
Kybernetika

Ladislav Janiga; Václav Koubek
Minimum cut in directed planar networks

Kybernetika, Vol. 28 (1992), No. 1, 37--49

Persistent URL: http://dml.cz/dmlcz/124970

Terms of use:
© Institute of Information Theory and Automation AS CR, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124970
http://project.dml.cz


K Y B E R N E T I K A — V O L U M E 28 ( 1992 ) , N U M B E R 1, P A G E S 3 7 - 4 9 

MINIMUM CUT IN DIRECTED PLANAR NETWORKS 

L A D I S L A V J A N I G A A N D V Á C L A V K O U B E K 

An algorithm which for any planar directed network, with n nodes finds its minimum cut in time 
0(n log (n)/ log(log(n))) is presented. For the case of s — ^-network this time is reduced by the factor 
of log(n), i.e. to 0(nlog(n)/log(log(n))). 

1. I N T R O D U C T I O N 

We present an algorithm which for any planar directed network with n nodes find-

s its minimum cut in t ime o(nlog2(n)/log(log(n))). Such an algorithm running ill 

o(nlog2(n)) t ime is already known for undirected networks [14]. The case of directed 

networks seems to be somewhat more difficult, however we use similar techniques to 

those in [9], [14]. We use two tricks: The first one replaces the set of all cuts by an es

sentially smaller one and the lat ter consists of an application of the divide-and-conquer 

principle. Both of these tricks are based on the planarity. 

T h e first idea reduces our problem of finding a minimum cut to the problem of finding 

shortest pa ths in the dual multigraph. This idea appears in [4], and we use the most 

effective implementat ion of the shortest path algorithm due to Dijkstra [1]. The second 

idea is an application of the divide-and-conquer principle which was used by Reif [14] for 

undirected networks. We had to modify Reif's approach substantially because he used 

it for undirected networks. 

The running t ime of our algorithm is o(nlog2(n)/log(log(n))), in general, and for 

special cases o(n log(n) log(log(n))) (when the capacity values are polynomially bounded 

nonnegative integers) and o(nlog(n)) (when the capacities are in 0 ,1) . For the case,of 

s — t-networks all of the running times are reduced by the factor of log(n). 

T h e plan of the paper is the following: The first section introduces basic definitions. 

In the second one we prove tha t it suffices to restrict to special cuts , called cut-cycles. 

The results of the th i rd section enable us to apply the paradigm "divide and conquer" 

for finding a min imum cut-cycle. The last section is devoted to a description of our 

algori thm. 

The computat ional model used in this paper is a RAM with a unit cost and length 

of words 0{m). It means tha t all ari thmetic operations on numbers of length < cm for 

some constant c > 0 are performed in one step. The bound m, used here, is the minimal 
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length enabling to write all input numbers in binary code (i .e . m = max{log 2 (n)} U 

{log2(c(e)); e is an arc} where n is a number of nodes of an input graph) . The other 

technical machinery used here is a standard one, the reader will find all the basic notions, 

definitions as well as results together with motivations in the monograph [4]. 

2. BASIC NOTIONS AND FACTS 

A network N is a quadruple At = (G, s,t,c) where: 

(1) G = (V, E) is a symmetric directed graph (i .e. (a,b) £ E implies (b, a) £ E); 

(2) s and t are two distinguished vertices of G, called the source and the sink of the 

network respectively; 

(3) c is a capacity function from E into the set R + of all nonnegative reals such tha t 

for every (a, b) £ E we have either c(a, b) > 0 or c(b, a) > 0. 

From now on we shall denote an undirected edge of the form {a,b} by a — b and a 

directed arrow from a to b by a —• 6. 

T h e graph G will be given by lists V, vE, v £ V, where vE = {w <= V; (v,w) € E} is 

the list of all successors of the vertex v. Moreover, the s t ructure of any vertex w € vE 

contains the number c(v,w) and the pointer to the vertex v £ wE. 

Below we shall often study different subgraphs G' = (V, E') of G. Any subgraph G' of 

G will be determined by a mapping tpgi : E —> {0,1} such tha t ipo' is the characterist ic 

function of E'. Note tha t a subgraph G' need not be symmetric . 

A flow f in a network At is any function from E into R + such tha t : 

(1) f(x -> y) < c(x -> y) for every x -> y £ E, 

(2) for any vertex v except for s and t we have: 

£ / ( l i - B ) - - £ f(v^w). 
u-veE v-weE 

The value of the flow f is the following number 

E / ( * - « ) - E /(*>-*«) = E / ( « - * ) - E /(*->») 
s—ueE «!-**€£ «- . i€«? .-*vG13 

and it is denoted by | / | . A flow / is said to be maximum if | / | > |,9| for any flow' g in 

N. The value of maximum flows in N is denoted by \N\. 

For any set 5 of arrows we denote | 5 | = Y^x^yes c ( x ""* 2/)" ^ e s a y t u a t a s e t ^ °^ 

arrows of G crosses a directed path P = {xQ —» xx —> ... —> xn} if x ; —• Xi+1 € A for 

some i £ { 0 , 1 , . . . , ra — 1}. A set C of arrows of G is called a CM£ in A if any directed pa th 

from s to t in G is crossed by C. A cut C is said to be minimum in A if for any cut D 

in N we have |G] < |D | . 

