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K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 2 

MULTIVARIATE STATISTICAL PATTERN RECOGNITION 
WITH NONREDUCED DIMENSIONALITY 

A direct solution of multivariate classification problems is considered without preceding 
reduction of dimensionality. The unknown class-conditional distributions are approximated 
by finite mixtures of special type. For decision purposes the components of these mixtures can 
be reduced to functions defined on different subspaces. To optimize the choice of subspaces 
and of the related parameters maximum-likelihood principle is used. The corresponding m.-l. 
estimates are computed by the EM algorithm. In this way the feature selection problem can be 
solved independently for each component of the approximating mixtures without introducing 
any additional criteria. 

1. INTRODUCTION 

Considering the statistical approach to pattern recognition we assume that some 
objects described by real vectors 

x = (xux2, ...,xd)e% c Rd 

have to be classified with respect to a finite set of classes Q = {cox, co2, ...,coj}. 
The objects are supposed to occur randomly according to some class-conditional 
probability distributions P*(x | co) and the respective a priori probabilities p*(co), i.e. 
with the joint distribution 

P*(x) = £ P*(x | co) p*(co). 
cosQ 

Given a vector x e l w e can express the a posteriori probabilities of classes 

(1.1) P>lx) = f W f ( M ) . »eOi (P*(x)>0) 
. P*(x) 

A unique classification of the vector x, if necessary, can be obtained e.g. by using 
the Bayes decision function 

(1.2) D: % -> Q ; D(x) = co': P*(x | co') p*(co') ^ P*(x | co) p*(co) ; co e Q 
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which minimizes the probability of error. In this way the classification problem 
reduces to estimating the unknown component distributions P*(x | co) p*(co), coe Q 
from some available samples of independent observations; 

(1.3) ' Sw = {xux2,...,xNJ c X ; coeQ; S0 = \J Sa ; N0 = * £ # « , . 
ateQ toeQ 

It is well known, however, that practical results of estimating multivariate distribu
tions are mostly unsatisfactory. Loosely speaking, this is particularly due to the 
discrepancy between an increasing complexity of multivariate distributions and 
a relatively small size of the actually available (or manageable) data sets. Despite 
its obvious restrictive nature the standard way to avoid this difficulty is to reduce the 
dimensionality of the problem. For this reason, the statistical pattern recognition 
regularly involves different feature selection or feature extraction procedures as 
a first, more or less independent, step. 

This paper describes a direct solution of multivariate classification problems 
without preceding reduction of dimensionality. The method is based on approxima
ting unknown class-conditional distributions by finite mixtures of special type. The 
components of mixtures have the form of a product distribution common to all 
classes which is multiplied by a modifying parametric function defined on a subspace 
of 3C. The subspace can be chosen independently for each component by means 
of a vector of binary parameters. As the common product distribution reduces 
both in the formula (1.1) for the a posteriori probabilities and in the Bayes decision 
rule (1.2), the class-conditional distributions may be actually replaced by mixtures 
of the modifying functions defined on different subspaces. 

The term "approximating" is used throughout this paper to emphasize, that, 
unlike estimation problems, the form of the underlying probability distribution 
is not known. Let us recall that this is the case in almost all practical problems. 
In this respect the present paper is closely related to the previous work [5, 7] on 
developing flexible parametric models for approximation purposes. 

To measure the quality of approximation, frequently [7, 9] the relative entropy 
is used 

SP)=EPJlog^Uo 

which is nonnegative and equals zero if and only if P equals P* almost everywhere 
[8]. It follows that 

Q(P) = EP.{logP(x)} ^ EP,{logP*(x)} 

and therefore the left-hand part can be used as a criterion to be maximized by P. 
Obviously, if P* is unknown, the log-likelihood function for P may be viewed as 
an estimate of Q(P). For this reason, to optimize the parameters of approximating 
mixtures, maximum-likelihood criterion is used. The corresponding m.-l. estimates 
of parameters are computed by an iterative scheme called the EM algorithm [2]. 
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In this way the selection of features is naturally included in estimating the conditional 
distributions without introducing any other independent criteria. 

Finally, the application of the described method is illustrated by a numerical 
example. For this purpose an artificial decision problem was constructed with two 
classes of 16-dimensional binary vectors. The corresponding samples of the size 
N = 6400 were generated randomly according to mixtures of multivariate Bernoulli 
distributions. Also the parameters of mixtures were chosen randomly from some 
suitably specified intervals. 

