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KYBERNETIKA —VOLUME 12 (1976), NUMBER 1 

Optimum Experimental Designs 
with a Lack of a Priori Information II 
Designs for the Estimation of the Whole Response Function 

ANDREJ PAZMAN 

Experimental designs are studied in the case when the aim of the experimenter is "the inter­
polation" of the observed response function. The observations are supposed to be uncorrelated. 
No a priori properties of the response function are supposed, unless that it is continuous. 

1. INTRODUCTION 

In this part we shall consider the estimation of the whole function 6 e 0. The nota­
tion and the assumptions on the sets A and 0 are the same as in Part I [3]. 

In Section 2 we specify first what an estimate for 0 under a design £ is. It is a second 
order random process {Ze(a); a e A}, which is continuous in the quadratic mean and 
such that every random variable Ze(a); a e A is in the span of the set of random 
variables {Xe(F): F e #"} (see (1)) observed in the experiment. The estimate is un­
biased if the mean of the process is equal to 9. But, if the set A is uncountable, there 
is no unbiased estimate for 0. Therefore sequences of asymptotically unbiased and 
efficient estimates are used. We construct examples of such sequences (Lemma 1). 
The optimum properties of sequences of asymptotically unbiased and efficient esti­
mates depend on the metric of A and not only on the topology induced by the metric. 
We must use the concept of a sequence of asymptotically unbiased and efficient 
estimates for 6 which is adapted to the metric of A. In Lemma 2 we show that the 
sequence constructed in Lemma 1 is asymptotically the best of such sequences under 
a given design. If there is an isometry T of A into a Euclidean space E" such that the 
interior of T(A) is nonvoid and the boundary of T(A) is of the Lebesgue measure zero, 
then the Lebesgue measure in E" which is normed to one on T(A) gives asymptotically 
the optimum design for estimating 9e 0 (Theorem 3). The criterion for optimality 
which is used is a generalization of the minimax criterion used in the finitedimensional 
regression experiments [1, §2] . 



2. ESTIMATES FOR 9 AND OPTIMUM DESIGNS 

Let £ be a design, and 

#t = {{Xe(F) :Fe^, £(F) > 0}; 9 e 0 } ' 

the variant of the experiment corresponding to the design £ (see [2]). That means 
for every 9 e 0 

(1) { X e ( E ) : F e ^ , < ( F ) > o } 

is an orthogonal random set function with the properties 

a) 

^UF,)-=S^F,), 
i = l i = l 

for disjoint sets F l 5 ..., F„, 

b) 

E X9(F) = f o d^ , 

cov [X0(F), X„(F')] = Z(F n F'); F, F ' e J^ . 

We denote by L,{Xe(F) : F e # , £(F) > 0} the span of the set (1) in the Hilbert 
space of all random variables with finite variances. 

Intuitively a (linear) estimate for 9 e 0 is a linear mapping from the „sample space" 
of the orthogonal random set function (l) into the set of all functions defined in A. 
This mapping and the random set function (1) may induce a random process on A. 
We shall express more exactly the intuitive feeling by the following definitions: 

A (linear) estimate for 9 e 0 (under the design £) is a class of second order random 
processes 

{Zg(a); asA};9e0, 

such that 

i) 

ii) 

iii) the mapping 

Zв(a) є L2{Xв(F) :Fє&, ţ(F) > 0 } ; єØ , aєA, 

ЂZв(-)є ; є ; 

(a, a')e A x A -» cov [Zg(a), Z„(a')] 

does not depend on 9 e 0 and is continuous on A x A. 



The bias of the estimate is the 

sup|EZ„(a) - 6(a)\ ; 9e0. 
aeA 

The estimate is unbiased if the bias is zero. It is efficient if for every aeA, {Z0(a); 
9 e 0} is the best linear estimate for E Ze(a) (in the sense of [2]). 

From Lemma 2 in Part I [3] it follows immediately that there is no unbiased esti­
mate for 9 e 0 if A is uncountable. 

A sequence {^„}"=1 of estimates: 

iT„ = {{Z9"\a) : a e A}; 9 e 0} ; n = 1,2, ..., 

is asymptotically unbiased if 

lim sup |£ Zg
n\a) - 9(a)| = 0 ; 9 e 0 . 

It is also asymptotically efficient if moreover {Z9"\a); 9 e 0} is the best linear 
estimate for E Zg"\a). 

Denote by d the metric in A and by G(n, a) the set {a' : a' e A, d(a', a) < l/n} 

(G(n, a) = {a' ; a'e A, d(a', a) ^ l/n}). 

Lemma 1. Let £, be a design such that £(U) > 0 for every open set U c A (A is the 
support of £), and that £[G(n, a) - G(n, a)] = 0; n = 1, 2, . . . ; a e A. Denote by 
{Sj>H)(a); 0 e 0 } the best linear estimate for the functional a„(' | a, ^) under the design 
£, where 

f £>d£ 
(2) gn (6\a, fl -. J y ; n = 1, 2, . . . , a e A , 0 e 0 . 