Let G" = (V, E') be any subgraph of G. We say tha t C is a minimum G'-cut if G is a 

cut , C C £ ' , and for every cut C C £ ' we have |G | < |C ' | . 
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Our definitions of a network and a cut are slightly modified in comparison to the 

classical ones, where only paths containing arrows of positive capacity are considered. 

We s tar t with symmetr ic graphs which enable us to use the dual graph of G. For this 

sake it is convenient to suppose tha t G is symmetric (in which case any pair of arrows 

a —» b and b —» a can be represented by a — b, and no difficulties with dual mult igraphs 

arise). Since the capacity function can be zero for some arrows, this assumption is not 

restrictive. This modification is immaterial with respect to the classical results , but the 

fact t ha t a cut can contain arrows with zero capacity will be very useful. 

The following theorem is classical: 

F o r d - F u l k e r s o n T h e o r e m 2 .1 [4]. The value of a maximum flow in any network 

N is equal to the value of a minimum cut in TV. 

A network iV = (G, s, t, c) is said to be a P'-network if: 

(1) G is a planar connected graph without loops; 

(2) TV contains a positive path from s to t, i .e. , there is a directed pa th from s to t in 

TV containing arrows of positive capacities only. 

If TV is a P-network then G is said to be a P-graph. 

The planari ty of G is an essential restriction, the other condition is not of basic 

importance. Note tha t if there is no positive path from s to t then |TV| = 0. Using the 

depth-first search technique [1] on the arrows with positive capacities, it is easy to d«^de 

in 0 ( | V | + |F | ) - t ime whether a positive pa th from s to ( exists. If there is a positive 

pa th from s to t, then \N\ depends on the component containing s and t only, and since 

a construction of connected components of a graph requires o(|V| + |E | ) - t ime (see [1]), 

we can restrict ourselves to P-networks. 

We will assume that a P-graph G together with a fixed embedding of G into the plane 

is given. This can be assumed without loss of generality, since such an embedding can 

be found for any P-graph in 0(n) t ime [8], [12]. 

We recall the notion of a dual multigraph D(G) = (D(V), D(E)) of a planar graph G: 

D(V) is the set of all faces of G; 

D(E) = {D(e);e € E) where D(e) is an edge connects two faces F i , F 2 S D(V) such 

tha t e is bordering both Fj and F 2 . 

For a face F € D(V) denote by B(F) the set of all arrows a —> 6 bordering F . For an 

arrow a —* b define D(a —• b) = D(a — b), for a set of arrows A pu t D(A) = 

= {D(a~-^b);a->b£A}. 
For any planar graph G its dual D(G) is clearly planar again, and an embedding 

of G into the plane defines naturally an embedding of D(G) such tha t any face of G 

is represented by some of its inner points, and D(e) is the unique edge connecting 

corresponding faces meeting e in an inner point. For this reason, we will assume a 

common embedding of G and D(G). To distinguish between objects in G and D(G) we 

call edges, pa ths , cycles etc. in D(G) D-edges, D-paths , D-cycles etc. We say tha t a 

D-path (or a D-cycle) P is contained in a subgraph G' = (V, E') of G if for every edge 
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e 6 P there exists an arrow a —» b _ E' with D(a —> 6) = e. Then we write P C G''. 

Analogously, for a pa th P we write . C 6" if - C £-". 

For a set of D-edges C and a directed path P : (x0 —> x\ —> ... —* _•„), we say tha t P 

crosses C k-times if _ = |{i; Z. (_, —> _ t + 1 ) € C } | . If P crosses C _-times for some _ > 0 

then P crosses C. 

A vertex-simple D-cycle C (forming a closed and non self-intersecting curve in the 

plane) separates two vertices _ and y if every directed path from _ to y crosses C. 

Two arrows a —> _ and c —» d bordering a face P are said to be confluent if one of them 

belongs to the clockwise orientation and the other to the counter-clockwise orientation 

of the border of F. 

A sequence of arrows e 1 , . . . , e n is confluent if e; and e.+i are confluent for every i € 

{1, . . . ,n — 1}. A confluent sequence e\, . . . , e n , n > 1 is said to be closed if en and e! are 

also confluent. If, moreover, D(e\),..., D(en) is a D-cycle then e i , . . . , e n is said to be a 

confluent cycle. A confluent cycle whose members form a cut is called a cut-cycle. 

A set of arrows {A\,..., A,,} is called closed confluent if it can be arranged into a closed 

confluent sequence. 

Note tha t the sets { ( s ,_ ) £ E; x 6 V},{(x,t) £ E; x £ V} are closed confluent 

sets such tha t the arranged confluent sequences are cut-cycles. We denote Cs, Ct the 

corresponding cut-cycles. 

For a set A of arrows and a vertex v we denote 

Acc(x,A) = {y _ V; there exists a directed path from x to y which does not cross A}, 

Acc(A,x) _ { ( / £ . ; there exists a directed path from y to x which does not cross A}. 