2. DECISION MODEL BASED ON MIXTURES OF SUBSPACE 
DEFINED COMPONENTS 

In order to approximate unknown conditional probability distributions (density 
functions or discrete distributions) we use the following parametric model: 

M„ 

(2.1) P(x | to) = £ < E0(x | b0) E(x | b» ifm, b0), xeSC. 
m = l 

Each component of this finite mixture consists of a common "background" distribu
tion d 

(2.2) E0(x | b0) = J\f(Xi | b0l) ; b0 = (b01, b02, ..., boi) e ^ 

and a function 

F(* | -c K, fao) = n R N ^ P ; <t * (°> i}; 
(2J) i = iLf(x/|fco,)J 

K, = (bZu • • •, KJ e®d; <C = Wu • • •, <P?J 6 (0, 1}" 

which is actually defined on a subspace 
(2.4) 3£Z = SCh x %i2 x . . . x 3CU ; {iu i 2 , . . . , i,} = {1 ^ i g d: <p"f = 1} . 

The univariate function / occurring in the formulas (2.2), (2.3) is assumed to be 
from a parametric family of probability distributions 

(2.5) & = {/(£ \b), t,eR;be<M}; (St c « J 

with parameter b. 
One can see that for any subspace Xm chosen by means of the binary parameters 

q>',ni the components of the finite mixture (2.1) are valid probability distributions 
of product type: 

(2.6) E0(x | b0) F(x | bZ, «C bo) = A \f{Xi I U 1 _ f c , , " / ( * i I & ' " ! • 

Particularly, setting some tp^i = 1 we replace the function f(xt \ b0i) in the product 
(2.6) by f(x, | b™,) and introduce a new independent parameter b™a in the mixture 
(2.1). The actual number of the involved parameters can be therefore suitably specified 
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e.g. by the condition 

msQ i = 1 m = 1 toefl 

It should be noted that the parametric model (2.1) generalizes the idea suggested 
in an earlier paper [6] where the background distribution E0 was chosen as a constant 
or nearly constant function. 

It is easy to see that in the formula (1.1) for a posteriori probabilities the background 
distribution E0 may be reduced and the same holds for the inequality in the Bayes 
decision rule (1.2). Thus, for decision purposes, the different classes co e Q can be 
independently characterized on different subspaces of 9C. Even more, the statistical 
properties of each class are expressed by a weighted sum of the component functions 
F, which may also be defined on different subspaces 3£% (cf. (2.3), (2.4)). The param
eters boi in (2.2) are necessary to define the functions (2.3) but, as it will be shown 
in Section 3, the background distribution E0 need not be evaluated at all. This 
circumstance may become useful in case of an extremely high dimensionality. 

The advantages of the parametric model (2.1) become more apparent when the 
description of objects is redundant but, as it is usually the case, the low informative 
variables are not identical in all classes. As an example let us consider the classification 
of hand-written numerals on a binary rastr. It is a difficult task to reduce the dimen
sionality of the corresponding binary space since the bits which are less relevant 
for one class of numerals may be highly informative for another one. Moreover, 
similar relations may arise between different variants of one and the same numeral. 
For the same reason the reduced description may cause a considerable increase 
of classification error. On the other side, using the parametric model (2.1), we are 
not confined to a single subset of variables. The subspaces SC^ can be chosen inde
pendently to describe e.g. the typical representants of each class. 

3. OPTIMIZATION OF PARAMETERS USING THE EM ALGORITHM 

From the practical point of view otimization of the parametric model (2.1) is 
of fundamental meaning. In this section we describe a computationally efficient 
solution of this problem based on the EM algorithm. 

As it appears the EM algorithm was developed in context of m.-l. estimating 
from incomplete data [2] and independently also as a method of identification 
of finite mixtures [4, 10]. In both fields the original justification of the algorithm 
was rather heuristic. The important proof of its convergence [4] has been presented 
first probably by Shlezinger [11] and later, apparently independently, by Baum 
et al. [1] and others (cf. Dempster et al. [2]). In the paper of Shlezinger the two 
basic steps of the EM algorithm are interpreted in context of pattern recognition as 
learning and self-learning respectively. A general and uniform formulation of the EM 
algorithm involving continuous case can be found in Dempster et al. [2]. This paper 
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clarifies also some aspects of convergence (see also Wu [12]) and shows many 
different application possibilities. In some cases [3] the EM algorithm can be used 
as a general optimization technique which is closely related to the gradient method. 
Applying the EM algorithm we follow the paper Grim [4] since in Dempster et al. [2] 
the corresponding modification is described rather schematically. 

