in any given order; in the right column, the bracketed rules $\Phi\left(\mathfrak{r}_{1}\right), \ldots, \Phi\left(\mathfrak{r}_{r}\right)$ are placed in the same order.
c) The rules of \Re are divided into three groups:
(I) The rules whose right part consists of one terminal symbol while the right part. of $\Phi(\mathfrak{r})$ contains no symbols from V_{a}^{*}.
(II) The rules \mathfrak{r} such that the right part of the bracketed rule $\Phi(x)$ contains only brackets $\left\{C_{i}\right\}$ in the same order as the corresponding symbols of the right part of \mathfrak{r}.
(III) The rules \mathfrak{r} such that in the right part of the bracketed rule $\Phi(\mathfrak{r})$ either the order of brackets is different from that of the corresponding symbols in the right part of r (i.e., the permutation π mentioned in (2) is not identical), or symbols from V_{a}^{*} are introduced.

Syntactic analysis algorithm

We will assume the existence of an analysis algorithm with the following properties:
a) for every $e_{0} \in E$ it produces a canonical reduction sequence of e_{0} and the corresponding derivation $\left(e_{0}, e_{1}, \ldots, e_{m}\right)$
b) this reduction sequence is produced in exactly m steps, i.e., no steps need be retraced.
(The analysis algorithm of [2], working as it does on the trial - and - error principle, does not satisfy condition b), but it can form a basis for the necessary algorithm. Namely, the reduction sequence can first be obtained in the usual way and stored, then supplied step by step.)

Let us now consider the i-th step of the algorithm, in which e_{i-1} is reduced to e_{i} by the rule $\mathbf{r}_{p_{i}}$. We define $q_{i}=l\left(v_{i}\right)+1, m_{i}$ as the length of the right part of $\mathbf{r}_{p i}$.

The reduction sequence produced by the algorithm can thus be characterized by the sequence $\left(e_{0}, e_{1}, \ldots, e_{m}\right)$ and/or by the sequence of number pairs (p_{1}, q_{1}), $\left(p_{2}, q_{2}\right), \ldots,\left(p_{n}, q_{m}\right)$. There is, however, no need to store all of these. (This is one of the differences between our algorithm and the algorithm of [2]). In fact, at any given time only one string e_{j} and one pair $\left(p_{j}, q_{j}\right)$ will be stored. Let us consider the i-th reduction of the canonical reduction sequence. This reduction reduces e_{i-1} to e_{i} by the rule $\mathrm{r}_{p_{i}}$. For reasons of convenience we will divide this step into two substeps marked i_{a} and i_{b}. In step i_{a} the string e_{i-1} is searched and the numbers p_{i}, q_{i} and m_{i} determined. In step i_{b} the string e_{i} is formed and supplants the string e_{i-1}. Thus, after the step i_{a}, the string e_{i-1} and the numbers p_{i}, q_{i} are available; after step i_{b}, there are available the string e_{i} and the pair p_{i}, q_{i}.

The string $e_{i}=x_{1} x_{2} \ldots x_{n}$ (for $j=1,2, \ldots, n, x_{j} \in V$) will be termed the input string for the translation algorithm. Since, as we have shown, only one such string. is available at any time, there is no danger of confusion.

The actual translation algorithm

This algorithm is actuated alternately with the analysis algorithm. It performs mainly the following two functions:
a) The marking of the input string, i.e., assigning to each symbol x_{k} ($k=$ $=1,2, \ldots, n$) a superscript $\left(r_{k}, s_{k}\right)$ where r_{k} and s_{k} are either both natural numbers.
or both zeroes. The result of this operation is the markea input string $x_{1}^{\left(r_{1}, s_{1}\right)}$.. $\ldots x_{k}^{\left(r_{k}, s_{k}\right)}$.
b) Introducing and rearranging symbols in the output string. This is a sequence $y_{1} y_{2} y_{3} \ldots$ of symbols from V_{t}^{*} produced and manipulated by the algorithm. To be precise, we shall regard the output string alternately as a sequence of symbols or as a sequence of "empty places" to put symbols into.

