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KYBERNETIKA CISLO 2, ROCNIK 3/1967

On the Statistical Decision Problems with
Discrete Parameter Space

IGOR VAIDA

In this paper definitions of the Bayes risk and information in a sample concerning a parameter
in the framework of a classical mode! of statistical decision with an abstract sample space and
discrete parameter space are given and a relation between them is investigated. We try also to
estimate these quantities by means of simpler expressions in order to obtain a platform for a study
of an asymptotic behaviour of them.

1. INTRODUCTION

Let us consider the classical model of statistical decision with a parameter pro-
bability space (X, &, ), measurable sample space (Y, %), set {v,}, x€ X, of con-
ditional distributions of the variable y € Y defined on the o-algebra %, decision
measurable space (X, %), and with a non-negative and & ® Z-measurable loss
function w defined on X ® X. In this paper we shall assume that the set X of the
possible values, in general abstract, of the parameter x is countable, i.e. that the
parameter space is discrete. Besides it we shall assume without loss of generality
that & is the o-algebra of all subsets of X and that the prior probability p(x) is positive
for every parameter value x € X.

For every x € X and for every decision function ¢ (i.e. for every #-measurable
mapping of the measurable space (Y, %) into (X, Z') we define the average value of the
loss corresponding to them by

(1.1) R(x.0) = j w(x, 000) dv,(0) »

and for every decision function ¢ we define the average risk R(g) by

(1.2) R(o) = ny(x) R(x, 0).



In the paper we use the well-known Bayes principle of ordering of the decision
functions based on the average risk. By optimal decision function (if it exits) we
understand a decision function g, which minimizes the average risk, i.e. which satis-
fies the following equality

1.3 Rigo) = il;f Ro) = r,

where # is the set of all possible decision functions and where the non-negative
number r is the so-called Bayes risk. Hence, the Bayes risk seems be a fundamental
characteristics of the model we have considered.

Another characteristics of great importance is the average amount of information
I contained in the sample y concerning the parameter x. This quantity can be defined
as it is described below.

Let us denote by w the probability distribution defined on the Cartesian product
o-algebra & ® ¥ by

(1.4) o(E) = z); w(x) v((E),) forevery EcZ ® ¥,

where (E), is the x-section of the set E, i.c.
(B) = {ye ¥:(ny)e k).

and let us denote by & the marginal distribution induced by o on the g-algebra %,
ie. let

(1.5) B(F) =Y u(x) v{F) forevery Fe¥ .

(It is easy to see that, in view of (1.4) and (1.5), < 4 ® @, where u ® @ is the
Cartesian product distribution on & ® %.) Then the corresponding average amount
of information I is defined by

(L.6) 1- J log f(x, ) do(x, 7).
®

Y

where f(x, y) is the Radon-Nikodym density of the joint probability measure w with
respect to the product measure p ® @. (Let us note that all logarithms in this paper
are taken to the base e.)

From the intuitive point of view it is clear that, though the information I does not
depend on the loss function w, for a sufficiently wide class of loss functions there
exists a relation between r and I. This fact is a platform for the study of statistical
decision problems from the point of view of information theory. The data reduction
theory recently developed by A. Perez [5] shows that the indicated relation plays
a growing role in solutions of certain class of decision problems.
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The purpose of this paper is to estimate the Bayes risk and information in the
framework of general model of statistical decision with discrete parameter space and
to investigate the indicated relation between them. This general questions are studied
in the following section. The results of this section are then used in Sec. 3 devoted
to the study of of the rate of convergence of information and Bayes risk in some
classes of decision models as it is more precisely described below.