Let us suppose that for each class coeQ there is a set Sm (cf. (1.3)) of independent 
observations which are identically distributed according to an unknown conditional 
distribution P*(x\co). In order to optimize the approximating mixture (2.1) we 
maximize the corresponding global log-likelihood function. Using notation 

M„ 

P(x | Wm, Bm, <Pa, b0) = F0(x | b0) £ < F(x | b», K, b0) ; 
m = \ 

M „ 

(31) Wm = « , <,. . . , wMJ ; < £ 0 ; £ < = 1 ; 
m = l 

Ba = (*>T, t>2> • • •» *>MJ ; #«, = « , *", • • •, « ? M J ; ® e Q 

we can write 

(3.2) LG = i - X X log [P(x | ^0J, Bm, #„, b0) K«»)] = 
fY0 tOEfixeS™ 

= I ^T log P(«) + I £ - i - Z log P(x I B/,, B„, <*>„, b0) 
<oenN0 OEQN0 NmxeSa 

Usually the probabilities p(co) may be estimated by the respective relative fre
quencies. However, sometimes the a priori probabilities are not related with the 
respective samplesizes Na. For this reason we confine ourselves to the second part 
of the function (3.2) and replace the relative frequences NjN0 by input parameters 
p(co). Using symbols W = {Wm, co e Q}, B = [B01, co e Q}, * = {$„, m e Q} we 
denote 

(3.3) L(W, B, <P, b0) = £ M £ log P(x | Wm, Bm, <Z>(0, b0) = 
men Nm xeS„ 

= S ^ E log [ I < f o(x I b0) H* I <C 92. bo)] 
coefl Nm x e S u m = 1 

In the case of the log-likelihood function (3.3) the two fundamental steps of the EM 
algorithm may be specified as follows [2, 4]: 

Expec t a t i on s tep: Given the parameters W, B, &, b0 compute the a posteriori 
probabilities 

M -A c \ \ < IT* I - C «C bo) »» = i> 2. • • •> M « ; 
(3.4) p(m \x,co) = - m ' B " y "" - ! - ; 

S < F(x | b" 9>j, b„) 
J = I 
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to determine the conditional expectation 

(3.5) <£(W, B , $ , b 0 ) = Z ^ I { I P(m | x, co) log [ < F0(x | b0) . 
(DEO Nm xeS„ m = l 

• I^(x | -C < , b0)]} 

Max imiza t i on s tep : Under fixed weights (3.4) compute the new values of 

W, B, & and b0 by maximizing the function J§f: 

(3.6) ('W, '6 , '<*>, 'b0) = arg max {if(W, B, * , b0)} 
W,B,*,bo 

As it follows from the relation (3.6), the EM algorithm transforms the original 
problem to a repeated maximization of the function (3.5) which may be viewed 
as a weighted version of L. Obviously, the application of the EM algorithm is efficient 
only if we derive a simple explicit solution of the relation (3.6). For this purpose 
we use first the substitution (2.6): 

«» r i 1 
£(W, B, <f>, b0) = £ p(co) £ ~ I p(m | x, m)\ log < + 

coefi m = l [jVc, X E S „ 

+ E E ^ Z C i Z K™ I x >») iogj(^i I % ) + 
i = 1 oiefl Ncl m = 1 xeSOJ 

+ Z Z ^ Z (1 - O Z K'« | x, co) log/(x ; | b0i) 
i = l <oefi iV m m = l xeSw 

Further, denoting 

in -\ - a 1 v / i \ / i \ p(m I x, co) 
(3-7) < = — Z K m ! x ' f f l ) ; <x | m, co = - Q ' ' ! - ; 

Nra «s„ I p(m I y, co) 
yes„ 

m = 1, 2, ..., Mw ; c o e Q , 
we can write 
(3-8) -S?(W, B, <Z>, b0) = £ p(co) £ 'w- log < + 

wefi m = 1 
<J Mra 

+ Z Z K°>) Z < i '< Z U(X I W, CO) l0gj(X; I 6™;) + 
i = l cosfl m = l xeSco 

<i M„ 

+ Z Z K°>) Z (1 - K i ) ' < Z < x j m, co) logj(x, I bot) 
i = 1 coefi u = 1 x£S„ 

