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K Y B E R N E T I K A ČÍSLO 2, R O Č N Í K 3/1967 

Information Transfer in Sensory Channels 
with an Application in Auditory Sensorial 
Communication 

VLADIMIR MAJERNIK, ALBERT PEREZ, IGOR VAJDA 

Based on the assumption that the link between stimulus and percept is of statistical nature, the 
subject of sensory communication is tackled from the standpoint of the Shannon's theory of 
information. After introduction of the general mathematical model identifying the given source 
of stimuli to an abstract information source and the given channel of sensorial perception to an 
abstract communication channel on the input of which is directly applied the source, the concept 
of information on the stimulus, contained in the percept, is defined as well as its transmission rate. 
This model is specified for single-parameter stimulus and two-parameter stimulus (size and dura
tion) iri the region of Weber-Fechner law, and it is applied in the field of auditory sensorial com
munication, namely, in discerning a finite count of tonic signals. 
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O. INTRODUCTION 

Sensorial communication is a branch of science which examines sense organs as 

receivers of outside information. There has been lately remarkable development of 

this branch of science due, in particular, to the fact that the control of modern 

machinery still requires the participation of human operator. Man is in this process 

both the receiver of information from machines and a source of information for 

machines and it is therefore desirable from the point of view of information transfer 

that information-theoretic characteristics of men are in agreement with those of 



machines (similarly as e.g. we match impedances in electronics in order to optimize 
the transfer of signal energy). From this point of view, the information-theoretic 
characteristics of sense organs are investigated mainly by the so called engineering 
psychology. 

In the quantitative analysis of sensorial channels very little is up to now done 
about the mathematical description of the actual mechanism of the individual sensory 
organs. From the point of view of sensorial communication, sensorial physics 
(psychophysics) should answer mainly two questions: 

(a) How does human consciousness react to outside stimuli reaching sense organs? 
(b) How are the individual physical and chemical processes in the sensorial organs 

registered and interpreted in the nervous system of these organs? 

The present paper is concerned with some aspects related to the first question 
which is, obviously, of much more phenomenological character than the second 
question. The great number of investigations in different countries on sensorial 
communication and intelligibility from the point of view of information theory 
which try to answer question (a) is explained by the needs arising in different applica
tions similar to those mentioned above. Observing this fact ten years ago one of 
the authors of the present paper has formulated the opinion* that these investigations 
could be much more fruitfull if their authors were fully aware of the fact that what 
we are trying to determine is, properly speaking, nothing else than the characteristics 
of the receiver (sense organ) own channel, where the term 'channel' is conceived 
in the sense of information theory (see section 1). 

Percept can be described by means of an abstract or n-dimensional Euclidean 
space in which a point is assigned to each percept characterized by a set of n sensorial 
parameters. A set of stimuli can similarly be described by means of a signal space 
so that to each stimulus a certain point can be allotted according to the physical 
parameters used for its description. The points of the signal and sensorial spaces 
are assumed to be statistically related. By studying these statistical relations, general 
information-theoretic characteristics of sensorial channels can be found. 

This paper deals with the mathematical analysis of one of the most important 
aspects of information transmission in human organism, i.e. with the quantitative 
expression of information which can pass under given conditions through the sensory 
perception channel. The general model is gradually specified for single-parameter 
stimulus and two-parameter stimulus (size and duration) in the region of Weber-
Fechner law, and it is applied in the field of auditory sensorial communication, 
namely, in discerning a finite count of tonic signals. 

* See: Albert Perez: Mathematical Theory of Information. Aplikace Matematiky 3 (1958), 
pp. 1 — 21 and 81 — 105 (in Czech with summary in French; the remark above is in p. 9). 



1. GENERAL MODEL 

The paper is based on the presumption that the link between stimulus and percept 
is of statistical nature. In particular, the subject is tackled from the standpoint of 
the Shannon's theory of information: Let us denote by X and Ythe respective sets of 
all stimuli, i.e. of all points in the signal space, or of all percepts, i.e. of all points 
in the sensorial space. Then if the characteristics of the statistical link between the 
elements of sets X and Yas well as the incidence frequency of the individual stimuli 
are known, the mean quantity of information supplied by the percept about the 
stimulus concerned can be determined. 