Letn =1,2,..., o be the size of mutually independent samples y = (y,, ..., y,),
i.e. suppose that the measurable sample space of the model is of the form

(1.7) (Yo =® (Yu¥), n=1,2 .., 0,
i=1

where Y; is the set of all y;’s with a given c-algebra % and suppose that the joint
probability distribution of the n-vector (¥1, ..., ¥,) under the condition that x € X
is the realized value of the parametr is a Cartesian product measure v%. It is clear
that, for every n = 1,2, ..., vy is the restriction of v on the s-algebra %" < #>,
where the latter inclusion (as well as the inclusions #; <« #*, i = 1,2,...,n, n =
=1,2,..., o, that will be used below) is written in accordance with a well-known
identification convention for product ¢-algebras, and that

. forevery xeX,

vwo=®v
where v,; denotes over all the paper the restriction of v on the sub ¢-algebra %, <
c ¥,
We shall denote by I, or r, the information or Bayes risk respectively corresponding
to the measurable sample space (1.7). Since #”, n = 1, 2, ..., is an increasing sequence
of g-algebras, I, n = 1,2, ..., is a non-decreasing sequence (cf. Th. 12 in [4]) and

> dn

(1.8) limi, =1,
whereas r,, n = 1, 2, ..., is a non-increasing sequence (cf. Th. 6.1 in [5]) and
(1.9) limr, =r,.

From the point of view of application it is important to ask which is the rate of
convergence above. This question was studied in [6] under the assumption that X
is finite. According to [6], both r, and I, converge to their limit values r,, and I,
exponentially in a sufficiently wide class of decision models with finite parameter
space, for example when vy, x € X, are stationary and mutually different Cartesian
product measures. It seems that an analogical assertion need not be true when the
parameter space is infinite. Sec. 3 of this paper is devoted to the rate of convergence
mentioned above under the assumption of a discrete parameter space.



2. GENERAL INEQUALITIES

The first our result it obvious. Let 7 be a real valued function defined on the para-
meter space X by

(2.1) y(x) = inf w(x, x),
where the infimum is extended over all x" € X different from x, and let us denote
A(vy, vy) = sup va(E) — "x‘(E)I .
Ee¥

Theorem 1. If the loss function w is bounded from above by w,, then

2)  HOOHTHIID (4 ) < 1w T ) (1 n(ED)
x) y(x)+ u(x") p(x) xeX

for every x % x' such that the left side has a meaning and for every measurable
disjoint decomposition {E.,}, x € X, of the sample space Y.

Proof. The right inequality is clear. The left inequality is non-trivial only if both

y(x) and y(x) are positive. If this condition is satisfied, then, according to (1.2) and
(1.3), there exists a decision function ¢, € # such that

Y u(x)R(x,0.) < r+ e forevery e¢>0,
xeX

and consequently

r
R(x,0) < —— + £ for every xeX.
M) u(x)
Hence, if we denote E.. = {y € Y:o,(y) = x"} for every x" € X, we can write
(%) Y, v(E,) £ Z w(x, x") v (E.) = R(x, ;) < T E ,
' Fx xex w(x)  pl(x)

and similarly

W) Y velBe) < 4 2
W) )
Since
2 B = 1~ w(Ey),
x'Fx
and since, in view of x #+ x',

E)>1-—L
B p(x)  p(x) y(%)

€

veB)< ——— 4 &
K1) T ) )

i3
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it follows from the definition of A(v,, v,.) that

[ 1
— +

MMyme”'

Since this inequality remains true for arbitrarily small ¢ > 0, we can write

AV ve) 2 1 — r( ! I—J ;

—_ ———— + JEN—
a(x) y(x)  p(x") y(x")

Amwn;1_<

the desired inequality is proved.

If the parameter space is finite, then it is well-known and frequently used that
I < H(p), where H(u) is the entropy of the parameter space. The non-negative
difference H(u) — I has been called equivocation by Shannon. The following extension
of validity of the latter inequality will be often used in the sequel.

Lemma 1. If H(u) is the entropy of the parameter probability space, i.e. if

(23) H(p) = —x;( u(x) log u(x) ,
then
(24) I £ H(y).

If H(u) < oo then the sign of equality in (2.4) holds if and only if A(v,, v,) = 1
for every x £ x'.

Proof. If H(x) = oo, then the assertion of the Lemma is clear. Let, consequently,
H{y) < co.