It can be seen [4] that for any fixed binary parameters cp™ni (and under fixed weights 
v(x | m, co)) the function (3.8) is maximized by VV = ' W (cf. (3.7)), B = 'B and b0 = 
= 'b 0 where 
(3.9) 'bZi = arg max { Z < x I m, co) logj(x, I b)\ 

bs 33 xeS<„ 

m = 1, 2, ..., Mra ; i = 1, 2 , . . . . d ; co e £2 
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(3.10) 'boi = arg max ( -L £ p(co) £"(1 - «£,) 'w« £ «,(x | m, a>) log/(x, | 6)1 
bsSS ( x o i coefi m = l xsSo, J 

and %0i are the corresponding norming coefficients: 
M„, 

x0i = £ p(o>) £ (1 - < , ) ' < ; (x0i > 0) ; ( = 1,2,...,/./. 
coefi m = 1 

For x0i = 0 the parameters '6 0 i can be chosen arbitrarily since it is not included 
in (3.8). Consequently, the following inequality is satisfied 

(3.11) &(W, B, <f», b0) g if( 'W, 'B, # , 'b0) . 

Now, making substitutions W = 'W, B = 'B, b0 = 'b0 in the formula (3.8) and 
introducing the quantities 

t a, I \ t a X-i C I \ i / ( * ; I '6™,-) 
Ci = P(<») < I <x I m> ®) log ' ,. ; ; 

*rfM /(Xj 1 60») 

m = 1, 2, ..., Mw ; i = 1, 2 , . . . , d; a e Q 
we obtain 

(3.12) if (' W, 'B, <P, 'b0) = £ p(co) £ ' < log ' < + £ £ p(a>) £ p«, '<& + 
coefi m = 1 i = 1 coefi /n = 1 

d M„ 

+ £ E K00) E ' < E °(x I m><») i°g/(*i I 'boi) • 
i = 1 coefi m = 1 xeS„ 

If we order the terms 'qmi in a descending way 

coefi 

and if we set 
V * = / l , f c = l , 2 , . . . , r ; 6keQ; 
Vmi* \0,k = r+l,...,K; 1 g j * g d ; l ^ m ^ M 8 t ; 

then the parameters > £ ; satisfy the inequality 

(3.13) i?('W, 'B, $ , 'b0) g if( 'W, 'B, ' # , 'b0) . 

The relations (3.U) and (3A3) already imply that the maximized function (3.3) 
is nondecreasing at each iteration of the relations (3.4) —(3.6), (cf. the generalized 
EM algorithm [2]). As it will be shown in Section 4, in some important cases the 
parameters '6 0 i can be expressed as linear combinations of 'bmi: 

(3.14) 'boi - - £ p(a>) £ (1 - CO ' < '*:.; i = 1, • • -, d • 
X Q ; coefi in = l 

In view of the simplicity of this formula it could be feasible to compute the parameters 
' # , 'b 0 which locally maximize the expression (3.12) under fixed parameters 'W, 'B 
(cf. Sec. 4). •;$.,_ 

Remark 3.1. It can be seen that, without formal difficulties, the univariate function 
/ i n the relations (3.9), (3.10) may be chosen from different families for each index i. 
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In this way e.g. discrete and continuous variables may occur simultaneously in the 
vector x. 

Let us note finally that some problems arising in estimation theory are less impor
tant in the context of approximating. Thus, the existence of local maxima of the 
function L merely implies different approximation possibilities of different quality. 
Similarly the choice of the number of components in (2.1) influences only the quality 
of approximation. The frequently discussed slow convergence of the EM algorithm 
in the final stages of computation is also of little importance since the corresponding 
changes of the criterion are usually negligible. 

4. APPLICATION TO PARTICULAR TYPES OF MIXTURES 

Using the results of Section 3 we summarize first the EM algorithm in more detail. 
With regard to the particular choice of mixtures in this section we use the formula 
(3.14) instead of the general relation (3.10). 