Let us suppose that for each set E of a class X of subsets of the set X (corresponding 
to discernible stimuli), the probability of the stimulus x e X to belong to E is known. 
Let us further assume that for each stimulus x e X as well as for each set E of a class 9) 
of subsets of the set Y (corresponding to observable phenomena), there is known the 
conditional probability of percept y e Yfalling into E if the receiver was stimulated by 
stimulus x. The former of the numbers just defined will be denoted by PX(E), the 
latter by PY/x(F) and it will be assumed that the classes X and 9) are tr-algebras, 
i.e. that for each countable system EL, E2,... of sets, belonging to X or 9J there 
applies the rule that also their union El \J E2 \J ... as well as their complements 
belong to X or 9). The probability distribution Px defines the statistical properties 
of the source of stimuli and the set {PY/x, x e X} of conditional probability distribu
tions defines the statistical properties of the receiver with regard to the given set of 
stimuli X. In terms of information theory, the triplet (X, X, Px) would be called 
the (stimuli) source of information and the triplet (X, {PY\X, x e X},9J) would be 
described as the (sensory) communication channel. 

In further considerations, (X, X, Px) will be a mathematical representation of 
physical reality affecting the receiver (sensory organ), while (X, {PY\X, x e X}, 5)) 
will be a mathematical description of the sensory communication channel. 

The general model being established, the above task of assessing the amount of 
information, using general considerations, will be tackled. 

Let us denote by X ® 9) the smallest c-algebra which contains all the sets of the 
type E ® F where E e X, F e 9) and E ® E represent the set of all the pairs (x, y) 
which are characterized by x e E and y e E (see [ l ] , Chap. 1, § 4.2). Let then PXY 

be the simultaneous probability distribution of pairs (x, y) of stimuli and percepts 
which means that PXY(G) for G e X ® 9) represents the probability of (x, y) s G. 
As known, the distribution PXY can be obtained from the known distributions Px 

and {PY\X, x e X} by means of equation: 

PXY(G) = [ Pnx(Gx) dPx, GeX®1), 

where Gx is the set of all y e Y for which (x, y)eG applies. Let us finally denote by 
symbol PY the marginal probability distribution of distribution PXY on the <r-algebra 9) 



and by symbol Pxm the product distribution Px ® PY on the cr-algebra X ® SI) 
(see [1], Chap. 1). 

If PXY < PX®Y, i-e- if PXY(G) = 0 applies equally for each set G E X ® 3) character
ized by PX®Y(G) = 0 then the (average) information I on stimulus x contained in 
percept y is given by the expression 

(1) / = logj(x, y) dPXY, 
JX0Y 

where j is the Radon-Nikodym density of the distribution PXY with respect to 
PXIS,Y and where the logarithm is here and in the sequel taken to the base 2. If the 
condition PXY < PX®Y is n o t satisfied, then J is put equal to infinity, / = oo. (This 
definition of information is in the discrete case in agreement with the known definition 
which considers information as the difference between the a priori and a posteriori 
entropy (equivocation) of the parameter space X (see (4) in § 2). 

There is a series of intuitive and logical reasons (acceptable even in our case of 
sensory perception) which have in the past given rise to this general definition of 
information (see [2]). This question shall not be examined here, the paper shall 
concentrate only on some very important properties of the number I (for further 
details and references see [2]). 

1. / ranges between 0 and + oo; it is equal to 0 if and only if the random quantities x 
and y are statistically independent, i.e. if PXY = PX®Y-

2. No transformation of the X (or Y) set into itself or into any other set can in
crease the amount of the information. In case of one-to-one (or, more generally, of 
so called in mathematical statistics sufficient) transformation, the amount of the 
information is the same before and after the transformation. If the transformation 
is however non-sufficient (for instance, in case of technical reproductions of complex 
acoustic or visual stimuli), the amount of the information is reduced after transform
ation. 

where the least upper bound (sup) is taken over the class of all finite disjoint decom
positions Eu E2, . . . ,£„ of the set X with Et e X, i = 1, 2, ..., n, and for all finite 
disjoint decompositions Fu F2,..., Fm of the set Y with Fj e ty, j = 1, 2, ..., m. 

The first two properties of information are in full agreement with the requirements 
of an adequate definition of information. The third property makes it possible to 
determine the number / , at least approximately, in those cases when the integral (1) 
cannot be calculated directly. 