Suppose that the sample space is discrete (i.e. countable or finite) and that the
o-algebra @ contains all its subsets. Under this assumptions it is easily verified that
the Radon-Nikodym density f of the distribution @ with respect to the product
distribution u ® @ is of the form

NSRRI
il 519 0)

Since we can write
— u(x)log p(x) = — Zy #(x) v(y) log p(x)
ye

and since, in view of (1.6),

A el

X



we can write
25) H(p) — 1= 5 Y 9% 7).
X v
where
0 if v(y)=0,

S u(x) vl)
) v() log (# ) ) i€ () +0.

@8 o=

It is clear that y(x, y) = 0and consequently the inequality (2.4) under the conditions
we have considered holds. In order to extent the validity of (2.4) to the case of general
measurable sample space (¥, %) we can use an obvious procedure based on Th. 13
in [4].

If, for every x # x', A(v,, v.-) = 1, then there exists a countable disjoint measur-
able decomposition {E,}, x € X, such that v(E,) = L. (cf. (3) in [6]). Let us consider
a measurable sample space (Y*,&*) defined by Y*={E,}, xeX, #* =
= P({E.},xeX) =¥ (here and in the sequel &(-) denotes the least o-algebra
generated by the indicated class of sets) and denote by I'* the information correspond-
ing to this space. Then, by (2.5), (2.6), and H(u) < oo, the equality H(u) = I* holds.
Since, according to Th. 12 in [4], I* < I, the desired equality H(u) = I is proved.
The proof of the converse assertion will be based on the following

Theorem 2. If the loss function w is bounded from above by w, and if I < oo,
then
W

2.7 r=
@7 T 2log2

(Hp) - 1.

Proof. If H(u) = cc, then the assertion of the Theorem is clear. Hence let us
assume H(p) < oo.

(a) Let both X and Y be finite sets, say X = {1,2,...,m}, Y= {1,2,...,n}, and
let p(i) and v(j) be defined in accordance with Sec. 1. In information theory it is
usually defined the so-called minimum probability of error P by

my
P = minY, u(i) v(Y - E),
i=1

where the minimum is taken over the set of all disjoint decompositions {E;} of Y.
It was proved earlier (cf. [1], [2]) that in this case the following inequality holds

1
P< ———(HW~1I.
‘2log2( w-0

(A similar result is proved in [2] also in case Y is the real line and v, i = 1,2,..., m,
are absolutely continuous probability distribution on it.) As, for every loss function
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w < wg, a Toutine verification gives r £ woP, the inequality (2.7) holds under the
condition that both X and Y are finite.

(b) Let us denote the elements of X subsequently by x,, x,,...,and let p, be
a priori distribution derived from p by

wx) =pu(x), i=1,2,..,n—1,

o) = 3 m(x) -
i=n
It is easily proved that in this case
(2.8) lim H(y,) = H(y) .
Lmd- )

(c) Let us denote by r, the Bayes risk and by I, the information obtained by the
replacing of p by p, (cf. Sec. 7 in [4] and Sec. 5 in [5]). According to Th. 12 in [4],
I, £ I and, according to Th. 6.1 in [5], »; 2 7, 2 ... = r and, moreover,

0= —r < JQ@worll — 1)
As it follows from w < w, that r; < w,, we obtain
(2.9 0= r, ~r=<w /I ~1).

According to Th. 13 in [4], there exists a sequence @, = 9, < ... of finite measur-
able disjoint decompositions of Y such that I} < I,

(2.10) limI" =1,,

n- oo

where I is the information defined with respect to ¥ = £(2,,), p = p,, m,n =
=1,2,.... One more application of Th. 6.1 in [5] together with (2.9) yields that

O —rsm—ra+r,—rswJ2AJU,~ I+ J(I-1),

where the meaning of r} is clear. Since

(2.11) limI, =1
(2.12) lim I7 =1
n,m- o

(cf. Th. 12 in [4]), we conclude that

(2.13) Lim ) =r.

n,m- o

(d) The tools are now at hand to prove (2.7). If we apply this inequality to the
finite parameter space {x, X3, .. X,} and finite sample space Y= 2,, n,m =



=1,2,... (cf. (a)), then we get

w
s 0 (H ) ~ 1)
2]0g2( ()

and using (2.12) and (2.13) we complete the desired proof.