Let F = {x0 - x\ - ... - _ n - x0} be a face and let a —> 6, c -> d £ B(F) be 

confluent arrows. Wi thout loss of generality we can assume tha t a = x0, b = xn. 

Then c = _t-, d = _,+i for some i £ { 0 , 1 , . . . , n - 1}. Denote by Out(a —> b, c —> 

d) = _0 -> x\ -> ... -> Xi,In(a ~> 6, c -> d) = _ n -» z n _i -> ... -» x,-+i. If 

(7 — {a- —> l^ i £ {0 ,1 , . . . ,m}} is a closed confluent sequence then a concatenation 

of In(a0 —» b0,a\ —> b\),In(a\ —» - i , a 2 —> b2),..., In(an —> 6 n , a 0 —» 60) is denoted by 

In(C) and analogously Out(C) is a concatenation of Out(a0 —> 60, ai —> 6][), 0 _ . ( a ! —> 

6 i , a 2 —> b2),..., Out(an -+ 6 n , a 0 —> 60). Clearly, the following holds: 

S t a t e m e n t 2 . 2 . For a closed confluent sequence C, In(C) and Out(C) are cycles 

such tha t for every a —> b _ C every vertex of Out(C) belongs to Acc(a,C) and every 

vertex of In(C) belongs to Acc(C, b). 

S t a t e m e n t 2 . 3 . Every closed confluent sequence induces a closed edge-simple D-

path ; every such D-path is induced by exactly two closed confluent sequences where one 

is obtained from the other by reversing the arrows. 

Note tha t the Dijkstra algorithm for finding a short pa th from a single source, see [12], 

p . 40 can be modified to the algorithm Cyclel for a finding minimal confluent pa th or a 

minimal confluent cycle with a suitable property, e.g. , there exists an algorithm which 
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for a given subgraph G' of G and a given arrow a —> 6 finds a confluent cycle C C G' 

containing a —> 6 with the smallest \C\. Dijkstra algorithm uses a priority queue Q and 

the number of operations with Q is proportional to the number m of arrows in the input 

graph G". If the operations with Q require 0(f(m)) t ime for a function / , then the 

Dijkstra algorithm uses 0(m + f(m)) t ime. The same facts hold for Cyclel. 

3. C U T - C Y C L E S 

The following lemmas generalize the ideas of Reif [14] for directed networks. Applying 

them we reduce the set of cuts to be searched through to those cuts tha t are confluent 

cycles. Finally, we give a characterization of a confluent cycle which is a cut . 

L e m m a 3 . 1 . Every cut contains a closed confluent sequence which is a cut . 

P r o o f . Let R be an arbitrary cut. Let R' = {a —> 6 € R;a _ Acc(s,R),b 0 

Acc(s, R)}. Clearly, R' C R and R' is a cut. Choose a0 —> 60 _ R' and let F be a face with 

a0 —• 60 _ B(F). Since a0 € Acc(s, R), b0 g" Acc(s, R) there exists ai -> 6] € R! n B(F) 

such tha t : 

(1) a0 —> 60 and ai —> 6i are confluent with respect to F; 

(2) one of two pa ths connecting a0 and ai bordering F lies in Acc(s,R). 

Note tha t _i —> &i € R' is uniquely determined by F and the conditions (1) and (2). 

Denote a i —> &i = 7 (a 0 —> &0, F), then a0 —> 60 = 7(ai —> &_, P ) . Define S by induction: 

a0 —> 60 € 5 . If a,- -> 6,- € S and Z)(a,- —> 6;) = F0 - Ei then {a,_i -> 6 ,_i ,a ,+ i —> 

6i+ i} = {7(0,- —> 6,-, F 0 ) , 7 ( a i —> 6i, F i ) } . Since G is finite there exists the smallest j with 

a J + i —> 6 J+i = a; —> 6, for i < j . By the properties of 7 we obtain tha t i = 0, and hence, 

5 is a closed confluent sequence. 

Finally, we prove tha t either S or R" = R' — S is a cut. Assume tha t nei ther is. Let 

P = {s = u 0 —» Wi —> ... —> u/t_i —> Ufc = 2} be a directed path which does not cross 

R". Since S is not a cut there exists the greatest i with ui € Acc(s,S) for every / < i 

and the smallest j with u/ £ / l cc ( s ,S ) for every / > j . Let P ' be the concatenat ion of 

u0 —> ui —> ... —> u,, a par t of Out(S) containing u, and Uj, and Uj —> u J + i —> ... —> u„. 

Obviously, P ' is a directed path from s to t. By Statement 21.2, P' does not cross 5 . By 

the definition of S, Out(S) C Acc(s, R'), and thus, P ' does not cross R' - a, contradict ion, 

because fi' is a cut . 

The proof is now completed by induction. If S is not a cut, we take R" = R' — S 

in place of R! and repeat the whole construction. After a finite number of steps we 

necessarily obtain a confluent closed sequence of arrows in R which is a cut . • 

L e m m a 3 . 2 . Every cut contains a cycle cut. 