Step 1: Given the parameters W, B, $, b0 compute the weights: 

/ . , \ / i \ w% F(x I bZ, <f>Z, bn) 
(4.1) p(m\x,co)= M™ y i " > y " ' °! ; 

1 w7 F(* I b7> P?' bo) 
J = i 

,. „.. / i \ p(m\x,co) m = 1,2, ..., Mm ; 
(4.2) vlx m, co) = —5-J—I—-—l— ; ffl 

ZJ P\m I y> a) x e S(o ; coe Q . 
yes,„ 

Step 2: Under fixed weights (4.1), (4.2) compute new values of W and B by the 

formulas 

tA-,\ , a, 1 v i i N m = 1,2,..., M r a ; 
(4.3) w„, = — ) pirn \x,(o); 

' NmX^co
y ' y i - 1 , 2 , . . . , d; to e Q 

(4.4) ' b ^ = arg max { £ «(x | m, co) log/(X; | ft)} 
6e a xeSo, 

Sfep 3: Given the parameters' W, 'B and ^ compute a new value of b0 by eqs. 
1 Mro 

'*oi = — L K w ) E (- - <SC) ' < ' b « . ; (*o.- > o) 
( 4 5 ) %0,-mefi m = l 

M<„ 

*<» - Z K © ) E (i - <t)'<> < = L2> •••>d • 
eoefi m = 1 

For xo ; = 0 set 'boi = b0r 

Step 4: Using the parameters ' W, 'B, 'b0 and the weights (4.2) compute the quantities 

fA t \ , <o r \ r ro vn / i M f(xi\'Ki) m = 1,2, ...,Mm; 

(4-6) 'qZt = p(o>) '< I vx m, to) log v "" ; . 
xes„ / ( x ; | fto;) . = 1,2,..., a ; coe£3, 
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find a monotone order 

(4-7) 'qn\tt = 'qe
m\h = ... = 'q%,,. = ... ; 1 £ mk £ M8k ; 

1 = i t = d ; 6keQ 
and define 

(4-8) > ! u = Xo: fc = r '+ ' 1;'_ 'K. ^ = d.-, M j 

If ' $ 4= <p continue by the Step 3 using the new parameter ' # . Otherwise 
continue by the Step 1 with W = ' W, B = 'B, # = ' * and b0 = 'b0 . 

Remark 4.1. It may be useful, e.g. for the sake of easy implementation, to apply 
the algorithm above under a given fixed background distribution. In this case it 
suffices to replace eq. (4.5) by 'b0 = b0. 

Remark 4.2. The relations (4.6) —(4.8) could be modified to select optimal features 
in usual sense. Instead of the quantities rqmi we would order the partial sums 

'Qi = l l r ' C ; i = U2,...,d 
mefi m = 1 

to define the optimal subspace at each iteration. 

To apply the described algorithm to a particular type of mixture we have to specify 
only the relation (4.4) and the formula (4.6). Let us consider first the case of normal 
mixture. 

A. Normal mixture 

Let x = (xu ..., xd) 6 % = Rd be real vectors and & = {/(£ | c, a), i e R; 
c, ae R} be the class of univariate normal densities 

(4.9) mc,a),^r^i(i\sjy, ieK 

with a pair of parameters c, a e R standing for b e J (cf. (2.5)). By the formulas 
(2.2), (2.3) we have 

E0(x | c0, o0) = ft r^T^-IT exp j - \ f ^ ^ Y l ] ; *. c0, «o e R_ 
i=iLv(27tfloO I 2V "oi )), 

It* C a", <pm, c0, a0) = n - f exp J - ---=-• + I 
' = iLI«ll I V2 C / 2V a0i / )J 

4 , o J , 6 f f i m = l,-2 Mffl; a>e£2. 

The components of the approximating mixture are therefore normal densities with 
diagonal covariance matrices. 
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The implicit relation (4.4) is transformed by the substitution (4.9) to the form 

(4-10) ( ' C ' O = arg max J £ v(x \ m, a) log exp J - - (-------) i i 
c.aeK (x.S,, L \ / ( 2 7 W ) I 2 V » / J J J 

where the parenthesized sum represents a weighted version of the usual log-likelihood 
function for normal density. It can be shown [4] that this expression is maximized 
by an analogously weighted version of the related m.-l. estimate: 

'cra. = X xi v(x I m> w ) > i = 1 , 2 , . . . , cl ; 
xeSa 

('a';;ti)
2 = £ (Xj - 'df v(x | m, co) ; m = 1, 2, ..., Mm ; co e Q . 

xeSm 

Similarly we would obtain an explicit solution of the relation (3.10) which can be 

rewritten in the form 

'c0i = — X p(») X (1 - <iC) ' < ' C ; i = 1, 2,..., d ; 
Xoi raefi m = l 

C«0«)
2 = — x p » I (i - c ) '<;[cto2 + c o 2 - Cc„.)2]. 