It can be supposed, without loss of generality, that a positive number t(x) can be 
ascribed to each stimulus to characterize its duration. 



The channel of sensorial perception in relation to the source of stimuli can be 
sometimes characterized by the so called transmission rate 

(2) • i = / /7 , 

where 7 is the so called mean duration of stimuli 

7 = f t(x) dPx . 

In principle, a distribution P^n) could be found which would maximize i representing 
thus in some sense the optimum use of the given sensorial channel. 

The incidence of significant outside stimuli in nature may be considered as given 
by a probability distribution P^0 . It can be expected that natural sensorial systems 
are made so that the information rate through sensorial channels obtains its maxi
mum value just for the probability distribution P£° of stimuli, i.e. 

PT = P^. 

2. MODEL WITH SINGLE-PARAMETER STIMULUS 

In this section we shall describe a special case of sensorial communication in which 
stimuli and percepts are uniquely given by a single numerical parameter, e.g. by 
frequency, intensity etc. This is the case of the so called single-parameter stimulus 
model. All the stimuli which can be psychophysical^ described by means of primary 
sensorial quantities belong to the set of single-parameter stimuli. 

(I) Let, first, X = {1, 2, ..., n)}, Y= {1, 2, ..., m} be finite sets. In that case the 
distributions Px, PY\X are given by non-negative numbers 

Pi = Px(i), Pu = PYli(j), ieX, jeY, 

where T P ( = 1, YP(J. = 1 for each ieX. It can be easily seen that the Radon-
i J 

Nikodym density considered in section 1, has here the following form: 

f(!J)'Yk 
k 

so that 

(3) I - I PA 
lPkPk 

This result is in agreement with the definition of information in the finite case as 
the difference between the a priori and a posteriori entropy, i.e. 

(4) I = H(X) - H(X\Y), 



162 where 

H(X)= - ^ P . l o g P , , 

H(X/Y)= - І P , E , 7 l o g ' 
V I PkPkj 

k 

If t = £ t ( 0 P, is substituted into (2), a special expression is obtained for i. 
(II) Let again X = {1, 2, ..., n} and let Ybe either an interval or the real line. 

Then the distribution Px is the same as above and it can be assumed that the condi
tional distributions PY/i are given by probability densities, i.e. that 

Pү/,(E) = ľ ф,(y) ày 

for each Borel set E <= Y Under these conditions it applies that 

so that, according to (1), 

(5) 7 = V. f P^,Wlog-4%v d,. "Sf 
ieX J y 

I Pk Ш 

The computation of this integral is often complicated and it may therefore be of 
advantage to use the following approximation (see property 3 in section 1): 

(6) I f PiPu log ̂ V = I = " I *. log P,. 
«J=1 LPkPkj teX 

(7) P,7 = ľ >K(Y) dy , / є X , j = 1, 2,..., m 

and where Fu F2, . •., F„, is any finite system of disjoint Borel sets whose union is Y 
(III) Let X and Y be intervals or real lines. It can then be presumed that the 

distributions Px and PY]X are given by Borel densities <p(x) and ^/(y\x), x e X, y e Y, 
respectively. In that case: 

f(X,y) = . % M 

where 

y(>>) = <p(x) tj/(y I x) d x , 



so that, according to (1), 

(8) l = f f <p(x) *(y | x) log *±L\A dx Ay . 
JxJr y(y) 

The mean duration ? in relation (2) can be found from equation: 

(9) t= [ t(x)cp(x)dx. 

3. TWO-PARAMETER MODEL FOR THE REGION 
OF WEBER-FECHNER LAW 

In this section a special model with two-parameter stimulus (9, t) will be described, 
in which the real numbers 9 and t represent the size and duration of the considered 

Fig. 1. 

stimulus, respectively. It will be assumed that only the size parameter 9 (in the sequel 
only: stimulus 9) and not the duration parameter t of stimulus is to be detected and 
that the resulting percept can be characterized by a single real parameter y, i.e. by 
the corresponding sensorial quantity. The set of all values 9 and y will be denoted 
by © and Yand it shall be assumed that 0 and Yare real lines. We can then write 
(9, t) e © ® T where T is obviously the real half line of positive numbers. Conse
quently, in the notation of section 1 or 2, © ® T = X. 

