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KYBERNETIKA — VOLUME 19 (1983), NUMBER 2

ADDITIONALS SIGNALS IN LINEAR DISCRETE-TIME
CONTROL SYSTEMS 1I

Additional Feedback Signal

VACLAV SOUKUP, KAREL HAVLICEK, MARTIN LUKES

Using the algebraic approach a linear discrete-time control system interconnected by the
additional feedback is investigated. The results are presented and evaluated for a closed-loop
system stability and time optimal as well as least squares optimal control synthesis.

The second part of the paper is concerned with the application of additional
feedback signal (AFS) in linear discrete-time (sampled-data) control systems. The
principles and fundamental applications of AFS (or additional controlled variable)
have been discussed, e.g., in [3]—[6].

This part of the paper represents the independent continuation of Part I [7],
but the reader is assumed to be familiar with the fundamental symbols and operations
of algebraic (polynomial) theory of linear discrete-time systems ([1], [2]) summa-
rized in Sections 1 and 11 of [7].

At first closed-loop stability of the presented system structure is investigated. Then
time optimal as well as least squares optimal control is solved. Optimal reference
tracking and optimal disturbance compensation are distinguished in the both cases.
The conditions under which the control performance index is improved by AFS
are specified and verified.

1. ADDITIONAL FEEDBACK SIGNAL IN LINEAR DISCRETE-TIME
SYSTEM

The block diagram of a discrete-time (sampled-data) control system using AFS
is shown in Fig. 1. Auxiliary output of the selected first part &, of a controlled system
is assumed to be sampled and fed back through the additional controller R,. For
simplicity, synchronous samplers preceding both digital controllers R, and R, are
not pictured in Fig. 1 and a continuously operating subsystem is limited by the
dashed line. All the signals outside this line are considered to be in the discrete-time
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forms. Possible disturbances ¥°; and ¥7, affect the system continuously. Let the
resulting sampled-data effect of #7, after passing the corresponding part of &, is
denoted by V, and a similar output effect of both ¥"; and ¥7, is represented by V.
Then Fig. 1 can be, for discrete instants of time, replaced by an equivalent block
diagram in Fig. 2 where the transfer sequences

b

ay

(1) G=E, (a, )~ 1, and G, ==, (a;, b)) ~1,
a

represent the discrete-time mathematical model of the overall controlled system
(including a data reconstructor #, subsystems &; and &,) and the model of the
first part of the controlled system (including 5 and &), respectively,
2 Rl=m, (ny,my) ~1, and R2=E, (g my) ~ 1,

ny ny

are transfer sequences of the controllers.

Fig. 1.

Fig. 2.

Note that controlled systems with the properties z™*/b and z71|b, are assumed
and alja but generally b, does not divide b.
The following equations are valid for the system in Fig. 2:

(3) Y =(l+GR, + G,R,)"'[GR,W — GR,V, + (1 + G{R,) V3],
(4) E=(1+ GR, + GiR,))" (1 + G,R,) W+ GR,V, = (1 + G,R;) V]
and

(5) U=(1+GR, + GR,) " (R,W— RV, — R, Vy).

132



Using the denotations (1), (2) and
a
O] dz = —

the transfer matrices
() G =[G G,]=a'[bab]

and
®) R = [R1 = [m,nm] !
R, Mm3Nyo,
can be written (in the coprime factorization forms, [1], [2]) where

ny "y _
e =—2- and ne=(n,n)n .
("l’ "2) > 20 ("n "z) 0 1> z) 10120

Then the equations (3)—(5) can be arranged into the vector-matrix form

Hig =

Y Kwyy Ky ;v Kyyyy w
(9) E|=|Kwir Ky, e Kyye Vil =
U Kww Ky yu Kvyu Va

-1
= (ane + bmynyg + azbymynie) " x

bm nyg —bmyn,,  ang + axbymyngg w
X {any + aybymynyg  bmynyg —(ang + azbyman;o) [V,
amyhyg —amyh g —amghyg V,

and the closed-loop pseudocharacteristic polynomial

(10) I = ang + bmynyg + abymangg .

2. CLOSED-LOOP SYSTEM STABILITY AND CAUSALITY

Theorem 1. A closed-loop system with AFS pictured in Fig. 2 and described by the
relations (1)—(6) is stable and causal (physically realizable) if and only if

(11) R, = M,N™' and R, = M,N"!

where M,;, M, and N are stable sequences which satisfy closed-loop stability (CLS)
equation

(12) aN + bM, + a,b;M; = 1

and N~ 1 is causal.
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Proof.

1. It will be proved at first that the closed-loop system is stable if and only if the
closed-loop transfer sequences Ky y and Ky in (9) have the form

(13) Ky;y = bM; and Ky = aN + a,b,)M,,
where M|, M, and N are stable sequences.
a) Only if: .

