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KYBERNETIKA — VOLUME 30 (1994), NUMBER 2, PAGES 199-210 

ON HODGES-LEHMANN OPTIMALITY OF LR TESTS1 

FRANTIŠEK RUBLÍK 

It is shown that the likelihood ratio test statistics are Hodges-Lehmann optimal for 
testing the null hypothesis against the whole parameter space, provided that certain regu­
larity conditions are fulfilled. These conditions are verified for the non-singular normal, 
multinomial and Poisson distribution. 

Let {F 7 ; 7 € S } be a family of probability measures, defined on (X, T) by means 
of the densities {f(x, 7); 7 G E } with respect to a measure v. If we denote the g-fold 
products 

S = X°° x . . . x r , S = F°° x. . .xjF°°, e = H* (1) 

then for 9 = (9\,..., 9q) G 6 the corresponding product measure 

P* = 7 ^ x . . . x P ~ , (2) 

defined on the cr-algebra S, describes independent sampling from the q populations 
(X,r,P9j),i = l,...,q. 

Throughout the paper we shall assume that 

M f l o c e . (3) 

In describing asymptotic properties of tests of the null hypothesis we shall use the 
notation 

V = < p€Rq; ^2PJ = 1 and Pj > 0 for all j \ (4) 

and for 6,9* € 0 , p € V we denote 

K(9*,0,p) = J2vjK(9*,9j), (5) 
i=i 

K(Q0,9,p) = inf{ K(9*,9,p); 9* G fi0 } , (6) 

'This research was supported by the Slovak Academy of Sciences under Grant No. 999366. 
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where K(9j,9j) = K(Pg*,Pej) is the Kullback-Leibler information number. 
We shall suppose that a test <pu of fio against 0 — Q.® depends on 

•-"({•J^i.-.^ir-i) ^s 

through 

*("> = (y(l,nu^),...,y(q,n^)) (7) 

only, where 

is a sample from the jth population. The sample sizes will be subjected to the 
following assumption, which in the one sample case q = 1 simply means that the 
sample size n tends to infinity. 

(CI) In the notation 

i 
n« = X]n«' )' Puj) = n(j)/nu (9) 

i=i 

the relations 

lim 7iu = + o o , lim pW = pj £ (0,1), j=l,...,q (10) 

fco/a". 

If a test <pu of Qo against © — fio is based on (7) and for /?«(#) ss Ee(<pu) the 
relation 

sup { lim /?u(6»*); 6»* G fioj = « € (0 ,1) (11) 

holds, then according to Lemma 6.1 in [1] and Theorem 2.1 in [8] under validity of 
(CI) for each parameter 9 £ 0 — fio 

liminf — log[l - /3U(9)] > -K(Q0,9,p). (12) 
u—>oo n u 

We remark that an extension of this inequality to the case of stochastic processes 
and random fields can be found in [11]. 

In accordance with [4], [7] and [8] we shall say that the tests {<pu] are Hodges-
Lehmann optimal (H-L optimal) for testing Qo against 0 — Qo, if (CI) and (11) 
imply that 

lim —log[l-pu{0)] = -K(n0,0,p) (13) 
u^°o nu 

for each 9 G 0 - fio • 
The H-L optimality was investigated by Brown in [2], where testing fi0 against 

fii is replaced with testing Q*, against Q*, and Q* is the closure of Q,- in a set 0*, in­
to which the original parameter set 0 is embedded. As pointed out in [2], p. 1208, the 
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likelihood ratio statistics T(x\,..., xn, i~l0, Q,\) = log[L(xi,. . . ,xn,Q,\)/L(x\,... ,xn, 
fi0)] can be essentially different from T(xi,..., xn, Q*,, 0*), which is in [2] proved to 
be optimal for the extended problem fi0 against SI*. 

In some particular cases was the H-L optimality of the LR tests proved in [8]. 
In the case of exponential families was this H-L optimality in the multisample case 
q > 1 proved in [7] under the conditions, including the following assumptions. 

(D 1) The effective set 

B = \x; sup log/(x,7) < +oo I (14) 

is open. 

(D2) The arithmetic mean x = i £2 Xi °f ^ e *-*-(!" observations x\,...,xn 
" i=\ 

belongs to B with probability 1 for all n > N and y £ H. 