Now we can conclude the proof of Lemma 1. It remains to prove that the equality
H(u) = I together with H(p) < oo implies that A(v,, v,) =1 for every x =+ x'.
According to (2.7), H(u) = I implies r = 0 for every bounded loss function and hence
also for w(x, x") = 0 or 1 depending on whether x = x’ or x #% x". In this special
case y(x) = 1 for all x € X and the desired assertion follows from Theorem 1.

Lemma 2. If H(x) < o, then
(2.14) H(p) — I émzex V) vAE) (;(;;xu(X”) vl E))] +
+ Xg{ V() v Eo) (xéx#(-x ") ve(Eo))]
for every class {E,}, Exe ¥, x € X, where

Eo=ﬂ(Y—Ex)-

xeX

Proof. (a) Let Y be a discrete space all subsets of which are contined in %.By
(2.5) it holds

(2.15) Hp) -1 ¥ Y ¥x)+ Z};{ 2; (x, y) -

x,x'eX yeEx
Since for every z > 0
log(l + 2) < Jz,

we can write

¥(x, ) = J[u(x) vely) ( 2 #(x") ve(y))]
(cf. (2.6)). If we apply the Schwarz’s inequality to the series

y; NMEOLOIOWICORNIR
then we obtain

¥ ) 5 I ) (T KO vl B)]

and similarly

305, 3) 5 VIR E) (3, 1) vl )]

17



118

The latter two inequalities together with (2.15) imply the desired inequality (2.14).
(b) Let (Y, %) be an arbitrary measurable space and define a disjoint measurable
decomposition & of Yin a following way: E € 2 if and only if there exist sets Eq, E,,...

..wE, E;e{EJ}, xeX, or E; = E, such that

If we putin (a) Y= 2,% = #(2), and if we define
I = f log f*(x, ) da(, 3)
XY

where f* is &(2)-measurable version of the Radon-Nikodym density f then, accord-
ing to (a),

HG) = 15 3 I B (T ) vl E] +
+ T V) B (T 1) velE)] -
Since it follows from Th. 12 in [4] that I* < I, we bave H(y) — I < H(y) — I* and
the proof of (2.14) is complete.
Theorem 3. If H{u) < oo, then
16 21og 2 HOVEX) 4 4y ) < HG) ~ 1 <
(2.16) g ) + 1) ( (Vo)) = Hp) — I <
£ 2 VI (1= vENT A+ 3 V)

for every x + x' and for every disjoint measurable decomposition {E,}, x € X,
of sample space Y.

Remark. The upper estimate has a meaning only in case ). /u(x) < oo; it is
easily proved that if this condition is satisfied, then H(y) < co.

Proof. (a) As {E,}, x € X, is a decomposition of Y, E, in the preceding Lemma
is empty and hence

@17 HE =15 V) B (T K vAED] +
£33 VM) vlE) (T 1) v Be)]
The first sum can be easily estimated from above by

SV B ) (1 = volE)]




and hence also by
PNEOPWICIIUERNCRN
or by /
T (L VI (1 = (B -

If we apply to the second sum in (2.17) the Schwarz’s inequality again, then we obtain
the following upper estimate of it:

ST M) (L 1) 3 vl B =
= VI 1 U B) T 1) vl U Ee)] 5 T V006 (1 = m(E)] -

In view of this estimates and in view of (2.17), the right inequality in (2.16) holds.

(b) Let us define in Theorem 2 the zero-one loss function w similarly as above.
In this special case y(x) is identically | and the left inequality in (2.16) is a consequence
of (2.7) and (2.1).