Putting a string x into the output string b means filling the necessary number of empty places $y_{f} y_{f+1} \ldots$ with the symbols of this string (f is the number of the first unfilled place) and updating f. Any substring of the output string will be also termed an output string. All of these conventions will hold also for the temporary storage string $z_{1} z_{2} z_{3} \ldots$ used by the algorithm.
Two other notions will serve to simplify the description of this algorithm. Let $e_{i-1}=v b w, e_{i}=v a w$ (i.e., $r_{p_{i}}=(a::=b)$). Suppose that in the marked input string, the symbol a has been assigned the superscript (r, s). Then $y_{r} \ldots y_{s}$ is

1. the output string assigned to $a(A(a))$,
2. the output string corresponding to $b(C(b))$. We shall now give a detailed description of the translation algorithm:
3. e_{0} is the input string, $l\left(e_{0}\right)=n$. Put $r_{1}=s_{1}=\ldots=r_{n}=s_{n}=0$. Put $i=1$.
4. Perform step i_{a} of the analysis algorithm.
5. If the rule $r_{p_{i}}$ belongs to group (I), put $\tau\left(x_{q_{i}}\right)$ into the output string. Perform step i_{b} of the analysis algorithm and put $r_{q_{i}}=s_{q_{i}}=f-1$. Go to step 6 .
6. If the rule $\mathbf{r}_{p_{i}}$ belongs to group (II), find

$$
a=\min \left(r_{q_{i}}, \ldots, r_{q_{i}+m_{i}-1}\right), \quad b=\max \left(s_{q_{i}}, \ldots, s_{q_{i}+m_{i}-1}\right) .
$$

Perform step i_{b} of the analysis algorithm and put $r_{q_{i}}=a, s_{q_{i}}=b$. Go to step 6 . 5. If the rule $\mathrm{r}_{p_{i}}$ belongs to grour (III), then the bracketed rule $\Phi\left(\mathrm{r}_{p_{i}}\right)$ has the form

$$
\tau\left(a_{0}\right)::=d_{0}\left\{C_{t_{1}}\right\} d_{1} \ldots\left\{C_{t_{k}}\right\} d_{k} .
$$

Perform the following operations:
a) Put d_{0} into temporary storage.
b) For $j=1,2, \ldots, k$ do the following:
ba) Put $A\left(x_{q_{i}+m_{i}-t_{j}}\right)$ into temporary storage.
bb) Put d_{j} into temporary storage.
c) Put $f=a=\min \left(r_{q_{i}+m_{i}+t_{i}}, \ldots, r_{q_{i}+m_{i}-t_{k}}\right)$. Put the temporary storage string into the output string.
d) Perform step i_{b} of the analysis algorithm and put

$$
r_{q_{i}}=a, \quad s_{q_{i}}=f-1 .
$$

6. If the syntactical analysis has been completed, then terminate. $A\left(e_{m}\right)$ is the required translation. Otherwise raise i by 1 and go to step 2 .

The operations described are really simple but rather hard to visualize from the formal description. The following example will serve to illustrate the process of translation.

The languages L - the usual arithmetical expressions with dyadic numbers (containing only " + " and " \times ") and L^{*} - the corresponding expressions in the Lukasiewicz notation, but read from right to left - are generated, respectively, by the grammars G and G^{*} defined as follows [2]:

$$
\begin{array}{ll}
V_{p}=\{0,1,+, \times\} & V_{p}^{*}=V_{p} \\
V_{a}=\{[,]\} & V_{a}^{*}=\{;\} \\
V_{u}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{~s}\} & \\
& V_{n}^{*}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
\text { 1. } \mathrm{p}::=0 & \mathrm{a}::=0 \\
\text { 2. } \mathrm{p}::=1 & \mathrm{a}::=1 \\
\text { 3. } \mathrm{q}::=\mathrm{p} & \mathrm{~b}::=\mathrm{a} \\
\text { 4. } \mathrm{q}::=\mathrm{qp} & \mathrm{~b}::=\mathrm{ab} \\
\text { 5. } \mathrm{r}::=+ & \mathrm{c}::=+ \\
\text { 6. } \mathrm{r}: \because=x & \mathrm{c}::=x \\
\text { 7. } \mathrm{s}::=\mathrm{q} & \mathrm{~d}::=\mathrm{b} \\
\text { 8. } \mathrm{s}::=[\mathrm{srs}] & \mathrm{d}::=\mathrm{d} ; \mathrm{dc}
\end{array}
$$