P r o o f . Let R be a cut. According to Lemma 3.1 there exists a closed confluent 

sequence S = (A\,..., An) C R which is a cut. If 5 is a confluent cycle, we are done, 

otherwise the dual pa th D(S) induced by S can be split to two par t s , a vertex simple 

£>-cycle C and D(S) - C . Then there exists a confluent cycle CCS wi th D(C) = 
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C. Analogously as in Lemma 3.1 we prove tha t either C or S — C is a cut and this 

construction can be applied recursively until C is the desired cut-cycle. D 

C o r o l l a r y 3 . 3 . In any E-network N there is a minimum cut which is a confluent 

cycle. 

Corollary 3.3 has been used in [10] for a proposal design of a parallel algorithm con

struct ing a min imum cut in any P-network. Note that Corollary 3.3 reduces the set of 

cuts which have to be searched for finding a minimum cut. The following lemma and 

corollary characterize a confluent cycle which is a cut; this characterization has been also 

used in [10]. 

For a subgraph G' of G for a directed pa th P and a face F a cut-cycle C is called a 

minimum (F, P, G')-cut-cycle if C C G" , P n C n B(F) ^ 0, and |C | has the smallest 

possible value. 

L e m m a 3 . 4 . Let C be a Z)-cycle. Then for every pair x,y of vertices of G the 

following conditions are equivalent: 

(1) C separates x and y; 

(2) there is a directed path from x to y crossing C an odd number of t imes; 

(3) every directed path from x to y crosses C an odd number of t imes. 

Moreover, if the vertices x and y are not separated by C, then there exists a directed 

pa th from x to y tha t does not cross C. 

P r o o f . Let P = {x = u0 —> u\ —>. . .—• w* — y} be a directed pa th . P u t 

C = {a —> 6 € E;D(a —+ b) € C}. If P does not cross C, then C does not separate 

x and y. If C crosses P exactly once, then by Jordan 's theorem there exists i with 

Ui € Acc(x,C),ui+1 $ Acc(x,C). Then y £ Acc(C,Ui+i), and hence, y g Acc(x,C). 

Thus , C separates x and y. If C crosses P fc-times for k > 1, then there exist the greatest 

»' with ut € Acc(x,C) for every? < i and the smallest j > i with u , 6 Acc(x,C). By 

Sta tement 2.3 there exists a closed confluent sequence C" with C" C C and C = D(C"). 

By Sta tement 2.2 we can replace the part of P between u< and Uj by the part of In(C") 

or Out(C"), and we obtain a directed path P' from z-to y such tha t C crosses P' (k — 2)-

t imes. By induction we obtain tha t (2) => (1) => (3). Since (3) => (2) is obvious, the 

eqidyalence of (1), (2), and (3) is proved. The last s ta tement follows immediately. 

** • 

C o r o l l a r y 3 . 5 . Let C be a confluent cycle. Then the following are equivalent: 

(1) C is a cut; 

(2) there is a directed pa th P =.{s = x0 —» x\ -̂» ... —+ xm = t} crossing C an odd 

number of t imes, and for the smallest j with D(XJ —+ Zj+i) £ .o (C ) we have 

t h a t Xj —> xy+i € C; 

(3) every directed pa th P = {s = x0 -» xr —• ... -» z „ = £} crosses o(C) an odd 

number of t imes, and for the smallest j with D(XJ '—* x^+i) 6 /5(C) we have tha t 

Xj —» x J + i € C 
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P r o o f . Since C is a confluent cycle we have tha t D(C) is a D-cycle. 

(1) => (3). If C is a cut, then D(C) separates s and t. Now let P = {s = x0 —> Xi —> 

... —» xm = t} be a directed vertex-simple path from s to i. Let j be the smallest number 

with D(XJ —> xJ+\) € D(C). Assume that x J + i —» XJ 6 C. Let k be the smallest number 

with xi € / lcc(jD(C) , i ) for every / > k. Then the concatenation of x 0 —» X\... —+ xJ+l, 

the par t of Out(C) connecting x3+x and xk, and x^ —> xk+\ —» ... —> x r a is a directed 

pa th P' which does not cross C - a contradiction. 

(3) -> (2). Trivial. 

(2) =>• (1). Let P be the path in question. Since it crosses D(C) an odd number of 

t imes, D(C) separates s and i. Clearly, V = Acc(s,D(C)) U Acc(D(C),t). According 

to the properties of P, there exists a —» 6 € C with a € ,4cc(s, o(C)), b E A c c ( D ( C ) , t ) . 

Hence, by Sta tement 2.2, Out(C) C Acc(5, D(C)), therefore c -> d € C if and only if 

c e Acc(s, D(C)),de Acc(D(C),t), and c -» d € E. Thus C is a cut . D 

Corollary 3.5 enables us to modify Algorithm Cyclel to the algorithm Cycle2 con

struct ing a minimum (P,F,G') cut-cycle where P = (s = x 0 —> Xi —+...—» x p = t) 

is a vertex-simple directed path in G, F is a face, G' = (V,E') is a subgraph of G 

with P n 5 ( E ) D £ ' / S. By Corollary 3.5 it suffices to construct a confluent cycle 

C = {ak -> bk € E;k g {0 ,1 , . . . ,<? - 1}} such that 

(1) C C E' and a0 -» 60 € E(E) n P; 

(2) E crosses D(C) an odd number times; 

(3) for the smallest k with D(xk —> Xfc+]) 6 D(C) we have x* -» xk+1 6 C; 

(4) | C | has the smallest possible value. 