3. DECISION MODEL WITH INDEPENDENT SAMPLES

In this section we shall deal with the classical model of statistical decision with
descrete parameter space under the assumption that for every realized value of the
parameter x € X the sequence of samples y;, ¥, . .. is an independent (not necessarily
stationary) random sequence. Over all the section we shall follow the notation and
terminology employed above.

Lemma 3. If, for every x € X, the sequence of samples is independent, then, for
every n = 1,2,... and for every F,e¥, i =1,2,...,n, there exists a disjoint
measurable decomposition {E.}, x € X, of Y (i.e. E, € ¥") such that

(€53))] V(E) > 1—2e"""® pn=12,..,

where
PR i e |

(32 14(x) = 1’nf - Z (vedF) = Vx'x(Fi))\ , n=112,..
x#x S| i=1 i

Proof. Let n be an arbitrary and define on (Y", ") a sequence fy, f2, ..., f, of
measurable functions by

Jhys yoo o v) = 2 0), P=1L2.0m,

where  is the characteristic function. It is to see that for every probability distribution
vz on (Y, @), f; are independent random variables taking values between 0 and 1
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with expectations v,(F;) and with variances uniformly bounded from above by 4.
Under this conditions a routine verification (using inequality § 18.1.A in [3], Chapter
V) gives for every 0 < t < 4,

va(Y" — Ef(1)) < 277,
where
B = {U'n o) Y ) vxi(m)g‘ = } '
n l i=1
Let us define
o Edn(x) if n(x) >0,

E -
o it nx)=0.

Since 0 < #,(x) < 4, the preceding inequality yields
VIE) > 1 — 267 ™ forevery xeX.

Since (3.2) implies that, for every x € X such that #,(x) > 0,
1] ‘
1Y (F) = vl FD) < 2n,(x) forevery x = x,
n|i=1 !

we conclude that £, n E,, = 0 for every x + x'. If we put E, = E, for all xe X
except one, say X, and if

E.,=E,U(Y"-NE,),
xeX
then {E,}, x € X, is a disjoint system of sets of the desired properties.
If we use Lemma 3 together with Theorem 1 and 3, we get the following

Theorem 4. If, for every x € X, the sequence of samples is independent, then,
for every sequence F, e %, i=1,2,...,

(33) Hp-IL<(1+ Zx\/y(x)) %\/(2;4()6) eTm) o= 1,2,...,

and if the loss function is bounded by wy, then

(3.4) P S 2wo 3 p(x) e g = 1,2, ...,
xeX

where n,(x) is defined by (3.2).

We shall say that an independent random sequence yy, Vs, ... is stationary, if
(Y, %)= (Y;,%;) and v,; = v,; for every i,j = 1,2, ...

If the sequence of samples is, for every realized value of the parameter, independent
and stationary, then the model of statistical decision is completely described by a para-



meter probability space, loss function, one-dimensional measurable sample space
(Y1, #,) and by a set of one-dimensional conditional probability distributions v},
x € X, on % ,. This will be respected in the remainder of this paper.

The following Theorem is just a restatement of Theorem 4 to the stationary case.

Theorem 4s. If, for every x e X, the sequence of samples is independent and
stationary, then, for every set Fe %,

(3.5) H(p) -1, < (1 +.§X\/y(x))v§\/(2y(x) eTMON . n=12,...

and if w £ wy, then

(3.6) r, £ 2wy, i(x)e™™™  forevery n=1,2,..,
xeX
where
(3.7 n(x) = inf $[vi(F) = v1(F)| forevery xeX.
X'EX

Corollary 1. Let for X = {1,2,...} the assumptions of Theorem 4s be satisfied

and let there exists such « > 0 that

(3.8) n(i) = —‘:ﬁ forevery ieX,
i

where a;’s are bounded from below by a > 0. Let s(¢) and 5(¢) be non-negative func-
tions defined for t = 1 by