It will be further assumed that such pairs (9, t) with t smaller than the threshold 
duration t (9) of stimulus 9 can not appear, i.e. that the distribution P&0T = Px is 
given by a density cp(9, t) which will be taken as different from zero only in the dashed 
section of Fig. 1, i.e. q>(9, t) > 0 only for t ^ t(9). 

For a broad class of communication problems here considered it may be assumed 
that, according to psychophysical measurements, the system of probability distribu-



164 tions {Pri9,t}ase,i>i(9) 1S given by a system of Gaussian probability densities 
{\ji(y I 9, t)} on Ywith mean value 9 i.e. 

0-s) 
,oJ 

(10) My \9,t)= exp , 
n y | J

 y<'(2K)a(9,t) P L 2a\9 

for each 9 e 0, t > t(9), the standard deviation a(9, t) being generally dependent 
on .9 and t. 

Weber-Fechner law is widely applicable in psychology and, as modified by 
G. A. Miller [3], it has for fixed duration the form: 

(11) A9 = k(9 + 9r), 

where A9 is the DL* for a certain physical or chemical parameter 9 of outside 
stimulus, 9r is a constant and k is a constant of proportionality. For non-stationary 
outside stimuli, k and, thus, A3 depends also on the duration of stimulus t. This last 
relation can often be approximated by a function [4] of the type: 

(12) A9 = **> 
ct + d 

Combining (11) and (12) we get 

(13) A9 = "l±± 
ct + d 

where a, b, c, d are real constants depending only on the receiver and on the type 
of physical parameter. 

For AS obtained by the so called matching psychophysical method it is found that 

A3 = a(9, t) 

so that it results from (13) 

04) < M = ^ 
ct + d 

for (9, t) belonging to the region IF of validity of the Weber-Fechner law. 
Hence, according to (10), it follows for (9, t) e IF that 

Hyla.*)- ct + d exP(- p - ^ c t + ^m 
1 J(2n)(a9+b) ^ L y/2(a» + b) J j 

Supposing that i//(9, t) > 0 only for (9, t) e W, i.e. if it is certain that under the 

* DL = discrimination length. 



given circumstances the receiver can be affected only by a stimulus from the region W, 165 
it can then be derived from (8) that 

(15) 

where 

'-;wJJ,*(M---^- rai 
• 4 ^ P { Л Г V 2 ] > -

oЗ + 6 VP*)JJг l L V2 J 
d 9 d í . 

Fig. 2. 

Similarly, according to (2), i = //? where 

(16) t = I tcp(9, t) 69 df. 

Supposing that q>(9, t) is a uniform distribution on the rectangle in Fig. 2 which 
is assumed to be contained completely in region W, it then follows from (16) 

(17) 

and according to (15) 

(18) / = 
y/(2n)(92-91)(t2-tí)]_0O}t 

Q. 

. exp {-mн • 8 е Х р { _ [ ( у _ 3 ) 6 у 2 ] 2 } 

>/(-*) НУ) 
dđ dí d>> , 



where 

V(2«)(' !-' ,)(82-S,)J. .J„ 1 L V2 J J 
It results from (17) and (18) that in this case also / and i depend solely on constants 
ti> t2> &u $2> a, b, c, d. Integral (18) is too complicated for direct computation. 
But it can be calculated by means of a computer, using a standard program. It 
could be calculated under any circumstances as a function of the concrete values 
ty, t2,BuB2, a, b,c, d. 

In the following part of the paper examples will be given of application of the above 
theoretical results in the field of auditory sensorial communication. It will deal with 
the so called tonic signals, i.e. with tone signals the duration t of which is equal to 
the threshold duration t(9) of the tone-pitch 5. The tone-pitch duration threshold 
is in psychoacoustics defined as the minimum duration of tone signals necessary 
for perceiving them as a sound of tonal character [5], [6]. 

4. DISCERNING A FINITE COUNT OF TONIC SIGNALS 

Let us suppose that a person is faced with the problem of detecting one of n tonic-
signals of frequency xu x2,..., x„ (cycles per sec.) and of duration t(xx), t(x2), . . . 
..., r(x„) (ms), the probability of the i-th tone being Pt. The question is: how much 
information will the person receive under these conditions about the tonic signal 
affecting his hearing and what is the transmission rate (bits per sec). 