According to (9) and (10)

Kwyy = bmynyol™" and Ky = (ang + abymyng) 171
Denoting '
(14) My = mmn,l™ ', M, =mun, 0" and N = nyl™!

then Kyy and Ky g stand in (13). Since a stable system pseudocharacteristic poly-
nomial [ is a stable polynomial then My, M, and N are stable sequences.

b) If:

Let us assume that M, M, and N in (13) are stable but pseudocharacteristic poly-
nomial [ = I*1" with I~ ~ 1. Then analyzing (14) " imny, I"jmyn;q and 1™ |n,
must be valid at the same time. But (mn,9, M0, ny) ~ 1 and hence the only
I7 ~ 1 is allowed. Therefore stable M, M, and N ensure stability of the pseudo-
characteristic polynomial which is equivalent to stability of the system.

Note that the remaining closed-loop transfer sequences
KVA/Y = _KVA/E = ‘sz ’ KV,;,’Y = "KVB/E = KW/E >
Kypw = —Kyw=aM; and Ky, = —aM,
are then stable too.
2. Since substituting (14)
aN + bM + a,b, M, = (ang + bmynge + azbymyn ) 171 = 1171 =1
the relation (12) is proved.

It follows from the comparison of (3)—(5) and (9) that

(15) Ky Ry = Kypu(l + G,Rz)
and
(16) KyieRy = =Ky ol + GiRy). ’

If Kyje> Kwu and Ky 0 are substituted into (15) and (16) then
(aN + ayb,M,) Ry = aM + a;b MR,
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and
(aN + ayb,M,) R, = aM, + a,bM,R, .
Hence R, and R, result in (11).

3. Causality of the controllers (11) needs a causal sequence N~ '. O

3. TIME OPTIMAL CONTROL

In the case of time optimal control (TOC) causal controllers {11) must satisfy CLS
equation (12) and moreover ensure the error sequence E to be finite and as short as
possible. The control sequence U is required to be either stable (stable TOC) or finite
(finite TOC).

3.1. Time optimal reference tracking

Theorem 2. Given a discrete-time system with AFS pictured in Fig. 2, described
by the relations (1)—(6) and subjected to the reference W= flh, (h,f)~1,
Vy= Vg =0, then

a) stable TOC is assured by the controllers (11) with

s ) a0

(L) S SR S Sy VS Y R VAL L

azoai2f ag f b7f azobi,
where

a, n
18 Ayo = -, hy = - ,
(18) 0 (az, h) : (az, h)
a; hy by h,

19 Ay, = ——, hy = s =——+— and h,, = .
¢ ) " (a1, hz) o (axs hy) " (bss hz) * (bh h:)
The polynomials x, y, v satisfy the equation
(20) hazp(ar,x + biv) + b7y = f*

in such a way that x is causal and deg (afzx + bfzv) attains its minimum.
The error sequence (polynomial)

(21) E =e=azf (ax + bi,0) = f(ag x + azbi,v)
with
(22) dege < degasy + degf ™ + degb™,
the control sequence
(23) U = ay2a20f "y - aof "y
hayb hob™



where
(24) @ = and hy=—"
* ) *(an)

The optimal solution exists if and only if hy = h,, is stable. Optimal controllers
R, and R, are not unique while the resulting optimal error (21) is given unambi-
guously.

b) finite TOC is attained by the controllers (11) with

h
(29) N:#&x—_:@:, My=2 and M, =20
azoar,f aof S azobis f
where a,q, hy, @12, hay, by, and h,, are given by (18) and (19) and the polynomials
X, y, v represent the solution of the equation

(26) haso(arsx + bi,w) + by = f*

with x causal and min deg (a;,x + b,v). ,
The error polynomial is given by (21) with

(27) dege < degaz, + degf ™+ deg b

and the control sequence

(28) U= 208127y - aof "y
hay ho

where a, and h, stand in (24).
The optimal solution exists if and only if hy ~ 1. Optimal controllers are not
unique while the resulting optimal error is given unambiguously.

Proof. Writing CLS equation (12) in the form
uz(alN + byM,) =1 — bM,
and multiplying both its sides by W = f‘,/h then

f_f !

29 all =L L =E
@) rhon Yho T
where

(30) L=aN + b,M,.

Since N and M, are stable sequences then L in (30) must be stable too. The error
sequence is required to be polynomial E = e and therefore the optimal choice of
L considering (18) is '

hys
(31) L=
azof*

where polynomial s is undetermined till now.
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Hence the resulting error

(32) e= ayf”s
From equation (29)
(33) [ — he=bMf

must be a polynomial, too.

a) Therefore optimal stable M, stands in (17). Substituting L and M, into (29)
then
(34) hazes + b7y =f*.

Equation (34) is solvable provided that (h, b~) ~ 1. Among all solutions of (34)
the unique min deg s solution s, y is the optimal one, cf. (32).

Since the sequence L must be realized in the system structure through N and M,
equation (30) with L standing in (31)

=38

(35) azea f* N + azob S’ M
hy hy

must be always solvable for any s resulting from (34). The choice (17) of N and M,
satisfies this condition since the resulting equation

(36) apx + bo=3s

is always solvable due to (ay,, by,) ~ 1. All solutions x, v of (36) are allowed,
therefore N and M, as well as R, and R, are not unique.