(39) 0 =3 )

i={]

d / -

(0 =Y Jud),

i=1]
where [¢] denotes the least integer greater than or equal to ¢. Then r,, = 0 and
(3.10) ry S 2wo[n* e 4 s(n* )], n=1,2, ...
for every 0 < ¢ < 1. If §(1) < oo, then I,, = H(u) and
(3.11) H(p) — I, < 2(1 + 3(1)) [n*0 9 e~ 0/2 4 §(n*(1=9)]

foreveryO<e<tlandn=12,....
Proof. According to (3.6) we have, for every n = 1,2,...,

. . .
S 2w Y )™ S 2w L0 4 3 (e ) 5
i= i= i=m

—n  min

in y(i) "
< 2wo(me SIS 4o g(m 4 1)) £ 2wo(meT"™) 4 s(m + 1))

121



for every m = 1,2, ... Let m be an integer satisfying the inequality

122
1~ 1-
n1=0 1 < m < ptT9

where 0 < ¢ < 1. Then it is easily proved that
me=mamt®) . pa(l—e) g —n

s(m + 1) < s(n*-9)

and hence that (3.10) holds. The equality r,, = 0 is clear

Similarly, according to (3.5),
H(p) — 1, £ J2(1 + §(1)) (me™ @2 4 §(m + 1)),

for every m = 1, 2, ... and the conclusion of the proof of (3.11) is now clear.

Since the assumption (1) < oo implies that

lim3(t) =0
fad

the equality I, = H(y) follows from (3.11) and (1.8).
Example 1. Let us consider the case when the prior distribution u is geometrical,

ie.
1-p .
i=1,2,..., where 0 <pu<1.

(i) = u

In this case
s(t) = pt-t

§ =3/£1_:E) L= 172
(1) 1__‘/‘u/ =072,

Suppose that (3.8) is satisfied for some «, say a = 4. As in this case §(1) < o0, we

get from Corollary 1 that r, = 0, I, = H(u), where

11 1
H(,u):(] +~+-2> log ~ + log
Hoop u 1—n

and, according to (3.10) or (3.11) for ¢ = 4, we obtain that
Fa < 2wo(nt4e ™™ g ity

_ \/(1 - .“) 174 ~(nt12q/2 3/(};#) n114/2
H(y) I"<J2<1+"1_\/u)<n ey Al /)

for everyn = 1,2, ...




Example 2. In order to find an example of decision problem satisfying the con- 123

dition (3.8) let us proceed in the following manner. Let X = {1,2,...}, ¥; = {0, 1},
%, = {0, {0}, {1}, {0, 1}}, and let, for every i e X, the probability distribution v}
on % be defined by

1

i

A -
\';(O) =1- 1
i

If we put F = {1} € %, then, according to (3.7),

where

1,2, ...

= 1/10 for i

Consequently, in this case the condition (3.8) is satisfied for ¢ = 1/i0 and « = 1/2.

Corollary 2. Let for X = {1,2, ...} the assumptions of Theorem 4s be satisfied
and let there exists 0 < f < 1 such that

(3.12) n(i) = a;p’ forevery ieX,

where the set {a,, a,,...} is bounded from below by a > 0. Then r,, = 0 and

£ £ &
(3.13) 1, < 2w, [7410g ne™ "¢ 4 s<7—77log n)], n=12,...
*Liog (1/8) log (1/8)

for every 0 < ¢ < 1. If §(1) < co, then I, = H(y) and

E__logne @D 45

(3.14) H) — I, < 2(1 + (1)) [1}’ T + s<log (81/5) log n>:|

foreveryn =1,2,...and 0 < & < 1.
Proof. It was proved above that

—n min

in  n(i)
. < 2wo(me 'EE 4 og(m + 1))
for every n, m = 1,2, ... so that, in view of (3.12),

ry < 2wo(me ™" 4 s(m + 1)).
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It is necessary to choose m = m(n) satisfying the following two conditions

lim m(n) = 0,
lim m(n) e """ = Q.

n-r oo

In order to achieve this define m by

e
= —1lo
log (1/8) log (1/b)