X 0 / <oefi m= I 

Finally, after substitution (4.9), the formula (4.6) can be simplified as follows 

'C = 'w>(»)log^£. 

Ko 
B. Bernoulli mixture 

Considering binary vectors x = (x,, ..., xd) e 1 = {0, \}d; xt e {0, 1} we shall 
assume the univariate probability distributions fe $F in the Bernoulli form 

(4.11) f(Z\b) = 6*(l - bf-s, £e{0 , 1} ; 0 ^ b = 1 . 

According to the eqs. (2.2), (2.3) we obtain 

(4.12) E0(x [ b0) = n bU\ - b0iy-x', xeSC; 
; = i 

(4,3) « i ^ : ^ n [ ( a ( ^ ) ] • 
Thus the components of the approximating mixture (2.1) are multivariate Bernoulli 
distributions (cf. (2.6)): 

E0(x | b0) E(x | fc£, ipl, b0) = 

= fl WX" (- - -Ci)1-']*-*" Mi - vr*']1"-" • 
1 = 1 
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Substituting (4.11) in the formula (4.4) we can write 

'b'^i = arg max '{[ £ xt v(x | m, to)] log £> + [1 - £ x< u(x | m, co)] log (1 - £>)} . 
O g i S I xeS„ xeSm 

Again, it can be shown that the explicit solution of this relation is given by the weighted 
sum [4] 

(4.14) 'bZt = £ x . v(x I m> w ) • 
xeS«, 

After substitution (4.11) in (3.10) we can derive an analogous explicit solution for b0i 

which can be rewritten in the form (4.5). The substitutions (4.11) and (4.14) in the 
formula (4.6) yield: 

(4.15) ' mi = Krø)'Wm ' І0g^ + ( l- ' C )Юg íЬl-;^l. 
Ьo; (1 - ЬOІ)J 

The last parenthesized expression is known as the relative entropy which may be 
viewed as a measure of dissimilarity between the two distributions ('£>",; 1 — '£>";) 
and ('b0i; 1 — 'b0l). The subspaces chosen for different components by (4.7) and 
(4.8) are therefore the most informative in this sense. 

5. NUMERICAL EXAMPLE 

An artificial decision problem was constructed with two equiprobable classes 
Q = {cuj, co2}; p(coi) = p(co2) = \ and the conditional distributions defined as 
multivariate Bernoulli mixtures: 

(5.1) P í x i ю j - к п r ø ҷ i - o - -
ra=l i = l 

{0, 1}' coeQ . 

Table 1. Original pararaeters of mixtures P(x|røj), P(x j co2) 

• " l - З 
Һ b2 b3 í>4 b5 b6 Һ b8 

• " l - З 
b9 bю Һi bí2 bl3 Ьц ьi5 Һб 

•3210 •790 
•842 

•773 
•444 

•062 
•236 

•378 
•346 

•241 
•324 

•159 
•524 

•808 
•476 

•535 
•447 

Class 1 •3850 •277 
•568 

•317 
•672 

•764 
•596 

•159 
•797 

•848 
•748 

•298 
•474 

•394 
•109 

•451 
•085 

•2940 | ' 4 8 8 

•922 
•896 
•598 

•701 
•118 

•302 
•648 

•906 
•584 

•601 
•598 

•430 
•323 

•850 
•836 

•4050 •734 
•612 

•503 
•164 

•592 
•266 

•619 
•419 

•536 
•294 

•279 
•926 

•287-
•943 

•898 
•078 

Class 2 •2890 •086 
•257 

•292 j -939 
•783 -845 

•189 
•158 

•775 
•061 

•715 
•773 

•488 
•095 

•359 
•727 

•3060 •118 
•089 

•126 
•308 

•884 
•898 

•923 
•599 

•634 
•061 

•885 
•676 

•800 
•158 

•833 
•489 
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The number of components in mixtures (5.1) was taken to be Ml0l = Mai = 3. 
The corresponding parameters W, B (see Table 1) were chosen randomly from the 
following intervals 

< , w£ e (0-267, 0-467) ; w™ = 1 - w'f - wf ; b^, € (0-05, 0-95) ; 

o e £ 2 ; m = 1, 2, 3 ; ? = 1,2,..., 16 . 

The short interval for weights was specified to obtain approximately equally signific
ant components. 