It can be shown (cf. [2]) that G is well - translatable into G^{*}. The correspondence table (table 1) needs no explanations. Now table 2 describes the whole process of translation of the string $[10 \times[110+1]]$. In row 0 we see the input string e_{0} marked in accordance with the first step of the translation algorithm. e_{0} is reduced to e_{1} by the group (I) rule $\mathfrak{r}_{2}=(\mathrm{p}::=1$). In accordance with step 3, $\tau(1)=1$ is put into the output string and the symbol p in e_{1} is marked accordingly. Next, e_{1} is reduced to e_{2} by the group (II) rule $\mathrm{q}::=\mathrm{p}$. No change results in the output string (see step 4), and the symbol q in e_{2} will have the same superscript as p in e_{1}. In fact, the only changes produced by group (II) rules take place when $m_{i}>1$. Then the new symbol replaces more than one symbol; the strings assigned to them are immediately adjacent and, by definition, their order need not be changed. Thus the string assigned to the new symbol is

Table 1.

Number	Group	\mathfrak{r}	Bracketed $\Phi(\mathfrak{r})$
1	I	$\mathrm{p}::=0$	a $: ~:=\left\{C_{1}\right\}$
2	I	$\mathrm{p}::=1$	a $::=\left\{C_{1}\right\}$
3	II	$\mathrm{q}: ~: ~=~ p ~$	$\mathrm{b}: \because=\left\{C_{1}\right\}$
4	III	$\mathrm{q}: ~: ~=~ q p ~$	$\mathrm{b}::=\left\{C_{1}\right\}\left\{C_{2}\right\}$
5	I	$\mathrm{r}::=+$	c $::=\left\{C_{1}\right\}$
6	1	r $::=x$	c $::=\left\{C_{1}\right\}$
7	II	$\mathrm{s}: ~:=\mathrm{q}$	
8	III	$\mathrm{s}::=[\mathrm{srs}]$	$\mathrm{d}::=\left\{C_{2}\right\} ;\left\{C_{4}\right\}\left\{C_{3}\right\}$

Table 2.

	$\stackrel{-}{2}$	\times
	\therefore	＋－
	$\stackrel{\sim}{\circ}$	$-\rightarrow-\rightarrow 0$
	$\stackrel{\sim}{2}$	$++++\rightarrow \cdots$
	$\stackrel{0}{2}$	0－－－－－－10＋
	\cdots	－－－－－－－－－－－
	$\pm{ }^{\text {d }}$	－－－－1000000－1
	\cdots	$\times \times 0$
	\approx	
	$=$	$\rightarrow-1000000000000000-$
dno．l		ージヨコーージヨーヨヨードヨ可
2		
\cdots		NNMNNmめnoubunorrata
	\because	$\begin{aligned} & \hat{0} 00_{0} \\ & \dot{c} 00_{0}^{0} \dot{0} \\ & \hline \end{aligned}$
	7	
	$\stackrel{\text { 알 }}{ }$	
	\because	
	$\underset{\sim}{\infty}$	
	－	气．
	$\stackrel{\sim}{\gtrless}$	
	\cdots	
	\pm	
	\cdots	
	\because	
	\cdots	
	\because	

formed simply by concatenating these strings and the superscript is formed accordingly. The
Let us now consider the reduction 4 using the rule $\mathfrak{r}_{4}=(\mathrm{q}::=\mathrm{qp})$, where the bracketed $\Phi\left(\mathfrak{x}_{4}\right)=\left(\mathrm{b}::=\left\{c_{1}\right\}\left\{c_{2}\right\}\right)$. Step 5 of the translation algorithm puts $A(\mathrm{q})$ and $A(\mathrm{p})$ into temporary storage and then puts them into the output string again, but in the same order as the corresponding brackets in the bracketed rule $\Phi\left(\mathfrak{r}_{4}\right)$, i.e., $A(\mathrm{p}) A(\mathrm{q})$. In other reductions of this type (e.g. 18), symbols from V_{a}^{*} are introduced in appropriate places. Finally, $e_{19} \in V_{n}$. This terminates the translation process and $y_{1} \ldots y_{10}$ is the required translation.