These assumptions are in [7] imposed to assure existence of the MLE with prob­
ability 1 for all 7i > At. They are fulfilled by the family generated by the exponential 
reparametrization of the non-singular normal distributions, but for important ex­
ponential families — generated by the exponential reparametrization of the Poisson 
or the multinomial distributions — the set (14) is closed, and the MLE does not 
exist with positive probability for all n. Moreover, the null hypothesis fi0 is in [7] 
assumed to have the property that the function (25) of the parameter 9* is con­
tinuous. The aim of this paper is to present regularity assumptions, fulfilled by the 
non-singular normal, the Poisson and the multinomial distributions. As it can be 
seen from Theorem 1, the presented assumptions in difference from [7] facilitate a 
unified approach to the H-L optimality of the LR tests for all integers q > 1, without 
imposing any restrictions on value of the quantity K(0) (defined in [7] on p. 7), or 
on continuity of K(-,Cl0,p). 

(A I) There exists a o--compact metric space Hi such that H is dense in Hi (i. e. 
H = Hi), and the original system {f(x,y);y £ H} can be extended to a system 
{/(x '>7);7 £ 3i } of densities with respect to the same measure v (by the extension 
we understand thai f(x, y) coincides with the original density if y £ E). Moreover, 
the extended system {P-y;y £ Hi} consists of mutually different probabilities, the 
Kullback-Leibler information quantity K(9*, •) is continuous on Hi for each 0* £ Hi 
(i. e. 7* —* 7* implies K(9*,yn) —* K(6*,y*)), and f(x,y) is continuous on Hi for 
each x £ X. 

(A II) The function K(.,9) is finite and continuous on Hi for each 9 £ H . 

(A III) Lei {9n}n
<'-1 be parameters from H], y £ H and 

limsup K(9n, 7) < +00 . 

(a) If 9 £ H, then limsup K(9n,9) < +00 . 
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(b) The sequence {^n}ni=i possesses a limit point in Hi and if the parameters 
{Onjn^i belonging to E are such thai limsup K(0n,0n) < +00 , then also the se-

n—>oo 

quence {0n}n°=i possesses a limit point in Hi . 

(c) Lei lim 0n = 0*. If {0n}n°=i is a sequence of parameters from H and 

lim 6n = O^then liminf K(0*n,6n) > K(0* ,0) . 
n—*oo n—n» 

(A IV) There exist measurable sets An C X", an integer N and measurable 
mappings 0n : An —>• Hi, gn : An —* R such that for each y E H and n> N 

Py(An) = 1 (15) 

n 
and on the set An in the notation L(x\, ...,xn,y) = \[ f(xt,y) the equality 

•'=1 

l o g i ( x i , . . . , x „ , 7 ) = gn(xi,...,xn)- nK(§n,y) (16) 

holds. 

(A V) In the notation from (A IV) and 

Pu = (pu
1),...,pi<)), (17) 

fore=(91,...,eq)eEUet(cf. (8)) 

* (0, o, PU) = J2P-)K ( §
n ? (yU, »1J))) ,°i) • (18) 

i=i 

7/(10) holds and 0 G H«, <Aen for every real t 

Pe[nuK(0,0,pu)>t}< exp[-< + hu(t)] (19) 

wAere 

limsup ^ ^ = 0 (20) 

u—.oo nu 

whenever the inequality 

l i m s u p — < + 0 0 (21) 
u—>oo nu 

holds. 

We recall that a metric space is said to be <r-compact, if it can be expressed as a 
countable union of its compact subsets. The reader can easily verify that both this 
property of Hi and the continuity of f(x,.), which are postulated in (A I), imply 
measurability of (22) for any non-empty set ft C 0 = Eq. 

The regularity assumptions imposed for the multisample case in [7] include only 
the exponential families, for which the MLE exists with probability 1 for all n > N. 
Instead of the exponential reparametrization we use an enlargement of the class of 
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probabilities. Since the Kullback-Leibler information number is non-negative, the 
axiom (A IV) guarantees that for all n > N there exists with probability 1 a MLE 
0n of the unknown parameter 7 € H, but taking values in the enlarged parameter set 
Hi, and having the property that the likelihood functions computed for the original 
parameters 7 € H can be expressed in the specific postulated way. We remark that 
for the exponential families, satisfying the assumptions (D 1) and (D2), imposed in 
[7], the assumption (A IV) is fulfilled with Hi = H. Validity of (A IV) makes possible 
to use the inequality (2.8) from [3] in the proof of H-L optimality of LR tests. 