The control sequence resulting from (5) stands in (23). Since

ay = ayohy and h = hyh; where hy = (ay h)

then
h hyh h
(37) ho = = 21 -k
(ayaz, h)  (ajazohy, hyhy)  (ay, hy) !
and
aa ajazoh a
38) G = —42 = D200 g = ay0ay,.
( (a2, h)  (a,a50hy, hyhy) (ay, hy) 2otz

Then both the forms of U in (23) as well as of N in (17) and e in (21) are identical.
Analyzing (23) stable TOC is solvable if and only if hy = h,, is stable. Then the

equation (34) is always solvable since (ayoh, b™) ~ (ho, b™) ~ 1. Its mindegs

solution s, y possesses the property deg s < deg b~ and hence (22) is valid.

Equations (34) and (36) can be combined into the only equation (20).

b) The choice (17) of M, does not ensure a finite control sequence (23). It follows
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from (23) and (33) that M, must be according to (25) and equation (34) changes
into

(39) hases + by = f*.

The stable sequences L, N and M, as well as equation (36) stay unchanged.

The error polynomial has the form (21) or (32) where s = a;,x + b,v belongs
to min deg s solution s, y of (39). The resulting control sequence U standing in (28)
is finite if and only if hy = h,, ~ 1. In this case the equation (39) is always solvable
and deg s < deg b; hence (27) is valid. Combining equations (39) and (36) the only
equation (26) can be written and solved. O

3.2. Time optimal disturbance compensation

If disturbances ¥, and ¥", affect the system according to Fig. 1 then generally
V4 # 0 and Vp 0 in Fig. 2 and this block diagram can be transformed into equi-

valent Fig. 3.
Y
N2

Fig. 3.

Provided ¥°; = 0 then V,, = 0 and the only modified reference signal W, = W —
— Vy may be considered for the optimal control design. Putting W; = f/h all the
relations and results of Theorem 2 are valid unchanged.

The problem becomes rather complicated if #7; # 0 and consequently V, + 0.
The following theorem describes the solution of this case.

Theorem 3. Given a discrete-time system with AFS pictured in Fig. 2, described
by the relations (1)—(6) and subjected to the inputs W, V, and V; where

W VB:W1:{~, f)~1, V=L, (¢.p)~1,
d q
then

a) stable TOC is satisfied by the controllers (11) with

and M, = e

a*(fp)*

_ hex _ y
(40) N-Aangr, M,‘[;:—W
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Here a, and h,, are given by (24), k and g follow from the relation

(41) 12_1;_,1‘”1,+b_p£:7g(’ (k.g) ~ 139 + 0 isassumed,
1 q

where

f p
(42) f = —— and pr = N

TP T (hp)

(43) d, = 4 and h, = _h

(d, h) (d, h)
if
(44) bkp, _c. (do)~1.

g'q¢ 4’

The triplet of polynomials x, y, v is the solution of the equation
(45) hdyagfyx + b di 7y + hy(dg™ — c)v = dJ*f,

with x causal and min deg (ag f, x + g v).
The error polynomial

(46) e=(f,p) (agfyx + g v)
and
(47) dege = deg(f, p)” + deglagfyx + g7v)-
The control sequence
(48) U = ,flOfgy _ M .
brd;f hy g'q

The optimal solution exists if and only if ho ~ hg and qu = q/(tlk, q) ~ a5
and it is not generally unique. If the unique solution exists optimal error as well as
optimal controllers are unique.

b) finite TOC is satisfied by the controliers (11) with

/10?6* , M, = L and M, = ko -
agf* I (f, p)*

where ho and a, stand in (24) and g = 0 and k follow from (41). The triplet of poly-
nomials x, y, v is the solution of the cquation

(49) N =

(50) hdy a5 f;x + bdfy v + hi(dg = ¢)v = df " fy
with x causal and min deg (ag f, x + gv) where
(51) bhpp ¢ g~ 1,

q d

and d,, hy are according to (43).
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The error polynomial

(52) e=(f,p)” (agfyx + gv)
with
(53) dege = deg (f, p)~ + deg(agf,x + gv).

The control sequence (polynomial)

- o :

(54) U=u-= af’y _ akpyp7v .
ho q

The optimal solution exists if and only if hy ~ 1 and g, = g/(ak, q) ~ 1
and it is not generally unique. The unique solution results in unique error and optimal
controllers.