Note: It is clear that the same procedure could be used for group (II) rules; but the process would thereby be unnecessarily complicated.

JUSTIFICATION

It remains to be shown that
(a) the required operations can always be performed
(b) the result is a translation in the sense of [1], [2].

To justify assertion (a), it is sufficient to show that for a group (III) rule $\mathrm{r}=$ $=\left(a_{0}::=b_{0} a_{1} b_{1} \ldots a_{k} b_{k}\right)$ (with $\Phi(\mathfrak{r})=\left(c_{0}::=d_{0} c_{1} \ldots c_{k} d_{k}\right)$ (no parts of the output string except $A\left(a_{1}\right), \ldots, A\left(a_{k}\right)$ are erased in forming $A\left(a_{0}\right)$. This follows readily from the canonical property of the reduction sequence produced by the analysis algorithm; for any such strings would have to follow $A\left(a_{1}\right), \ldots, A\left(a_{k}\right)$ and thus be the product of subsequent reductions.

Note: There are thus only two reasons for demanding that the reduction sequence be canonical: to ensure that the aforementioned operation can be performed and to justify the simplified procedure for group (II). If we modify the algorithm so as to use the full procedure for group (II) and to include a suitable relocation of symbols threatened with erasure, any reduction sequence can be used.

To justify (b), let us consider various types of rules used in the reduction sequence. For a group (I) rule $x:=y$ clearly $C(y)=\tau(y)$ (step 2), so that $S^{*}(C(y))=S(y)$. Suppose now that a group (II) or (III) rule has been used in a reduction. First let $a_{i} \in V_{t}$ for $i=1,2, \ldots, k$. Then the conditions of (3) are satisfied and $S^{*}\left(C\left(b_{0} a_{1} \ldots\right.\right.$ $\left.\ldots a_{k} b_{k}\right)=S\left(b_{0} a_{1} \ldots a_{k} b_{k}\right)$. Now let a_{1}, \ldots, a_{k} be nonterminal symbols once removed from their terminal equivalents. For all of then the requirements of (3) are satisfied (the method of proof being similar to that used for group (I) rules) and therefore

$$
S^{*}\left(C\left(b_{0} a_{1} \ldots a_{k} b_{k}\right)\right)=S^{*}\left(A\left(a_{0}\right)\right)=S\left(b_{0} x_{1} \ldots x_{k} b_{k}\right)
$$

where x_{1}, \ldots, x_{k} are the said equivalents.
The rest follows by induction on the distance of symbols from their terminal equivalents.
[1] K. Culík: Semantics and Translation of Grammars and ALGOL-like Languages. Kybernetika 1 (1965), 1, 47-49.
[2] K. Čulik: Well-translatable Grammars and ALGOL-like Languages. Mimeographed.
[3] J. Eickel: Generation of Parsing Algorithms for Chomsky Type-2 Languages. Bericht nr. 6401, Tech. Hochschule München.
[4] J. Eickel et al.: A Syntax Controlled Generator of Formal Language Processors. CACM 6 (1963), 8, 451-455.

VY̌TAH
Syntakticky řízený překladač pro jazyky typu ALGOL
Jan Vinař

V práci je vylíčena modifikace Čulíkova překládacího algoritmu z [1], [2], která pracuje místo s grafy s posloupnostmi symbolů, nepoužívá vůbec neterminálních symbolů cílového jazyka a má menší nároky na pamět, čímž se zdá vhodná pro případné strojové použití. Je uveden příklad překladu a je ukázáno, že algoritmus je vždy proveditelný a dává správné výsledky.

Jan Vinař, prom. mat., katedra matematiky University P. J. Šafárika, nám. Februárového vitazstva 9, Košice.