If we put for ft C 6 

r , »tj,) ) 
L(x(»\n) = sup I n j l ^ - ^ i '-=(*»•• A) 6 0 V, (22) 

then by the likelihood ratio test statistics Tu for testing ft0 against 0 - fi0 we shall 
understand the statistics 

T " - 2 1 o g i ( x ( « ) , n 0 ) - ( 2 3 ) 

In the proof of the theorem on H-L optimality of (23) the following lemma will be 
used. 

Lemma 1. Let the assumptions (A I) - (A III) be fulfilled, (3) hold and for 6 > 0 
let 

D(6,p) = { 6* e S«; K(0*,Q0,P)<6}, (24) 

where 
K(0*,Qo,p) = inf{K(9*,9,p); 0 € fio } . (25) 

If lim 6U = 0, lim pu = p€V, then for each 6 g 0 in the notation (6) 
U — > 0 O U—i-OO 

du = K[D(6u,Pu),9,pu] (26) 

is a real number and 
liminfdu> K(Qo,0,p). (27) 

Proof . Since du < K(0*,9,pu) whenever 0* E fto, taking into account (AII) we 
see that 

lim sup du < +oo . (28) 
U—t-OO 

Since the sets (24) are non-empty, there exist 9U £ D(6u,pu) such that 

du<K(0*u,0,pu)<du + u-1 . (29) 

Let 0a
O) G fto be such that 

K(0Z,no,Pu) < K(0*u,0u°\pu) < K(0*u,Qo,Pu) + u-1. (30) 
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Let us choose an increasing sequence {-„}J_1 of positive integers such that 

liminfrfu = lim dUv . (31) 

Fixing To 6 ft0 and utilizing (28)-(30), pu -* p and (A III)(a) we get 

limsupA(0*,0u°),pu) < limsup A'((9u,7o,pu) < +oo 
U — . O O U — i - O O 

which together with (AIII)(b) means that there exists a subsequence {uVl}^Zl and 
points 9* 6 Si , f?(°) G Q0 such that in the notation 

for t -* oo 

* . - = « - , , ъ = *Zt, 7 ^ = W 

7 ť * - * 0 * , 7 ť
( 0 ) - ^ ) 

If 9 £ fi0, then (AIT), (30) and (A mj(cj yield 

K(9*J,p) = lim A(7*,0,Pz() > limsupA(7 t*,7 i
(0),p„) > 

t-^co t-.oo 

> liminf K(y*, 7 ( 0 ) , p z , )> K(8*, 0(°).p) > A'(0*,Ho,p). 

Since according to (A I) 

K(0*,no,p) = K(e*,rio,p), (32) 

obviously A'(0*, fi0,p) = lim A(7*,7* ,Pz,)- Combining this with (30) and 0* _ 
<-*oo 

D(Suj>u) we see that A(0*,fio,p) = 0. Utilizing (AIII)(b), (AI) we obtain that 
0* G fi0 and by virtue of (31), (29), (A II) 

liminfrfu = lim K(y*,9,pZt) = K(9* ,9,p) > A(f i o ,0 .p) . 

The inequality (27) now follows from (All). O 

T h e o r e m 1. Let a family of probabilities { P 7 ; 7 G S }, determined by densities 
{f(x,l)',7 £ H } with respect to a measure v be such that the assumptions (AI)-
(AV) are fulfilled. Let 

M f i o C e = S« (33) 

and in the notation (23) 

^"HS ?:<t (34) 
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If validity of (CI) and (11) implies that the critical constants tu in (34) can be chosen 
in such a way that 

limsup tu < +oo (35) 

then the tests (34) are H-L optimal. 

Proof . We shall proceed analogously as in the proof of Theorem 4.5 in [7]. Let 
us assume that both (CI) and (11) hold. In accordance with (A IV) let 

Bu = A (i) x . . . x AM 

and for x^ £ Bu put. 

0{u)(x{u))= (en^(y(l,nuV)),...,en[q)(y(q,nu^))) . (36) 

Making use of (AIV), (AH) we get for u > UQ in the notation (24) that 

Pe [21osL(lt"),'no))- tu] = M2nuK(e(u),n0,Pu) < tu] = 

= Pe[0{u)€ D(6u,Pu)} (37) 

where 6U = tu/2nu. According to the assumptions lim 6U = 0. Utilizing the first 

inequality in (2.8) in [3] and applying the assumption (A V) we see that for u > U\ 