£(G(n, a)) 

Then {{Sj/°(a)•: a e A}; 0 e 0 } ; n = 1, 2, ..., is an asymptotically unbiased and 
efficient sequence of estimates for 9 e 0. 

Proof . According to Lemma 2 in Part I [3], the functional g„(- | a, £) are estim­
able under £ and the covariance of the best linear estimate for g„(' j a, £) and g„(' | b, 
£) is equal to 

cov,[fl„(' I a, £), a„(- | 6, £)] = cov [S0"\a), S<B)(*>)] = 

, , = g[G(>, a) n gCg, fr)] 
U ^[G(n,fl)]^[G(n,fe)]-



Evidently, for every Ft, F2. F e # we may write: |£(F<J - £(F2)\ S £(Ei A E2) 
and f((E! n E) A (E2 n E)) ^ f(F. A E2). Hence for aM, 64, a, fe e A, we have 

|£[G(n, a,) n G(n, fet)] - ^[G(«, a) n G(», b)]\ ^ 

^ \Z[G(n, ak) n G(n, bk)] - f[G(«, ak) n G(n, ft)]| + 

+ \£\G(n, ak) n G(n, b)] - £[G(n, A) n G(n, b)]\ < 

S Z[G(n, bk) A G(n, b)] + ^[G(n, ak) A G(n, a)] . 

To show the continuity of £[G(n, •) n G(n, -)]j^[G(n, )] t[G(n, •)] on A x A 
it is sufficient to prove that 

(4) lim Z[G(n, ak) A G(n, a)] = 0 
fc->oo 

if lim d(ak, a) = 0 . 
fc-»O0 

We may write: 

n U G(«, a,) - G(n, a) = 
m=l t jm 

= {a' : V 3 rffa', at.) < l/n} n {a' : d(a', a) > l/n} c 
m i l (igm 

cz {«' : V 3 d(fl', a) < l/n + d(a, afc)} n {a' : </(«', a) > l/n} = 0 . 
m g l t i n 

Thus [ U G(n, ak) - G(n, a)] \ 0 with m -» oo. Hence 0 ^ £[G(n, am) - G(n, a)] ^ 
tint oo oo 

^ £[ U G(n, ak) - G(n, a)] -> 0. Analogically: n [G(n, a) - f] G(n, ak)] = 
fcgm m = l k=m 

= {a' : d(a', a) < l/n} n {a' : V 3 ti(a', a„) ^ l/n} = 0 . Therefore 0 ^ 
mg 1 fegm oo 

^ £[G(n, a) - G(n, am)] g £[G(n, a) - n G(n, ak)] -* 0 with m - oo and (4) 

is proved. 

Since 

[ 0 d£ - f 6 dt; ^ 
\jG(n,a) JG(n,b) 

g sup \6(a')\ £[G(n. a) A G(n, b)] , 
a'eA 

the limit (4) implies also the continuity of g„(9 \ •, £,) in A. 

Finally 

sup \g„(0 | a, f) - (9(a)| ^ 
ASA 

S sup sup |0(fl') - 6(a)\ -» 0 
aeX n'£C(«,a) 

with n -» co. • 



In the sequel we shall assume that any design £ satisfies the conditions stated in 
Lemma 1. Let {3?„}™=1 be an asymptotically unbiased and efficient sequence of 
estimates for 9 e 0 under the design £,. We shall denote by h„(- | a) the functional 
on 0 defined by 

(5) h„(9 ] a) = E Z{n)(a) ; 9 e 0 

That means that Zi
g
n)(a) is the best linear estimate for /.„(• | a) and, analogically as 

in Part I, we denote by var4 h„(- \a) the variance of Z{
g

n)(a). Since h„(- | a) is estim­
able under £,, there is a <pa

n) e L2(A, J5", £) such that 

(6) h„(9\a) = J><">0d£ ; 9e0 , 

and 

(7) var,/z„(. | «) --J[><">]2 d{ 

(see [2], theorem 4). We shall say that {3?„}™=1 is adapted to the metric of A if for 
every a e A, n = 1, 2, ..., the function (p{n) is zero outside of G(n, a). 

Lemma 2. If {3?„}™=1 is an asymptotically unbiased and efficient sequence of 
estimates for 9 e 0 under the design £, which is adapted to the metric of A, then 

(8) i i m i n f _var^ H ( '14 , = 1 ; aeA. 
--><» var? fl„(- | a, £) 

Proof . We may write 

(9) [j><"> d£]2 g £[G(n, a)] J|><»>]2 d£ . 

The sequence {.2fB}™=1 is asymptotically unbiased and the function on A which is 
identically equal to 1, is an element of 0. Hence 

(10) lim j>fl
n> d£ -x 1 . 