Proof. Starting with equation (4) and using the substitution (41) the error signal
is given by ’

(s3) E= 2N 1 (1)) 2 M, = () (aofn 0) L
(]

where

56 Lol N 8 a8

( ) (aﬂfp’ g) ho ' (aﬂfp! g) k : Io

Writing (56) in the other form
hokL = _‘M N + __9‘}'0_ ]
(“of,» !J) (aof,n g)
both sides of this equation must be stable sequences as N and M, are required
to be stable.
At the same time the error must be polynomial E = e and therefore from (55)

the propety Io|(/, p) (aofys 9) is necessary. Since (ho, (f, p) (a0f,» 9)) ~ 1 as well as
(k. (/. p) (aof» 9)) ~ 1 (cf. (41) k|, k|q) the optimal choice of L is

(57)

2

L= — 5
(/)" (a0fpn 9)*

where polynomial s is undetermined till now.
Then

(58) e=(/,p) (aofpg)s-
But any s and L must be realized through stable N and M, in such a way that the
equation ’

(59) aOfp(;{‘ o g{f’kp) M = (2ol 6)" 5
(1]
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resulting directly from (56) and (57) is always solvable for any s.
a) The choice (40) of N and M, satisfies this requirement since it results in the
equation
(60) agfpx + g v="a0fpg)" s
which is always solvable. Hence comparing (60) and (58) e stands in (46).
Applying CLS equation (12) the error signal can be also expressed in the form

(61) e =W, — MW, + bM,V, = 7 - ,,le], L ’;)
1 1 [4

v

where M, and the denotation (44) have been substituted. Hence

F— he = bM,f — chy(f. p)" v
dy
with h, and d, given by (43) and therefore
(62) dyf — hdye + chy{f, p)” v = bd,fM,

must be a polynomial too. Consequently optimal M, stands in (40); substituting M,
and e given by (46) into equation (62) we obtain the form (45).

The control sequence follows from (5) and results in (48). Obviously it is stable
if and only if hy ~ hy and q, = qf(ak, q) ~ g5 .
In this case (A, b~) ~ 1 and equation (45) is always solvable as

(hdyag fy s b™dy £, ha(dg™ = ¢)) ~ (di 7, hldg™ = ¢)) ~
~(fy,dg” —¢) and (f,,dg” — c)‘d,,f*f; .

General solution of (45) must be usually analyzed to find the solution with
min deg (ao_fp’x + g~ v). Writing the general solution in the form

2>

dg~ —
(63) x=xg+ bty 4D T E
(agfy.dg™ = ¢c)
o aofy
(agtfy . dg™ — ¢)
where x,, Yo, Uo i a particular solution and ¢, and ¢, any arbitrary polynomials then
.y
(a5fy . dg™ = ¢)
The suitable choice of ¢, and t, gives optimal solution with min deg (agf,;x +g7v).
If this choice is unique then X, y, v and consequently e, R, and R, are given unam-
biguously.

y =1y~ hdfagt; and v =1y — ¢ t,

(64) agfpXx + g v =agf, X+ g o+ agf, b7t — .
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b) The choice (40) of M, and M, does not ensure finite control sequence U.
Analyzing (48) and (59) M, must be according to (49) and equation (60) changes
into the form

(65) agfyx + gv = (aof, g)" s
which is always solvable for any s.

Applying CLS equation (12)

e:]:¥bM1[_+_C_(f;pD)
d

h h 1

where M, and the denotation (51) have been substituted. Hence (62) can be written
but stable M, must be choscn according to (49). Then sutstituting into (62) equation
(50) is obtained. )

The resulting control sequence U stands in (54). It has a polynomial form if and
only if hy ~ 1 and qu = gf(ak, q) ~ 1. v
In this case (1, b) ~ 1 and cquation (50) is always solvable. The special min deg
(ag f; x + gt) solution of (50) can be usually determined through the general
solution

(66) x:x0+br1+~d_‘q—_ct2, y=yo— hagty,
(agfy,dg — ¢)
v =0y = d*;"f’[o*fzf*ﬁ t
(agfy »dg — ¢)
only and

aofy ;
o s 2
(ao fp ,dg — C)
where X, ¥, Ug is a particular solution of (50). The choice of the polynomials ¢, and

t, must assure min deg (ag f, x + gv); if this choice is unique then x, y, v and con-
scquently e, Ry and R, are given unambiguously. O

agfyx + gv=agfyxo + gvg + ag f, bty — ¢

Note. The special case g = 0 in (41) has been excluded in Theorem 3. If this case
occurs then
(67) E=avl oL oL 1 obm, 2.
hoh h q

Optimal stable N stands in (40) or (49) and

(68) e=agf x.
If g =0 then bp/q = —ayb, f/h and
(69) 7t — hagx = (b, by)f*L
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where

b a,b
70 L=——M + 21 M,.
(70 (b)) ' (bb)

a) Solving stable TOC optimal stable
-
71 Lo T
™ YL
and equation (69) has the form
(72) hagx + (b, by) " r=f*.