This single-parameter stimulus, characterized by a single real parameter which 
is its frequency, can be described by means of model (II) of section 2. The frequency 
of the stimulus can have any of the values xu x2,..., xn and the percept y can exhibit 
any pitch within the range of audibility. 

It can be expected within psychoacoustics that the density i/r., of the conditional 
probability distribution on the set of detected frequencies Y, has approximately 
Gaussian shape with mean value xh on condition that the hearing organ received 
a tonic signal of frequency JO2 S J ^ JO4 and of pitch duration threshold f(x,). 
Its standard deviation a(xh t(xi)) is related with x ; by (cf. [6]) 

CT(x;, t(x,)) = 4-4 . 10- 2 x ; , 

so that: 

ta+m^-^i^jij) 

In this informative part it will'be assumed, for the sake of simplicity, that i/̂  are 
approximately triangular distributions according to Fig. 3 with mean value xt and 
standard deviation <T; = 4-4. J0"2x,-. (In the following paragraph the Gaussian 



distributions will be approximated even more roughly by means of uniform distribu
tions with the same mean value and standard deviation, to make numerical calcula
tions more easy.) 

The values r(x,) can be found from the empirical curve representing the relation 
between the average tone-pitch duration threshold and the frequency according to 
results in [6], [7], [8] and [9]. 

The standard deviation of a triangular distribution of height a being approximately 
equal to 0-815/a, the density ipi(y) has triangular shape with triangle height a, = 
= 20-4/x,. and base xjlO-8. 

For a concrete numerical calculation let us assume n = 4, Pl = 2/3, P2 = P3 = 
= p 4 = 1/9, X l = 1000 c/s, x2 = 1100 c/s, x 3 = 1210 c/s and x4 = 1320 c/s. 

щ\ý) 

Fig. 3. yeY 

In order to give an example of the approximate determination of information / by 
means of (6), let Fl = (-oo, 1050), E2 = <1050, 1155), E3 = <1155, 1270), E4 = 
= <1270, +oo). 

In that case it can be easily found according to (7) that the matrix P = (PtJ) of 
conditional probabilities is given as follows: 

(1 o 0 0 
= | 0004 0-996 0 0 

i0 0004 0-996 0 
\0 0 0-031 0-1 

which substituted in the left-hand side of inequality (6) gives 1.38 :g I. Similarly, 
from the right-hand side of the inequality (6) the following is found 

and therefore 

(19) 

I ś ҖX) = 3/9 log 9 + 2/3 log 3/2 = 1-45 

1-38 S I £ 1-45 [bits] 

It will be easily found from Fig. 4 that the mean tone duration is ? = £ t(x i) p. = 
= 9-5 ms so that the transmission rate is in the given case within the limits 

146 g i ^ 153 [bits/sec] . 



Fig. 4. 

5. INFORMATION RATE OF TONIC SIGNALS 

This paragraph deals with the question of the information rate in detecting tonic 
signals on the condition that all the tones from a frequency interval within the range 
of audibility are equiprobable. It is obvious that here it is appropriate to use model 
III (section 2) because both the stimuli and percepts can be represented by a real 
number - the tonic frequency. It can be therefore assumed that X and Y are real 
lines and that the density cp(x) is uniform in the interval 102

 = x ^ 104 c/s, i.e. 
(p(x) = 1/9900 for x from the interval considered and elsewhere cp(x) = 0. It will 
be further assumed that the density ift(y | x) is also uniform for each 102 — x rg 104 

and its mean value is x and the standard deviation is ax — 4-4 . 10~2x (see section 4). 
As pointed out already in section 5, the latter assumptions are not quite in accordance 
with the experimental data but if the empirical distributions were approximately 
substituted by Gaussian distributions, too complicated integrals would be obtained 
from (8). 

The standard deviation of uniform distribution in the interval of length a being 
equal to a/2 ^ 3 , the conditional probability density ty(y | x) = l/0-153x for 



x(l - 0-0765) <: y <\ x (1 + 0-0765) and \j/(y \ x) = Ofor y out of this interval, i.e. 
ift(y | x) will be uniform in the interval of length a = 2 . N/3 . 4-4 . 10~2% = 0-153x. 
All data required for model III (section 2) being defined, information / or transmission 
rate i will be found. 