For this reason we define, for a confluent sequence Q 

Cross(Q) = 1 if P crosses D(Q) by an odd numbers of t imes; 

Cross(Q) = 0 if P crosses D(Q) by an even number of times. 

First(Q) = min{/ ; D(xi —> x; + i ) € D(Q)} if the set is non-empty; 

First(Q) = 00 if D(P) n D(Q) = %. 

Okay(Q) = 1 if First(Q) = k ^ 00 and x* -» x*+i G Q; 

Okay(Q) = 0 otherwise. 

We have to find a confluent cycle C with the smallest |C | such t h a t 

(1) CQE'; 

(2) the first arrow of C belongs to P D B(F); 

(3) Cross(C)= \,Okay(C) = \. 

We modify the Dijkstra algorithm in such a way that it constructs confluent sequences 

Q together with \Q\, \Cross(Q)\, |E i rs t (<5) | , \Okay(Q)\ satisfying (1) and (2). It stops 

if it finds a confluent cycle C with Cross(C) = Okay(C) = 1. If the number of arrows 

of G' is m , then CycleS requires 0(m + f(m)) t ime where / ( m ) is the t ime needed for 

the operations with priority queue. 
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Corollaries 3.3 and 3.5 yield the algorithm used in [10]. It selects a directed path P 

from a to t, for every arrow e e P it finds a cut-cycle C containing e with the smallest 

|C | , and finally it computes a minimum over all arrows in P. In this paper we present a 

finer algori thm. 

4. A P P L I C A T I O N O F DIVIDE AND C ONQUE R 

Let C and D be two cut-cycles. We say tha t they are collision-free if Out(D) C 

Acc(s, D(C)) or Out(C) C Acc(s, D(D)) and for every a ^ b € D we have b - * a 0 C'. 

Let C and D be two collision-free cut-cycles with Out(C) C ,4cc(.s,.D). Then the 

subgraph Str(C,D) = (V,E') (not necessarily a full one) is said to be a strip with the 

source boundary D and the sink boundary C where 

E' = {x ->y € E;x,y € Acc(s, £>) n A.cc(C, <)} U C U D. 

A strip Str(C, D) is degenerated if C n D -£ 0. 

A subgraph (V, E') of G is said to be a strip if there are two collision-free cut-cycles 

C and D such tha t (V, £ ' ) = Str(C, D). 

L e m m a 4 . 1 . Let (V, E') = Str(D\,D2) for two collision-free cut-cycles D\ and 

D2. If C is a minimum Str(D\, D2) cut-cycle, then for every a —> 6 £ C, we have 

b^> a £ D\U D2. 

P r o o f . Let a —» 6 6 C and 6 —» a € Z)2. Using Lemma 3.4 we can construct 

a pa th P\ from s to a which does not cross C and another pa th P 2 from a to i with 

P2 C y4cc(D2,<). But the concatenation of those paths is a directed pa th from s to t 

having an empty intersection with C ~ a contradiction. The case when b —» a € D\ is 

analogous. • 

L e m m a 4 . 2 . Let (V,E') = Str(D\,D2) be a degenerated strip and let P be a 

directed pa th from s to t with P n D , = P n Z)2 = {a -> 6}. If C C Str(D\,D2) 

is a confluent cycle containing a —» 6, then C is a cut-cycle. Let F be a face with 

a —> b 6 B(E). If C is a minimum (P,E,Str(D\,D2) cut-cycle, then it is a min imum 

Str(D\,D2) cut. 

P r o o f . Since P n E' = {a —» 6}, we conclude, by Corollary 3.5 tha t every confluent 

cycle containing a —» b is a cut and that every minimum Str(D\,D2) cut-cycle must 

contain a —» b. • 

By Lemma 4.2, Algorithm Cyclel with parameters Str(D\,D2) and a —» 6 for degen

erated -D; and D2 computes a minimum Str(D\,D2) cut-cycle and requires 0(m + f(m)) 

t ime where m is the number of arrows in Str(D\,D2). 
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L e m m a 4 . 3 . Let P be a directed pa th from s to t. Assume tha t D\,D2 are two 

collision free cut-cycles and put (V, E') = Str(D\,D2). Let F be a face with B(F) D P 

HE' 9- 0 and let C be a minimum (P,F,Str(D\,D2)) cut-cycle. Then D\,C and C,£>2 

are collision-free cut-cycles and there exists a minimum Str(D\, D2) cut-cycle D with 

ei ther D C Str(D\,C) or D C Str(C,D2) or \D\ = \C\. 

P r o o f . By Lemma 4.1 D\,C and C,D2 are collision-free cut-cycles. Let C be a 

min imum Str(D\,D2) cut-cycle, with \C'\ < \C\. Define 

B\ = {x -> y € E; x e Acc(s, D(C U C ) ) , y g Acc(5, D(C U C'))}, 

B2 = {x-+y£E;y£: Acc(D(C U C ) , . ) . * £ Acc(D(C U C ) ; i ) } . 