Pe[0(u) 6 D(6u,Pu)] < Pe[K(§(u),0,pu) > du] < exp[-nurfu + ou] (38) 

where lim oulnu = 0. Combining (37) and (38) with (27) we get 
u—>oo 

limsup — \ogPe[<pu = 0] < -K(Q0,9,p) 
u _ o o nu 

and (13) follows from (12). • 

According to Theorem 1 the LR tests (34) based on (23) are H-L optimal for 
arbitrary non-empty set fio C H?, having the property (35). However, if (9* G Q0, 
then 

If H is an open subset of Rm and the densities {f(x,j); 7 € H} satisfy regularity 
conditions on partial derivatives, then the MLE 9n of the unknown parameter from 
E has the property that £(y/n(6n -j)\Py) -> JV(0, J - 1 (7)). where J(j) is the Fisher 
information matrix, and according to the well-known classical results under validity 
of (CI) for u —• 00 the weak convergence of distributions 

C(fu(x^,9*)\Pe.) - > x L (40) 
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takes place, where Xmq denotes the chi-square distribution with mq degrees of free­
dom. From (39) and (40) one can easily find out, that validity of (CI) and (11) 
implies (35). This fact will be used in the proofs of theorems in the further text. 

Let k > 1 be an integer and a = (k - \)k/2. Let us put m = Ik + a and denote 

S ={y = (/.',<ri,...,<jk,p')' e Rm; fi€ Rk,min<r. >0,PeRa, R(p) > 0} (41) 

the set of parameters of the non-singular fc-dimensional normal distributions, i.e. /< 
is the vector of means, of are the variances, p = (pi2, • • •, Pk-ik)' are the correlation 
coefficients and R(p) is the symmetric matrix with R(p)ij = pij if i < j , and R(p)u = 1, 
the notation R(p) ~> 0 means that the matrix R(p) is positive definite. For 7 G S we 
shall denote by V(7) the covariance matrix of the corresponding normal distribution 
and f(x, 7) its density. In this notation the following theorem holds. 

Theorem 2 . If fto is a non-empty subset of 0 = S ' and Tu are the statistics (23), 
then the tests (34) are H-L optimal for testing fio against O - fi0. 

Proof . Since (40) holds with m = M i d ^ the tests (34) have the property (35). 
We shall prove that also the assumptions (A I)-(A V) are fulfilled. 

Let us denote Si = S . For 7,7* € S 

K(J , 7*) = | ( /- - I O ' V C T T 1 ^ - /O + itr[l/(7)V(7*)-1] + \ log ̂ i - \ 

and (A I), (A II) obviously hold. 
According to the inequality (3.31) in [6] 

'<{-,-,D > i(/.'-,)'v(?)-V -,) + \t'{$&) - I 

where Ai(7) > . . . > A^(7) are characteristic roots of V(y) and g(z) = z~x + logz. 
Since g(z) attains its minimum in z = 1 and g(z) —+ +00 if either z —* +00 or 
z —* 0+ , the assumption (A III) holds. 

The assumption (A V) can be proved either similarly as Theorem 2.1 in [3], or 
after the exponential reparametrization by means of Lemma 4.4 in [7]. Since (A IV) 
holds with the usual MLE 0n and with the set An of the n-tuples (xu.. .,x„) € (Rk)n 

for which the matrix X^?=i(a;i — %)(xj ~ *)' ls positive definite, the assumptions of 
Theorem 1 are fulfilled. D 

As we have already noted, this Theorem 2 can be applied to testing the null 
hypothesis (3) on parameters of the non-singular normal distribution by means of 
the test statistics (23). Since in some situations the likelihood ratio test statistics 
(23) are expressible as monotone transformations ZU(T*) of some usually used test 
statistics T*, in such a case also H-L optimality of T* is established. In the following 
example the statistics T* have not this property. 
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Example . Testing equality of covariances. Let us denote in accordance with 
(1) and (41) 

fl0 = {6 = (0i,• • •,0n) € 6 ; V(61) = ... = V(6q)} (42) 

the hypothesis that the covariance matrices, of the q normal populations are equal. 
Let 

denote the sample mean and the sample covariance matrix constructed from the 

sample drawn from the j th population. If we put Sj = nuffj, S = J2 Sj, then 

i cГ/ттl 
j I-«--^>ŤS=-**•• Ť»=\řj\ /m>Sí\ 

J = I 

«ü) 