For brevity let w(x, y) stand for the density <p(x) \jj(y | x) on X ® Y. 
It is obvious that w(x, y) > 0 only in the region A dashed in Fig. 5, where the 

equation of the straight line making the upper boundary of this region is y — 

9-235.10' 

Fig. 5. •v [c/s] 

= (1 + 0-0765) x and that of the lower boundary is y => (1 - 0-0765) x. We have 
w(x, y) = (10~4 - 102) 0-153x for (x, y) e A. 

Since y(y) = 10~4 for 107-65 <I y <I 9235, i.e. it does not depends on y, it is 
then easy to calculate the integral 

w(x, y) log tínA dx dy = 3-5 , 
1 0 - 4 

where At is the region framed by a thick line in Fig. 5. It is of course difficult to cal-



170 culate the integral 

ÍL w(X,y)logMўdxdy. 

It is possible to prove that the expression is positive, so that 

I = [[ w(x, y) log ^ i X) dx dy > 3-5 bits. 
J J J y(y) 

Next an attempt will be made to find an upper estimate of the number /. 
From the system of probability distributions fy(y \ x) corresponding to 102 < 

= x <; 103 the smallest standard deviation, equal to 4-4, corresponds to \j/(y \ 102), 
while from the system of probability distributions \p(y | x) corresponding to 103 < 
<;X < 104 the smallest standard deviation 44-0 corresponds to \j/(y | 103). If for all 
102 < x < 103 the standard deviation was 4-4 and for 103 < x < 104 was 44-0, 
then the discernibility and consequently the information would be higher. Let this 
information be I; then I < I. In this case $(y | x) = 1/15-3 for x — 7-65 < y < 
S x + 7-65 and elsewhere $(y \ x) = 0 if 102 < x < 103, while $(y \ x) = 1/153 
for x - 76-5 ^ y = x + 76-5 and elsewhere {j/(y \ x) = 0 if 103 < x < 104, so that 

/= [[ w(x,y)log*MAdxdy, 
J J2 y(y) 

where y(y) = Jw(x, y) dx and where w(x, y) = q>(x) \fi(y \ x) is different from zero 
only in the dashed region A in Fig. 6. 

Since, for 107-65 < y < 923-5 or 1076-5 < y < 9230-5, y(y) = 1-01 . 10~4, it can be 
proved that 

ÍL w(x, y) log MllA dx dy ± 6-06. 
y(y) 

The regions J t and 2 2 are marked in Fig. 6 as framed by a thick line. It can be shown 
that the integral in the region A — (Ax U 2f2) is a quantity of the order of 10~2, 
so that the relation I = 6-2 is obviously applicable here too, and we can conclude that 

(20) 3-50 < I < 6-20 [bits] . 

The quantity ? can be derived from equation (9) 

r10,000 t(x)dx 
(21) 1 - 4 ^ . 

J IOO 9-900 



107 65 
102 

Fig. 6. 

104 л. [ c / s ] 

The function t(x) shown diagramatically in Fig. 4 can be expressed analytically by 
the following empirical equations 

(22) t(x) = 

í(x) = 

9-5 

1 - exp(-x/300) 

102 

for x є <100; 4,000), 

for x є <4,000; 10,000> , 
12-1 - 4-21 . 10~4;c 

where t is expressed in ms and x in cps. Substituting (22) into (21) we get 

? = Jt + S2 



172 where 

/•4.000 | 

Sx = 9-6 . 1(T4 dx = 4 1 , 
J100 1 -exp(-x/300) 
(.10.000 i 

J, = 101 . KT 1 dx = 6-9, 
J 4 . 0 0 0 12-1-4-21.10"4x 

so that t = 11 ms. 

From this result it is possible to find the transmission rate limits by means of (20), 

318 < i < 565 [bits/sec] . 

In the conclusion a practical application of the above methods will be pointed out. 
It appears that people with some auditory defects have different resolution ability 
than people with normal hearing which is shown e.g. by curves t(x) (see [9]). As 
a result of reduced resolution ability also the information rate changes. It is therefore 
necessary to adapt also the probability distribution of outside stimuli so as to make 
the maximum use of the human sensorial auditory channel. This can be in principle 
calculated for each individual case of auditory defect and thus there can be established 
the probability distribution of stimuli which provides the maximum rate of informa
tion. Further it is possible to use the rate of information as a mesure of the extent of 
the auditory defect, taking the hearing organ as an information transmission channel. 