Analogously, as in the proof of Lemma 3.1, we obtain tha t both B\ and B2 are closed 

confluent sequences which are cuts contained in C'UC because C and C are cut-cycles. 

Choose x —>y€CnPn B(F), then we have tha t x —> u g" P i n _?2 for otherwise x —* y 

would belong to C . 

Hence either x —> y £ B\ or x —>j/0 _?2- Suppose tha t a; —* y £ B\ ( the second 

case is fully analogous) and assume that B\ = (u\ —• t>i,.. . ,up —• u p ) . Thus there is 

some a —• 6 _ B\ n C . Assume that there exists some a' —• 6' $_ £?i — C otherwise 

_?i =s C holds. Let i be an index such that u, —> vi 6 C', u ; + ] —» vi+\ 0 C and let j 

be the smallest index greater than i such tha t Uj —• i>j € C (j taken modulo p) . Then 

the sequence (u;+ i —> t>,+i, ...,uy_j —• fj_i) is contained in C, and there is a confluent 

sequence (u)j —• _;,...,u>, - * z,) contained in C and connecting u; —> f, and Uj —• « , 

(u ! + i —> 0,+i and u>( —> zj border the face and are not confluent). Let C\, or C2 be 

confluent sequences obtained by the following substi tution into C , or C: 

wi —> _(, ...,u>, -> z, by u1 + i - • t>t+i, ...,Uj_i -» f j - i or 

w,+i —> v,+ 1 , . . . ,Uj_] -> t>j_, by to, —> _; , . . . , to , -> _, . 

Clearly, C and C2 are closed confluent sequences. 

Since u, -> t>< € C n C , we obtain u,- € y4cc(«,C U C ) , V. € Acc(C U C',.). and 

hence, there exist directed paths P\ from s to u,- and P 2 from f,- to t tha t do not cross 

C U C . Let P be a directed pa th which is a concatenation of P i , u. —> vi, and P 2 . Since 

P crosses C and C2 only once, by Corollary 3.5 Ci and C2 are cuts. Since x —• y € C2, 

we conclude tha t |C 2 | > | C | , \C'\ < \C\\ and so 

£ С(UГ ->• «.) = J З С(U)Г -> -r). E 
r=i+l rxl 

Now by induction we obtain that | C | = | P i | and B\ C Str(D\,C). 
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L e m m a 4 . 4 . Let (V,E') = Str(D\,D2) and let P = (s = x0 -*...-> xp = t) be a 

directed pa th . If {x,- —» xi+1} £ D\ f) P and {XJ -» x-j+\} € D2(~\ P with i < j , then for 

any cut-cycle C C ( V , £ ' ) there exists k £ {«, . . . , ;} with x* —» x*.+1 G C n P . 

P r o o f . Clearly, there exist directed paths P\ from s to « ; , P2 from Xj+\ to f tha t 

cross neither D\ nor D 2 . Let P ' be the concatenation of Pi ,x,- —» xi+1 —» ... —» X J + J and 

P 2 . Then for w —> v £ C n P ' we have u —> v = x^ —» Xk+\ for some k £ {«, .••,_/•'}. O 

5. T H E A L G O R I T H M 

Let P = (x0 —» X] —» ... —» x,) be a directed pa th in a graph then the face length of P 

is the smallest number k such tha t there exists a sequence P 0 , F\,..., Fk-\ of faces of G 

with P C uf~ 0
1P(F.) . A sequence {P, ; i € A;} is called a face decomposition of P . A /ace 

diameter of a network At is the smallest face length of directed paths from s to t. 

We describe an auxiliary procedures Path which finds a directed path P from s to t 

with the smallest face length and a face decomposition of P . We use again the Dijkstra 

algori thm on G with a single source s. The algorithm constructs a directed pa th P from 

5 with a face decomposition. The path P is labeled by the face length of P . Hence the 

algori thm finds a face diameter of At with a directed pa th P from s to t with the smallest 

face length. T h e face decomposition is constructed in a s tandard way. The algorithm 

Path requires 0(n + f(n)) t ime where n is the number of vertices in V. 

Finally, we describe auxiliary functions applied in the main algorithm. 

Function Minimum - its inputs are three cut-cycles Co,C\,C2 together with their val

ues |Co|, |Ci | , \C2\. Minimum computes a cut-cycle C £ {C0 , C\, C2} with the min imum 

value. Clearly, Minimum requires a constant t ime. 

Function Degener - its inputs are two collision-free cut-cycles C, D. Degener decide 

whether C n D ^ 0, and if C n D / 0, then it finds a -» 6 £ C n D. To compute it, first 

Degener marks all vertices x £ V with x —> y £ C for some y £ V. Secondly, it decides 

whether there exists x £ V with x —» y £ C, x —» z £ D for some y,z £ V, and finally, it 

decides whether y = z. Since C and D are given as link lists, we see tha t Degener uses 

0( |C | + |D|) time. 
Function Strip - its inputs are a strip Str(C,D), cut-cycle C\ C Str(C,D) such tha t 

C,C\ and Ci,£> are collision-free, and i £ { — 1,1}. Strip computes arrows in Str(C,C\) 

if i = 1, or arrows in Str(C\, D) if i = — 1. By the depth-first-search it marks all vertices 

in Acc(s,C\) n Acc(C,t) or in Acc(s, D) f\ Acc(C\,t). Then by a systemat ic search it 

finds all arrows in Str(C,C\) or in Str(C\,D). Since G is planar, it requires 0(m) t ime 

where m is a number of edges in Str(C, D). 