As pointed out in [10], p. 225, to obtain an unbiased test, instead of Tu the modified 
test statistic 

i i r«-« / • i i r"'-1 

TZ = \~r-A /I l-ur-r 5 > ^ \nu-q Г=i ln„"-1 

is used. We shall prove the H-L optimality of the statistic T*. 
As it is shown in the proof of Theorem 3.1 in [6], if 7 G S and a is a real number, 

then there exist real numbers 0 < £ < /? such that in the notation 

Bn = {(x1,...,xn);Xk(t)>e, Xi(t)<0}, (44) 

where A/t(E) is the smallest and Ai(E) is the largest characteristic root of t , the 
inequality 

l i m s u p - l o g [ l - P 7 ( S „ ) ] < - a (45) 

holds. Let (10) hold. If a = K(Clo,0,p) and Bn
j) are the sets (44) satisfying (45) 

with 7j = 0j and a* = a/pj, then in the notation X = Rk, Cu = 5 (1
(; ) x . . . x B^q) 

limsup — log P9 \x
n" - Cu] < -a . (46) 

u-»oo nu L J 

Under validity of the null hypothesis Tu/T* —• 1 a.e., and according to [9], p. 404 
the distributions £(logTu) —» xl- Thus if constants {tu} are such that the tests (34) 
based on Tu = logT* satisfy (11), then (35) is fulfilled. Further, it is obvious that 
there exist an index u\ and a positive real number M such that for all u > u% on 
the set Cu the inequality Tu/T* < M holds. Hence according to Theorem 2 

limsup — logPo [Cu n {logT* <tu}} < 
u_.oo nu 

< limsup — logP9[logfu < < u + l o g M ] =-K(QQ,9,p). 



208 F. RUBLÍK 

Combining this with (46) we get 

limsup — \ogPe[\ogT* < tu] < -K(tt0,e,p), 

which together with (12) means that the tests based on T* are H-L optimal for 
testing the hypothesis (42) under the normality assumptions. 

Let X = {1,. . . , k) be a finite set, 

H = J ( p l l . . . , p t _ , ) ' € / 2 * - I ; n u n p i > 0 , j > ; < 1 I (47) 

and 
t - i 

f(x,p) = px, pfc = l - X ) P i (48) 

j=i 

denotes a density with respect to the counting measure // on (X, 2 )• In this notation 

the following theorem holds. 

Theo rem 3. If fi0 is a non-empty subset of 6 = H« and Tu are the statistics (23), 
then the tests (34) are H-L optimal for testing fi0 against 6 — Qo-

Proof . Since (40) holds with m = k - 1, the tests (34) have the property (35). 
To prove (A I)- (A V), let us denote 

3, = 2 (49) 

the closure of (47), and let f(x,p) be the densities (48). Since 

k 

K(P,P*) = Y,Pi}°ZEi 
; = l Pj 

where Olog^ = 0, the assumption (AIII)(c) can be proved similarly as Lemma 
4.4(a) in [5], and all the other statements in (AI)-(AIII) can be easily proved by 
means of the compactness of Hi. 

The assumption (A IV) is fulfilled with A„ = Xn and 

On = (Pl,..,Pk-l)', Vx = — 

where nx denotes the number of occurrences of a; in x\,.. .,xn. 
Making use of the first equality in (48), the relation (2.4) in [5] and proceeding 

as in the proof of the inequality (2.10) in [5], we obtain, that (A V) holds. 
Thus the assumptions of Theorem 1 are fulfilled and the proof is completed. D 
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Let X = { 0 , 1 , 2 , . . . } , 
S = ( 0 , + o o ) (50) 

and 
~xy 

/ ( x , A ) = - - r (51) 

be density of the Poisson d is t r ibut ion P A w ' t h respect to the count ing measure /̂ on 

(X)2
X). In this no ta t ion the following theorem holds. 

T h e o r e m 4 . If fl0 is a non-empty subset of 0 = Eq and Tu are the s ta t is t ics (23) , 
then the tests (34) are H-L opt imal for test ing f20 against 0 — fi0-

P r o o f . Since (40) holds with m = 1, the tests (34) have the proper ty (35). To 
prove (A I)- (A V), we denote 

3 i = ( 0 , + o o ) . 

Since for A, A* 6 S i 

_ I A* - A + A log ~ A* > 0 
K(\,\*) = 

A* = 0 , A 

where 0 log - = 0, the assumpt ions (A I)-(A III) hold. T h e assumpt ion (A IV) holds 

with An = X" and 0n = n~x Y^ xj- Since the axiom (A V) can be proved either by 
j = i 

means of the relat ion (6.22) in [6] or by means of L e m m a 4.3 in [7], the a s sumpt ions 
of Theorem 1 are fulfilled. • 

(Received December 22, 1992.) 
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