(Received November 15th, 1966.) 
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Přenos informace smyslovými kanály s jednou aplikací 
ve sluchové sensorické komunikaci 

VLADIMÍR MAJERNÍK, ALBERT PEREZ, IGOR VAJDA 

Práce vychází z předpokladu, že závislost mezi podnětem (stimulem) a vjemem 
má statistický charakter. K otázce sensorické komunikace se přistupuje z hlediska 
Shannonovské teorie informace. 

V části 1 je zaveden obecný matematický model smyslové komunikace, který 
přiřazuje k danému zdroji podnětů abstraktní zdroj informace a k danému smyslo
vému kanálu abstraktní sdělovací kanál (tak jako se tyto pojmy definují v teorii 
informace), při čemž se předpokládá, že zdroj informace je přímo aplikovaný na 
vstup kanálu. Dále je zaveden pojem informace o podnětu, která je obsažena 
ve vjemu, jakož i pojem rychlosti přenosu informace, a jsou připomenuty některé 
ze základních vlastností pojmu informace, které jsou použity dále. 

V části 2 se tento obecný model aplikuje na případ tzv. jednoparametrového sti
mulu, kdy v sensorické komunikaci jak popudy tak i vjemy jsou pokládány za 
jednoznačně určené jedním číselným parametrem (frekvencí, intenzitou apod.). 

V části 3 se obecný model specializuje na dvou parametrový model pro oblast 
platnosti Weberova-Fechnerova zákona. Jde o model s dvouparametrovým popu
dem (9, (), při čemž reálné číslo 9 reprezentuje hodnotu určitého fyzikálního para
metru a t reprezentuje trvání popudu. Přitom se předpokládá, že jde o problém 
detekce hodnoty parametru a nikoliv délky trvání popudu a že vzniklý vjem je možné 
reprezentovat jediným reálným parametrem y, tj. hodnotou příslušné sensorické 
veličiny. Dále se předpokládá, že takové dvojice (9, i), pro které je t menší než pra
hová délka trvání í(9) příslušného popudu, se nemohou vyskytovat a že jsme v oblasti 
platnosti Weberova-Fechnerova zákona. 

V části 4 jsou výše dosažené výsledky aplikovány na případ rozlišování konečného 
počtu tonalitních signálů, tj. tónových signálů, jejichž délka trvání je rovná časovému 
prahu tonality. Jde o problém detekce jednoho z n tonalitních signálů frekvence 
xlt x2, ..., xn [c/s] a délky trvání t(xx), t(x2), ..., t(x„) [ms] respektive, z nichž ř-tý 
signál může nastat s pravděpodobností ph a nás zajímá otázka odhadovat jaké 
množství informace člověk za těchto podmínek obdrží o tonalitním signálu, který 
působil na jeho sluch a jaké je při tom dosaženo rychlosti přenosu. Na základě 
experimentálních údajů a za předpokladu trojúhelníkových distribucí charakterizu
jících smyslový kanál je pak propočítán konkrétní numerický příklad. 

V části 5 je sledována otázka, jaké rychlosti přenosu se dosahuje při detekci tona
litních signálů za předpokladu, že se stejnou pravděpodobností mohou nastat všechny 



tóny z určitého frekvenčního intervalu uvnitř pásma slyšitelnosti. Konkrétní nume
rický příklad je propočítán zde za předpokladu obdélníkových distribucí charakteri
zujících sluchový kanál. Odhady se dobře shodují s experimentálními údaji. 

Na závěr je poukázáno na jednu možnost praktického použití výše uvedených 
metod, a to u sluchově vadných, aby jejich sluchový kanál byl maximálně využit. 

Vladimír Majerník, prom. fyzik, Fyzikálny ústav SA V, Dúbravská cesta, Bratislava; 
Dr. Albert Perez, DrSc, Ing. Igor Vajda, Ústav teorie informace a automatizace ČSAV, Výše-
hradská 49, Praha 2. 
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