Next, two samples Sffll, Sm2 of size Nl0l = Na2 = 6400 were generated randomly 
according to the respective mixtures defined by the Table 1. To verify the actual 
statistical properties of the generated data we estimated the original parameters 
from the samples Sm, Saz. Using the EM algorithm we obtained m.-l. estimates 
(cf. Table 2) which show some small deviations from the Table 1. As the primary 

Table 2. Estimated parameters of mixtures P(x\co1), P(x\co2). 

и ' , - 3 
* i bг b3 bл b5 

bв bi t>8 
и ' , - 3 

b9 
bю bu b12 b13 6 , 4 b15 bl6 

•3234 
•795 

*-846 

•750 

•462 

•066 

•240 

•391 

•334 

•261 

*-332 

•160 

•528 

•809 

*-466 

•508 

•452 

Class 1 •3741 
•259 

*-551 

•302 

•678 

•763 

•596 

•165 

•807 

•848 

*-744 

•285 

•474 

•381 

*-107 

•426 

•090 

•3025 
•481 

*-923 

•896 

•616 

•714 

•134 

•283 

•636 

•905 

*-587 

•566 

•600 

•434 

*-325 

•845 

•838 

•3994 
•734 

*-601 

•503 

•162 

•592 

•272 

•619 

•419 

•536 

*-300 

•279 

•921 

•287 

*-946 

•898 

•088 

Class 2 •2911 
•092 

*-251 

•281 

•800 

•948 

•850 

•169 

•157 

•765 

*-066 

•703 

•778 

•485 

*-086 

•354 

•737 

•3095 
•109 

*-088 

•120 

•330 

•895 

•890 

•935 

•583 

•650 

*-060 

•871 

•671 

•803 

*-155 

•833 

•492 

objective of the present paper is to compare the results of different approaches, we 
used the entries of the Table 2 as true parameters in further computations to reduce 
random influences. 

The classification problem obtained by this "plug-in" method was characterized 
by an error matrix based on the Bayes decision function (1.4): 

E(co' | a>) = £ d(D(x), co') P*(x | co) p*(co) ; co, co' e Q . 
xeSC 

Here E(co' | CO) is the probability that a vector x e f from a class co will be classified 
into co' (see Table 3). Obviously, the sum of nondiagonal elements is the resulting 
probability of error PE = E(cox | co2) + E(co2 | co^) = 0-072. 

For the sake of comparison, first an optimal 3-dimensional subspace of the original 
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sample space was determined. By evaluating all possibilities we found that the pro
jections of the given conditional distributions into the subspace 3C9 x 3T13 x 3£15 

(defined by the respective entries of Table 2) yield the minimal probability of error 
PE = 0-221 (cf. Table 4). 

Table 3. Error matrix for Table 2, 
PE = 0-072. 

Table 4. Error matrix for the 3-dimen-
sional marginals, PE = 0-221. 

Class 1 2 

1 
2 

0-463 
0-035 

0-037 
0-465 

Class 1 2 

1 
2 

0-380 0-120 
0-101 0-399 

Further, the parametric model (2.1) of comparable complexity was optimized 
in two modifications, under fixed and optimized background distribution respectively 
(cf. Remark 4.1). Let us recall that for decision purposes we need only the weight 
vectors W0> and the functions F(x | b™, <p̂ , b0); m = 1, . . . , Ma\ coe Q. If we denote 

f\ - bZYm,m. a<0 = &gj(i - y . 
v-- tW ' "' M--*C) ' 

i = 1,2, ...,d; m = 1, 2, . . . ,M r a ; ro e £3 

ľm = < П 

then we can write (cf. (4.13)): 

w%F(x K> <£. b0) = ?m n KtY-'^' 

The total number of independent quantitative parameters included in the final 
decision model (without considering the binary matrix # ) is then given by the 
formula 

(5.2) '• = Z(мÍЗ + E Z O 
mєЯ m = 1 i = 1 

Thus, in both modifications we used the value r = 22 which corresponds to the 
previous 3-dimensional projection. 

In the first modification the fixed parameters boi were set equal to the relative 
marginal frequences of the whole data set S0 = Sm u Sm2 (cf. Table 5). The optimal 
parameters obtained under these conditions are displayed in the Table 5. The corre
sponding error matrix (cf. Table 6) implies the probability of error PE = 0-139. 
Having included the background distribution into optimization we obtained the 
parameters displayed in the Table 7. The probability of error was PE = 0-111 (cf. 
Table 8). Thus, introducing the two modifications of the parametric model (2.1) 
we were able to reduce the probability of error PE = 0-221 arising in the optimal 
3-dimensional subspace to the values PE = 0-139 and PE = 0-111 respectively. 