It is easily verified that

e .
————logn -1 =m<

s(m+ 1) < (lggfiﬁ) log n) ,

~ napn [ o
napm o E L jog pe

= log (1/p)

and consequently (3.13) holds. The remainder of the proof is clear.

me

Example 3. If the prior distribution u on X is geometric (cf. Example 1) and if
n(i), i € X, satisfy the condition (3.12) for, say, f = e™", then we easily obtain by
, means of (3.13) and (3.14) (for ¢ = 1) that in this case

1/41og(1 /1y
Hw — I, < J2{1+ a - Log nemvatein 4 V= g (L
1 —Ju 2 1- \/u n

1 X 1 1/4%og(1/u)
r, < 2wy | - log ne™¥™ + { —
2 n

for every n = 1,2, .... It is clear that there exists a positive integer n, such that for

and (if w £ wg)

n>n,

s

H(p) — I, < const. <A
n

1\ 1/2les(1/n)
r, < const. | — .
n

Example 4. In order to give an example of decision problem satisfying the con-
dition (3.12) we proceed in the following manner. Let X = {1,2,...} and let
(Yy, #,) be Borel line. Let, for every i € X, the probability distribution v; on %, be
Poisson distribution with parameter i, i.e. let

)1/4I03(1lu)

i
V() =e'S j=01,2,...
jt




If we put F = {0} € Y}, then it is clear that
wi)=a.e’’
(cf. (3.7)), where

1

a=1—-¢e1>0

so that the condition (3.12) is satisfied for § = e ! and a given above.

(Received June 21st, 1966.)
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VYTAH

O statistickych rozhodovacich problémech s diskrétnim
parametrovym prostorem

IGOR VAIDA

V préci je struéné definovdn klasicky model statistického rozhodovdni s abstrakt-
nim vybrovym prostorem a s nejvySe spoletnym (diskretnim) parametrovym
prostorem a zdkladni charakteristiky tohoto modelu: informace I kterou ndm
poskytne vybérovd hodnota o parametru a Bayesovské riziko r.
prichdzeji v uvahu je asymptotické chovdni rizika r a informace I p¥i opakovaném
pozorovdni s rozsahem vybéru konvergujicim do nekonedna. Proto prvanim cilem
préce je poskytnout odhady veli¢in r a I pomoci jednodussich vyrazi, kterych by
pak bylo moZno pouzit k vySetfeni zminénych asymptotickych vlastnosti. Vysledky
jsou obsaZeny v § 2, Theorem 1 a 3. Tyto vysledky jsou pak v § 3 aplikovdny na stu-
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dium asymptotického chovdni r a I za pfedpokladu, Ze posloupnost vybéri je nezd-
visld (Theorem 4) a nezdvisld staciondrni (Theorem 4s) ndhodnd posloupnost.
V §3 jsou téz ukdzdny tfidy rozhodovacich problémil, pro kter¢ riziko r, resp.
informace I, p¥islu§né rozsahu vyb&ru n, jsou dény vztahy r, = o(1"), I, = H(p) —
— o(A"), kde 0 < A < 1, resp. r, = o(n®), I, = H(u) — o(n®), kde « <0 a kde
H(p) je entropie parametrového prostoru.

Didle, prestoZe informace nezdvisi na ztrdtové funkei, z intuitivniho hlediska je
jasné, Ze mezi r a I existuje pro dostatecné Sirokou tfidu ztrdtovych funkci jakysi
vztah v tom smyslu, Ze &im je informace vétsi, tim je riziko mensi. Vyjasnéni tohoto
vztahu je velmi duleZité, protoZe existuje celd Yada statistickych problémi, kdy
potfebujeme zndt r a nepotiebujeme zndt optimdlni rozhodovaci funkei, kterd jeding
ndm umoziiuje stanovit r piimo a kterd se obvykle konstruuje velmi obtiZng. Proto
druhym cilem préce je prispét k vyjasn&ni tohoto vztahu (Theorem 2).

ing. Igor Vajda, Ustav teorie informace a automatizace CSAV, Praha 2, Vysehradska 49.
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