Provided {(h, b, by ) ~ 1 equation (72) is solvable and its min deg x solution x, r
with deg x < deg (b, b;)”, x causal, is the optimal one. Substituting (71) into equa-
tion (70) and choosing

y v

(73) M, =—— and M,=——7-—
toet toagbist

the equation

(74) b=y +azbiv=(b, b)) r

is obtained and always solvable for any r.
The control sequence

(75) U = aof "y apv _ aof”y + 42 biaof™v _
b*hy asbif*q b*h, bhy
_ aof (b, by)” ¥ _aofF
bhe b*hyby
where
b

76 by =
(76) ’ (b, by)

and the problem is solvable if by ~ hg and bg‘f‘.

b) In the case of finite TOC optimal stable L = r|f* must be chosen in (69) and
hence the equation

(77) hagx + (b, by)r=f*
is solved for min deg x; x causal, deg x < deg (b, b,).
If

y v
78 M;=-— and M,=-—
™ o Poair
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the resulting equation
(79) by + azbyw = (b, by)r

is always solvable.
The resulting control sequence

agay by f v agf7r

= +

(80) U=y ap _af7y
ho asf*q he bh, bohg

and the problem is solvable if iy ~ 1 and b0|fi

4. LEAST SQUARES CONTROL

In the case of least squares control (LSC) the minimum value of oy = |E|*
must be attained by optimal causal controllers (11) which satisfy CLS equation (12)
at the same time: The control sequence U is required to be stable.

4.1. Least squares reference tracking

Theorem 4. Given a discrete-time system with AFS pictured in Fig. 2, described
by the relations (1)—(6) and subjected to the reference W = f/h, (h,f)~ 1,
V4= Vy =0, then LSC is ensured by the controllers (11) where

harx v haypv

s = ————— and M, =—
atadf* b0 T b rasy T bhako b

(81) N =
with a,4, hay, @15, by, and hy, given by (18) and (19).

The polynomials x, y, v represent the solution of the equation
(82) h ago(aiax + bigw) + b7y = b™frazy”

with deg (a;,x + bjy0) < degb™, x causal.
The optimal error sequence

(53 E= 0 (a4 b,
axe b

the control sequence

(84) U = _fi_of%.
b* " a3 ke

and the optimal control performance index

5 s
85 cop = — 2
(53 o = (5757
where s = a;,x + by,v.
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The optimal solution exists if and only if hy ~ hy. Optimal controllers are not

unique while the resulting optimal error sequence is given unambiguously.

Proof. Provided V, = V=0 any stable error sequence E = W — bM ,W.

Denoting E* = W* — bM,W* where W* = f*/h then
(86) E=pd_
S
EE = E*E* and hence oz = (E*E*).
Using (86) we can write

7

E*E* = (W* — BM [ W=) (W* — bM,W*) = (Z — D*M W*)(Z — b*M W*)

and the identities
b*Z = bW*, b*Z = bW* and ZZ = W*Wx

follow from the comparison of the multiplied terms in (87) seeing that c¢ = ¢*¢* =

= ¢"¢~ for any polynomial ¢. Hence (87) can be rewritten into the form

EFEx = (% W WMfo) KAl (% W — b*le*)
- - .
where
~ ~ el s ~ ok
(88) E, = E W — p S MW* = _IZ_Q _ b*_c,f_]\/[1
b*c ¢ b ch ch

with a polynomial ¢ undetermined till now.

Obviously oy = (E E,> too. If the decomposition

s 3
(89) bl St s

b~ ch b~ ch
and the denotation

: ~rE
(90) x=L ey,
ch ch

are used in (88) then
1) Ep= > 4+ X

and

©2) S <(F " x) (b; " X>> .

-
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The relation (89) results in the polynomial equation

(93) hes + b~y = b "¢ f*
the general solution of which can be written as
b~ he
94 5§ =8, — t, y=y,+ t
o4 2T e by T e by
where 53, ¥, is the particular solution with degs, < dég b~ and ¢ is an arbitrary
polynomial.

Since M = m~z%*" and m = m~z" %" for any polynomial m then

(95) T Y I . S
b= b= b~ b~
where
v=deghb™ — degs, > 0.

Therefore substituting s given by (94) into (92) this expression is reduced into

o () ) )

and og,,, given by (85) is attained if s = s, and X = #/(hc, b™). Then the equation
(90) can be rewritten into the form

; ~ofE
Y2 P i VN S
he  (he, b7) he (he, b7)
and the optimal stable sequence
y .
97 M, = with y = y,.
( ) 1 bfee ) V2

Substituting M, into (86) and using equation (93)
*

(98) pr=tt o by oo
h b*c"h b7

According to (9) we can write

(99) P VA VIS A FLY Ay
I K

where a,, and h, stand in (18) and

(100) L=aN + bM,.

Comparing (99) and (98) the optimal sequence

hyes
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Since L must be stable the choice ¢ = a3, is necessary. Then

h N
(101) L=——2
azof*b”
and equation (93) takes the form
(102) hazes + b7y = b™"fa5y .

The sequence L must be realized by N and M, according to (100). Substituting L
into equation (100) we obtain the form

¥ pxp—~ ¥ rgp—n~
a azof*b N + b, azo.ilb

M, =5s.
hy 2 ’

The choice (81) of N and M, results in the equation
(103) anx ++ bv=s

which is always solvable for any s. General solution of (103) is allowed and therefore
N and M, as well as R, and R, are not unique.