All the results in,roduced in this section (Tables 2—8) were obtained by the EM 
algorithm (4.1)—(4.8) and partly verified by repeated computations with different 
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Table 5. Optimal subset of parameters (fixed background, /• = 22). 

w l - з 
b, b2 b3 

b4 b5 
b6 h bв 

w l - з 
b9 b,o ь„ b l 2 b,3 bы b1S b,6 

•3366 
•999 

•909 _ 
•090 

: : - - -

Class 1 •1546 
•913 

_ 
•001 — — — 

•5088 _ — — — 
•736 

— — — 

•3418 
•128 

— — — 
•999 •061 

C l a s s 2 •5738 
•104 

•152 

•187 •929 

•876 
— 

•052 

•796 — — 

•0844 — — — — : : — 

B a c k g r o u n d d i s t r ibut ion 
•427 

•550 

•473 

•495 

•656 

•486 

•430 

•498 

•657 

•360 

•458 

•666 

•520 

•370 

•649 

•418 

Table 6. Error matrix for Table 5, PE = 0-139. 

Class 1 2 

1 1 0-441 

2 0-080 

0-059 

0-420 

Table 7. O p t i m a l subset of p a r a m e t e r s ( o p t i m i z e d b a c k g r o u n d , / = 20). 

" 1 - 3 

ь, | ь2 Ьз Ь 4 
b5 ь6 

b, b8 

" 1 - 3 ь9 1 b 1 0 bц b,г ь,3 Ь,4 b,5 ь16 

•6426 - - : 
•158 

•738 •709 
- __ : 

Class 1 •3574 - — •242 — — — 

•0000 — — — — 

•3917 _ •155 
— — ! — 

•927 

_ 
•947 

•902 

•088 

CІass 2 •6083 
•109 

•167 

•198 •921 

•865 
— 

•064 

•784 — 

•0000 _ — — l — — 

B a c k g r o u n d d i s t r i b u t i o n 
•566 

•717 

•593 

•577 

•643 

•321 

•558 

•384 

•657 

•302 

•315 

•602 

•520 

•229 

•588 

•498 
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randomly chosen starting points. One iteration of the algorithm required about 
2 minutes CPU time on the IBM 370/135 and 30 iterations were needed to obtain 
the parameters for one mixture in the Table 2. However, after 10—15 iterations 
the accuracy of estimates is already relatively high (see also Grim [5]). In view of 

Table 8. Error matrix for Table 7, PE = 0-111. 

Class 1 2 

1 
2 

0-431 0-069 
0-042 0-458 

experiments performed earlier with similar data [5] it appears that the results in 
Table 2 correspond to one unique maximum of the log-likelihood function. The 
choice of the starting point is more crucial if one optimizes an incomplete parameter 
set since the initial set of variables is very stable and usually does not change very 
much. For this reason, to obtain the parameters displayed in the Tables 5 and 7, 
we started the computations by the complete Table 2 and reduced the number of 
parameters gradually. 

6. CONCLUDING REMARKS 

An interesting feature of the parametric model (2.1) is its simple applicability 
to incomplete data vectors. As the components of mixtures are of product form we 
can obtain any marginal distribution by omitting appropriate terms. Thus, in case 
of incomplete observations, we can evaluate the corresponding marginals of con
ditional distributions and the a posteriori probabilities without replacing the missing 
values by some estimates. In this way we can adapt also the algorithm in Section 4 
to enable the estimation of the mixture (2.1) from incomplete data. Denoting Scot, 
(Scoi c Sco) the subset of vectors for which the rth coordinate is specified we introduce 
differentiated weights (cf. (4.2)) 

/ i \ p(m I x> co) „ „ „ 
vt(x \m,co) = —^—I >- ; x e Sai; i = 1, 2 , . . . , d ; 

£ p(m I y, co) 

and modify the related equations (4.4), (4.6): 

'bZt = arg max { £ vt(x | m, co) \ogf(xt | b)} 
be SS xeSat 

'd = P(<») '< I "J* I m, co) log ffi f \ . 
xeSat f(xt I bot) 

One can verify that the arguments of Section 3 apply to this version of the algorithm 
without essential changes. 
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The idea of a removable background distribution could be applied also to more 
sophisticated models based on dependence structures [7]. However, the resulting 
procedure would be probably less efficient because of the arising algorithmical 
complexities. 

(Received April 25, 1985.) 
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