The inequality (8) follows directly from (9) and (10). Moreover the convergence 
in (10) is uniform in A. Thus 

(11) V 3 V V var? h„(' | a) £ (1 - e) var. «„(• | a, <*). Q 

If we omit the assumption that (p^n) is zero outside of G(n, a), we may obtain contra­
dictory results as the following example shows. Take A = <0, 1>, f the Lebesgue 
measure on <0, 1>. (p{n) = xG(nttt)l%[G(2n, a)]. Then 

van hi- Ifl) ,. i;\G(n,a)] , ., 
hm ^ V - ^ = l ' m — ^ = 2; a e (0, 1) ; 
. . .» v a r ? a „ ( - | a , £ ) --*« £[G(2n, a)] 



thus "g„(* | a, <_) is better than h„(* | a)". On the other hand {h„(- | a)}_°=1 is a sub­
sequence of {g„(- | a, <.)}„_: and both sequences must be considered as asymtotically 
equivalent. 

Denote by £m the m-dimensional Euclidean space and by A the Lebesgue measure 
on Em. Let us suppose that there is an isometry T of A into Em such that the interior 
of T(A) is nonvoid and the boundary of T(A) has a zero measure A. There is a sequence 
of compact sets C1 c C2 c ... c A such that the sequence T(CJ) , T(C2), . . . converges 
to the interior of T(A). (Since every open set in Em is a F" — set.) 

Theorem 3. Let {£?„}™= l be an asymptotically unbiased sequence of estimates for 
6 e 0 under the design £, which is adapted to the metric of A. Then 

sup var? „„(• | a) 

lim lim inf ^ ^ : ; : > 1 
„__ „__ supvar„a„(- | a, n) ~ 

aeCk 

where /,(•) = XT(-)\X[X(A)1 

Proof . Without restriction on generality we may suppose that A = T(A). From 
(3) it follows 

( 1 2 ) var, * _ > ! « ) ^ var{ __(• | a) n[G(n, a')] . ^ . . ^ B = _ 1 > 2 > . . . 

var„ g„(- | a', ju) var? g„(- | a, £) <.[G(n, a)] 

Take a compact set C c A0 (A0 is the interior of A), take s > 0 and take nE accord­
ing to (11). There is an nc >. nE such that for every a e C and every n S: nc, {x : 
: x e £m, Ix — a|| < ijn} c A. Denote 5„ = f.i{x : x e £m, ||x|| < l/n}. Using (11) 
and (12) we may write 

var* h„(- \a) , . » _B 

— ^ (1 - e) - ; a e C , n > n c . sup vаr„ g„(- \ a', џ) t_[G(n, a)] 
a'єС 

Hence for every e > 0 

sup var^ h„(- | a) 
osC 

supvar„a„(- I a,n) 
aeC 

_ > ( _ - « ) -S ; 

Чnf _[G(и,o)] 
aєC 

C <_ A° , n > n c . 



Thus 
sup var^ h„(~ | a) 

lim inf-^£ • > 
B-.oo supvar„a„(- | a, fi) 

aєC 

(13) > lim inf " ; C e A0 . 
V } "--,» inf£[G(n,a)] 

asC 

Suppose that for some e > 0, j 0 >. 1 

(14) limi"f . , " ^r < 1 - « 5 j = jo,jo + U ••• 
B-.00 mf£[G(n, a)] 

aeCj 

Then for a given Cj there is a sequence {nk}k=1 such that 

(15) (1 - e) £[G(nk, a)] > n[G(nk, a)]; aeCj, k = 1, 2, ... 

There is a decreasing sequence of open sets Ult U2, ... such that Cj — f\ Um. But 
m = l 

to every m there is an nk such that U,„ rs IJ G(«t, a) => Cj. Since C, is compact we 
aeCj 

may directly suppose that to every m there is an nk such that Um is a finite union of 
open spheres G(nk, a); aeCj. Then (15) implies: 

(1 - e) £,(Um) > (i(Um) ; m = 1, 2, ..., hence 

v(Cj) = lim n(Um) < (1 - e) lim f(Um) = (1 - e) ^(C ;) . 

Finally, since A0 is a union of Cyo, Cj0+1, we have 1 = n(A°) = (l - s) £(A°) < 
< 1 — e. The supposition (14) is not possible; thus to every s > 0, j 0 ^ 1, there is 
a j = j 0 such that 

(16) lim inf 2 > l - e ; j = 1, 2 , . . . , ; ' . ' 
V 7 B-OO inf^[G(n,a)] ~ 

asCj 

Putting (16) into (13) and taking the limit e -> 0 we obtain the statement of Theo­
rem 3. Q 

Theorem 3 shows that the normalized Lebesgue measure can be considered as the 
design which minimalizes the maximal variance of the approximate estimate for 
6(a); ae A. This optimal design depends on the metric in A, that means on the way 
of approximating the function 6 by estimable functionals. This can be shown in the 
following example. Take A = <0, 1>, dx(a, b) = \b — a\, d2(a, b) = \b2 — a2\; 
a, be <0, 1> and T. : a e <0, 1> -> x = a e E1, x2 : a e <0, 1> -> x = a2 e E1. xu x2 

are isometries of (A, dj) or (A, d2) onto <0, 1> e E1, but Xx^') 4= AT2(»). 

(Received February 25, 1975.) 
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