Finally we describe a main auxiliary procedure MinCyc. We assume tha t a directed 

pa th P from s to t with a face decomposition {P, ; i € { 0 , 1 , ...,<? — 1}} is given. An input 

is a str ip Str(D\,D2) and two numbers j , k with 0 < j < k < q, D\ n P n B(Ff) + $± 

D2C\ P n B(Fk). MinCyc computes a minimum Str(D\, D2) cut-cycle. We describe this 

procedure: 
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Apply Degener for D\,D2; 
if D\ y D2 are degenerated and a —> b G D\ C\ D2 then 
C\ is a cut-cycle constructed by Cyclel for a —> b,Str(D\,Pi) 
else if j = k then 
C is a cut-cycle constructed by Cycle2 for P, Fj,Str(D\,D2) 
else if k = j + 1 <ften 
Ci is a cut-cycle constructed by Cycle2 for P,Fj,Str(D\,Di) 
C2 is a cut-cycle constructed by Cycle2 for P,Fk,Str(D\,D-i) 
C is a cut-cycle determined by Minimum from C\,C2, D\ 
else r is an integer part of (j + fc)/2 
Ci is a cut-cycle constructed by Cycle2 for P,Fr,Str(D\,Dt) 
create Str(D\,C\) by Sirip 
find the smallest / > j with C\ D E n 5(F,) ^ 0 
C2 is a cut-cycle constructed by MinCyc for P,Str(D\,C\),j,l 
create Str(C\,D2) by strip 
find the biggest /' < fc with C, D P fl S(E r) ^ 0 
C3 is a cut-cycle constructed by MinCyc for P, Str(C\,D2), I', k 
C is a cut-cycle determined by Minimum from C\,C2, C3 

endif endif endif 
output: C is a minimum Str(D\,D2) cut-cycle. 

The correctness of the above procedure follows from Lemmas 4.2, 4.3 and 4.4. 

Lemma 5.1. Suppose that the priority queue used in the Dijkstra algorithm requires 
0(f(m)) time for m operations, where f(a + b) > f(a) + f(b) for every positive integers 
a,b. Then MinCyc requires 0((m + /(m))max{l, \og(k - j)}) time where m is the 
number of arrows in Str(D\,D2). <• 

Proof . The statement will be proved by induction on k — j . If k = / , then MinCyc 
requires 0(m) + 0(m + f(m)) = 0(m + f(m)) time, according to the time estimates for 
Degener, Cyclel. If k = j + 1, then we analogously obtain that MinCyc requires 0(m) + 
0(m + f(m)) + 0(m + f(m)) + 0(1) = 0(m + f(m)) time. Assume that the statement 
holds for every k—j < n where n > 1. From the time estimates for Cyclel, Cycle2, Strip, 
Degener, and Minimum and by induction assumption the procedure MinCyc requires 

0(m) + 0(m + f(m)) + 0(1) + 0(m + f(m)) + 0(m) + 0(m) + 0((m\ + f(m\)) log(Z -
j)) + 0(m) + 0(m) + 0((m2 + f(m2))\og(k - /')) + o(l) = o(m + /(m)) + 0((m\ + 
f(m\))\og(l — j)) + o((m2 + /(m2))log(fc - /')), where m\ is the number of arrows 
in Str(D\,C\), m2 is the number of arrows in Str(C\,D2), since a finding of / and 
/' needs only 0(m) time. Since / - j,h - /' < (k - j)/2 and since mx + m2 = m 
implies 0(m + f(m)) = 0(mx + f(mx)) + 0(m2 + f(m2)) we conclude that MinCyc 
uses 0(iru + f(m)) + 0((m\ + f(m\)) log(/ - j)) + 0((m2 + /(m,)liog(ifc - /')) = 0(m + 
f(m)) + 0((m\ + f(m\))(\og(k - j) - 1)) + 0((m2 + f(m2))(\og(k - j) - 1)) = o(m + 
f(m)) + 0((m + f(m))(\og(k - j) - 1)) = Q((m + f(m))\og(k - j)) time. • 
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Finally we describe the main algorithm MinCut 

Apply Path - we obtain a path P with a face length p. 

Apply MinCyc for P, G = Str(Cs, Ct), 0 ,p - 1. 

The correctness follows from the correctness of the algorithms Path and MinCyc. 

From Lemma 5.1 and the t ime est imate for Path we obtain 

T h e o r e m 5 .2 . Assume that the face diameter of At is p. Let the priority queue 

used in the Dijkstra algorithm require 0(f(m)) t ime for m operations, where f(a+ 6) > 

f(a) + f(b) for every positive integers a, b. Then MinCut constructs a min imum cut-cycle 

and requires 0((n + f(n)) max{l , log(p)}) t ime, where n is number of arrows in G. 

C o r o l l a r y 5 .3 . Let At be a planar network with n vertices and a face diameter p. 