Considering (103) the resulting error sequence E stands in (83) and the control
sequence U in (84). Obviously hy ~ hg is only allowed; in this case equation (102)
is always solvable and its particular solution s, y with degs < deg b~ is unique
and identical with min degs solution. Therefore the resulting error (83) is given
unambiguously.

Equations (103) and (102) can be combined into the only equation (82).

4.2. LEAST SQUARES DISTURBANCE COMPENSATION

In accordance with the consideration given in Section 3.2 the case ¥, + 0(7"; + 0)
will be teated separately.

Theorem 5. Given a discrete-time system with AFS pictured in Fig. 2, described
by the relations (1})—(6) and subject to the inputs W, V, and Vy where W —V, =
=W, =flh, (hf)~1, Vi=plg,(q.p) ~1, then LSC is attained by the
controllers (11) with

hox

(104) N =—+ — —
aOfp (bfp’ c) (f’ p)* (aOfp’ g)

V

b e (0 (i 0)

M, =
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and
kv

M, = — — — .
97 (bfp €)™ (> P)* (a0f, 9)

There are aq, hy given by (24), f, and p, by (42), g = 0 and k by (41) and ¢, d,, and
hy follow from (43) and (44). The triplet of the polynomials x, , v is the solution

of the equation
(105) hdyagfyx + b f dyy + hfdg™ — c)v =
= dy(bf, )" (a0fp 9) " (s D)* 1,

with x causal and
(106) deg(agf, x + g v) < deg{bf,, ¢)” + deg (aof,, 9)” — deg (f,, 9, ¢)™ .
Optimal error sequence

__ (i) (aafyx+47v)
(17 (/)" @ofp g)~ " (bf )™~

control sequence
1 <ﬂ/ﬁ; _ M)

(108) U=s ———r— — (= "
(bfl" C) (f’ P) ({lof,,, g) b7dy he g4

and the optimal control performance index

(109) O min = < g,i _— "*>
Oy ) (b o)

where

(110) s=GofpXt gy
(HOfp’ g)_

The optimal solution exists if and only if hy ~ hy and g, = q/(ak, q) ~ ¢, .
It is not generally unique. In the case of the unique solution all the optimal error E

and controllers R; and R, are given unambiguously.
Proof. According to (9)—(12)

.
E =W, — bM,W, + bM,V, = Lf’]Jf) <fp — bf,M, + Elj’i" Mz) -
1 h /

=D, mr)
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where the relations (44) and (43) and the denotations

(111) m = (bf, 9" chy)
and

.
(112) Fe=opg - 9y

mo kd,m
have been used.
Let us define Wy = (f, p)*/h and

* * — mF) = gw:j .
(113) E* = Wy(f, — mF)=E oo

Hence
EE = E*E* = WH(f, — WmF) W,(f, — mF) = (Z — m*W%F)(Z — m*WF)
where a sequence Z satisfies the identities

ZZ = [ fWEWs, m*Z = mf,WF and m*Z = Wy

Then
ERE* = (-’"— 7wE ﬁ‘f;’;’) L (":‘* 1= m*W;fr> L -EE,
m i \m n
where
U N .o~
(114) E0=m n~(f,p) fp_m*(ﬂp) L

m~nh nh
an n is a polynomial undetermined till now. The decomposition
m”"n"{f, p)* f, -5 T
m~nh m~  nh
results in the equation
(115) hns + m™r =m~"n~(f, p)* f,.

If we denote

.
16 PO )
(116)

nh nh

op = (EgE) = <(—_i_- + X> <—§_ + x>> .
m- m

then
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Applying the results proved in Theorem 4 we can determine
5§ s
Obmin = (== >
m- m-

-
m*(f, p)* n~

where s, r is the solution of the equation (115) with

and

(117) F=

(118) degs < deg m™ = deg (bf,, chy)™ .
Then using (113)
(119) E* = (/s p)* (f,, _ mr ~) _ an_N
h w*(f, py* n n~m
The relation
(120) E* = (f, p)* (“—"% N+ ‘;’;1\42) = (f, P)* (aofm 9) L

is also valid according to (12). Comparison of (120) and (119) gives
s
n“m™(f, p)* (aof,p 9)

and stability of L needs the choice n = (aofp, g)”. Then

N r

L= =, F=o—
(aofp, g)* (fs P)* m’ (a()fp» g) (f9 P)* m*
and equation (115) obtains the form
(121 Waoky o) s+ m™r = m™~(aoly ) (1),

But the sequences F and L can be realized through M,, M, and N only. Therefore
s and rin (121) must satisfy the additional requirements.

Substituting the resulting L into (120) and choosing stable N and M, according
to (104) if (b, h;)™ ~ 1 is assumed in advance, then the equation

(122) (a0fp9) s =agfyx+g v

is obtained.
To determine remaining M, we substitute M, and F into equation (112). Resulting
M, stands in (104) and the equation

(123) dym r = b7 f, dyy — chp

is valid.
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All the equations (122), (123) and (121) must be satisfied for the polynomials s, r, x, y
and v. If (122) and (123) are substituted into equation (121) then the equation

(124)
hd(agf;x + g v) + b f dyy — chw = dym™"(aof, 9}~ (f, PY* £,
is obtained.
The condition (118) is transformed into
(125) deg (agf,x + g7v) < degm™ + deg(aof,, g)”

and therefore the solution x, y, v of (124) with the property (125) must be found
assuming (124) is solvable.