The algorithm MinCut constructs a minimum cut-cycle in N and requires: 

(1) o((nlog(n)/log(log(n)))max{l,log(p)}) = 0(n log 2 (n) / log(log(n))) t ime; if, 

moreover, TV is a a — t—network then MinCut requires o(nlog(n)/log(log(n))) 

t ime; 

(2) if the values of the capacity function c are nonnegative integers less than nk, for a 

fixed k, then MinCut requires 0(n log(log(n)) m a x { l , log(p)}) t ime. If, moreover, 

N is a 5 — t-network then MinCut requires 0(n log(log(n))) t ime; 

(3) if the values of the capacity function c are negative integers less than k, for a fixed 

k, then MinCut requires o(nmax{l, log(p)}) t ime. If, moreover, N is a 

s — ^-network then MinCut requires 0(n) t ime. 

P r o o f . If we represent the priority queue by an AF-queue, see [6], then the amortiza

tion cost of operat ions INSERT and DECREASE is constant and the amort izat ion cost 

of operat ion D E L E T E and MINDELETE is o(log(n)/log(log(n))), thus (1) is proved. 

In case (2) we represent a priority queue by a da ta s t ructure suggested in [3]. Finally, 

in case (3), a priority queue is represented by a list, then an operation takes 0(1) t ime 

since the length of a list is bounded by k, and (3) is proved. • 

R e m a r k . Itai and Shiloach [9] worked in a more restricted computat ional model 

t ha t uses only the ari thmetical operations addition and subtract ion. The AF-queue and 

the priority queue described in [3] does not work in such a model. Therefore (1) and 

(2) of Corollary 5.3 does not hold in this model. We must represent a priori ty queue in 

this model either as a (2,4)-tree or a heap, and then an implementation of the algorithm 

MinCut runs in o(nlog(n) max{l , log(p)}) = o(nlog2(n)) t ime (for an 5 - i-network 

MinCut runs in o(nlog(n)) t ime) . 

(Received July 16, 1990.) 



Minimum Cut in Directed Planar Networks - 49 

R E F E R E N C E S  

[1] A.V. Aho, J .E. Hopcroft and J .D. Ullman: The Design and Analysis of Computer Algorithms. 
Addison-Wesley, Reading, Mass. 1974. 

[2] E. W. Dijkstra: A note on two problems in connections with graphs. Numer. Math. 1 (1959), 269 
- 271. 

[3] P. van Emde Boas, R. Kaas and E. Zijlstra: Design and implementation of an efficient priority 
queue. Math. Systems Theory 10 (1977), 99 - 127. 

[4] L. R. Ford and D.R. Fulkerson: Flows in Networks. Princeton University Press, Princeton, N.J. 
1962. 

[5] L. M. Fredman and R. E. Tarjan: Fibonacci heaps and their uses in improved network optimization 
algorithms. J. Assoc. Comput. Mach. 34 (1987), 596 - 615. 

[6] L. M. Fredman and D. E. Willard: Trans-dichotomous algorithms for minimum spanning trees and 
shortest paths. In: Proc. 31st FOCS, 1990, pp. 719 - 725. 

[7] R. Hassin and D.B. Johnson: An O (nlog2n)) algorithm for maximum flow in undirected planar 
network. SIAM J. Comput. 14 (1985), 612 - 624. 

[8] J. E. Hopcroft and R. E. Tarjan: Efficient planarity testing. J. Assoc. Comput. Mach. 21 (1974), 
549 - 568. 

[9] A. Itai and Y. Shiloach: Maximum flow in planar networks. SIAM J. Comput. 8 (1979), 135 - 150. 
[10] L. Janiga and V. Koubek: A note on finding minimum cuts in directed planar network by parallel 

computations. Inform. Process. Lett. 21 (1985), 75 - 78. 
[11] D.B. Johnson and S. Venkatesan: Using divide and conquer to find flows in directed planar networks 

in O(n 1 5 log(n)) time. In: Proc. 20th Annual Allerton Conf. of Communication, Control and 
Computing, 1982, pp. 898 - 905. 

[12] K. Mehlhorn: Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness. EATCS 
Monographs on Theoretical Computer Science, Springer-Verlag, Berlin - Heidelberg - New York -
Tokio 1984. 

[13] O. Ore: Theory of Graphs. Amer. Math. Soc. Coll. Publ., Vol. XXXVIII, Providence, R.I. 1962. 
[14] J. H. Reif: Minimum S-T cut of a planar undirected network on 0(n log (n)) time. In: Automata, 

Languages and Programming (S. Even, D. Kariv, eds., Lecture Notes in Computer Science 115), 
Springer-Verlag, Berlin - Heidelberg - New York - Tokio 1981, pp. 56 - 67. 

RNDr. Ladislav Janiga, CSc, Moravanů 68, 169 00 Pfaha 6. Czechoslovakia. 

RNDr. Václav Koubek, CSc, maiemaiicko-fyzikální fakulta University Karlovy (Faculty of Mathe-

malics and Physics - Charles University), Malostranské nám. 25, 118 00 Praha 1. Czechoslovakia. 


		webmaster@dml.cz
	2012-06-05T23:40:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