Then the resulting error stands in (107), the control sequence results in (108) and
itis stable if and only if b, ~ hg and q,, = qf(ak, q) ~ g, Then, really, (b, k)~ ~ 1,
m~ = (bf,, ¢)~, equation (124) obtains the final form (105) and is always solvable
seeing that (hdyagf,,b"f; dy, hfdg™ —¢)) ~ (f, g, ¢)~ and
U 9 O |t O (@S 8~ (7 D) v

Since generally (f,,g,¢)” ~ 1 the condition (125) can be written in the final
form (106).

The special solution of (105) with the property (106) must be usually determined
by means of general solution which has also the form (63). If the choice of #; and t,
is unique then error sequence as well as controllers are given unambiguously. In the
other case the solution of the problem is not unique. O

Note. The special case g = 0 excluded in Theorem 5 must be solved separately
with the following results:

hox y
ot M =—">
b*ag ~f*{b, by)"

asfH(b,by)
v
My= @ o o
azbyag"f (b: bl)
ag/ " x _ af "y + apaz by f v
a5 (b b)) b*ho(b, b))~ bho(b, by)~ ag f

and

X X
OEmin — — -
(b, 86,)" (b by)
where the triplet of polynomials x, y, v is the solution of the equation
hagx + by + azbiv = (b, b))~ f*ag ~

with x causal and deg x < deg (b, by)™-
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Optimal solution exists if and only if h, ~ kg and bg‘f‘ where by = b~ [(b, b,)”
with unique resulting error; optimal controllers are not unique.

The results are presented without proof which can be simply executed by the reader
using the previous approach.

5. CONCLUSIONS

The relations derived above will be evaluated by the comparison with the well-
known results which are valid in simple control systems (R, = 0) ([1], [7]).

1. With regard to solvability all the optimal problems treated above are not
solvable using AFS unless being solvable in a simple control system.

There is no difference in solvability of reference tracking problems between both
the system structures. The same condition, i.e., hy ~ hy for stable TOC and LSC
and ho ~ 1 for finite TOC must be valid.

The additional condition g, ~ g, or g, ~ 1 must be fulfilled in disturbance
compensation problems (¥, # 0) if they are solved by AFS. This condition is
necessary for the required stable o1 finite control sequence as it can be seen from
the 1elations (48) and (108) or (54), respectively. Usually (but not always) g|4; in this
case the additional condition is redundant.

2. The application of AFS brings an effect in optimality if 1, < 4, where 4, and
4, denote a control performance index in simple and AFS system structure, res-
pectively ([7]); 4, £ 4,

a) Analyzing the relations (20), (21), (26) and (82), (83) and comparing them with
the case v = 0 (simple system) then obviously AFS can improve a reference tracking
process for unstable controlled systems provided that az, ~ aq, i.e., afz ~ 1.
Therefore the additional feedback ought to be chosen to enclose the possible unstable
part of a system.

b) Optimal results of disturbance (#"; + 0) compensation problems are given
by the special solutions of equations (45) (50) and (105) for stable TOC, finite
TOC and LSC, iespectively. But the special solution requirements are referred
to the polynomial s and the equations

agfyx +g7v="(a0f,9) s

and
bdy f;y ~ chyw = (bf,, ¢)” dyr for stable TOC and LSC
or .
agfyx + gv = (aof,, )" s
and
bd,f;y — chy = (bf;, ¢) dyr  for finite TOC

must be satisfied at the same time.
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Then considering a simple control system (R, = v = 0) as the special case of AFS
structure the solution with v = 0 can be the optimal one only if

(aofr 9)” ~ acfy
and
(bfy, )™ ~ b f, for stable TOC and LSC

or
(bf,,c) ~ bf, for finite TOC.

Optimal solution with v = 0 (with AFS) must be expected in the other cases
provided the problem is solvable. Thus, the application of AFS is not restricted
to unstable controlled systems only provided a disturbance ¥”, # O is compensated.
It can be recommended if at least one of the conditions

(aofp 9)~ » ag and (bf,. ¢)” ~ b™f, for stable TOC or LSC
and
(aof, 9)~ ~ ag and (bf,, c) ~ bf; for finite TOC
is valid.

3. Analyzing the technical requirements of AFS the only additional sampler
preceding R, is needed for application provided both controllers sequences R, and
R, are realized by computer programs.

Examples

1. Let us consider the system shown in Fig. 4. The continuous time controlled sub-
systems are described in the block diagram by their transfer functions (in Laplace
transform) and sampling period 7 = 1 sec.

Fig. 4.

Let us solve TOC problem if

w-l___ L
B 103679z

(reference tracking). The controlled system discrete-time transfer sequence is deter-
mined to be

G = b 052741 +:z7Y)
a (1 -z
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Then ag = a and hy = h = h* ~ 1. Therefore stable TOC problem is only
solvable and optimal additional feedback is the output feedback in Fig. 4 such that
G, =G, ie, a;=a, by =>b, a; =1. Then aj, =a,byy, = b, hy, = hy = h,
fr=f =1

The solution can start with equation (20)

(1—=03679z7" ) [(1 — 27 x + 0527 (L + z7 ) p] + 05271 + z )y =1
which is decomposed into equation (34)

(1 =03679z7 ) s + 0527 (1 + 2z )y =1
with min degs solution s = 1 4+ 02690z %, y = 01979 and equation (36)
T =zWx+05z2(t+z7")p=1+02690z""
the general solution of which is
T x=1+08173z"" - 05z (1 +z7Y)¢,

v = 29034 — 16345271 + (1 — z ™) 1.

Then according to (21) unique optimal error e = s = 1 + 02690z ! with deg e =
= 1. Controllers R, and R, given by (11) and (17) are not unique with respect to
an arbitrary 7 in x and v. Choosing ¢ = 0 the simplest pair of controllers is
0-1979 29034 — 1-63452~"

= — —~ and R, = —
(1 — 0367927 1) (1 + 0817327 1) 1+ 0-8173z

R,

and
_01979(1 — z7Y)?
1 —0-3679z71

U

The given problem solved in simple control system (R, = 0) results in
e=1—11827z"" — 0:6345z™% + 08173273,
_ }1012(1 — ()~8"71(iz'1 + 0:1939z7%)

R — ofthe T EO
(1 — 0-3679z 1) (1 + 0-8173z7%)

and

_ 310121 — 08716271 + 01939z %) (1 ~ 27 ')?
1 — 03679z ¢ ’

U

Hence dege = 3and 4, — 2, = 2.

2. The control system is according to Fig. 5. Let us solve LSC problem if the
sampling period 7 = 1 sec, reference sequence W = 0'5/(1 — z~') and continuous-
time disturbance with Laplace transform #7;(p) = 1/(p + 1) affects the system.
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At first discrete-time transfer sequences

b_ 036719z 407181z oo by 0632127
a  (1—z"9)(1—03679z7%) e 1-03679z7"

Fig. 5.

and input sequences

. 16301
Womw_v,=lo_ 05(1 — 1-6321z7")

h (1= z 1) (1 - 03679z 1)

have been determined.

1

and ¥V, . —
g 1—03679z

Since a, = hy = 1 and q{lz the problem is solvable. Putting b™ = 0-3679(1 +
F 0718127, b~ =271, bY = 06321, b7 =z, (f.p) = (f, p)* = 1, f} = 0.5,
fr =1—=16321z"", pj = p; = I and considering a, = 1 — z~' then according
to (41), (43) and (44)
gt = 006840, 9" =z L k=1, ¢t =b", ¢ =b",
d= 0‘6840(1 — 03679271}, (d, h)=1- 0:3679z7*, d, = d,; = 06840,
di =1, hy=1-z"%, (fh9,¢)" =1,
@0y 8) = (@S )™ =1, () =27, ()™ = 1.
Hence (aof,, g)” ~ ag f, as well as (bf,, ¢)” ~ b™f, . Equation (105) has the form
0-6840(1 — z7 1) (1 — 0:3679z 1) (1 — 16321z ) x + z }(1 — 16321z 1) y +
+ 0316127 (1 — z7*) (I — 1632127 1) » = 0-3420(1 — 1-6321z")
and its general solution can be written as follows:
7 x =05+ z7't; + 0316127,

y = 04678 — 0-1258z™ ! — 0-6840(1 — z~ ) (t — 0-3679z" 1) ¢,
and

v = —0:6840(1 — 03679z )1,

with any arbitrary ¢, and 1,.
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The optimal solution with the property (106)
deg [(1 — 1632127 ") x + z™'v] < 1 must be found.

This solution
x =05-02375z"1, y=02972 + 01076z~ ' — 0-0628z"2

and
= 1-0535(1 — 0-3679z" 1) -

= 0-2494 and t, = —1-5404 and is unique.

<

corresponds to the choice 7,

Hence
0-2972 + 01076z — 0-0628z 2

E=05, op=025, R, = ,
02516(1 + 0-7181z71)(0-5 — 0-2375z71)

_ 0:3593(1 + 1:3894z7")

. -~ 0 -1
L2 0770 = 0367927 94z~ 7)
0-5 — 02375z 1+ 0718171

are given unambiguously.
Solving the given problem in a simple control system the results are

_ OBI6I(L = T6R2UY 5 o5097:71 — 0312322 —

1:6321 — z7!
— 01914273 — 01172z 7% — ... ; o5 = 0:6655,
. § — 0 =1 . ) — 1 =1 —_ 0 _,*l
R oo 20528(1 — 04872271 o 167521 — 16321271 (1 — 0-4872:71)
L+ 0,781z (16321 — =Y (1 + 0-7181z"1)

(Received January 5, 1982.)
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