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KYBERNETIKA CiSLO 3, ROCNIK 1/1965

Some Variants of Fault-Finding Procedures

Lisor KUBAT, MILAN ULLRICH

For three types of fault-finding procedures the optimum ones are determined by means of
probability theory methods.

The maintenance of complex devices and systems becomes a very important
problem. It is well known, that the greater part of maintenance hours is used for
looking for the unoperating units of the device, and the smaller part for their repair.
In other words, the main maintenance problém is not how to repair, but what to
repair. Thus, good fault-finding procedures are necessary for fast and efficient
maintenance and their use improves the availability degree of equipment.

There is a great number of variants of possible fault-finding procedures. In the
present paper three basic types are discussed, which — according to the authors’
opinion — are most important and theoretically interesting:

(i) the signal-measurement procedure,
(ii) the element-measurement procedure,
(iii) the replacement-of-element procedure.

All three types are solved in general, and illustrated on simple examples.
INTRODUCTION AND SIMPLE EXAMPLES

In this paper we shall deal with the problem of determining all failures, i.e. all
defective elements of a system containing n elements in the case we know that the
whole system does not operate. We shall look for such a procedure of determining
these failures which minimizes the expected cost.

Now, we shall introduce some mathematical notions and assumptions. We shall
consider that the system contains n elements numbered by 1,2, ..., n. We shall
assume that the i-th element of the system is defective with probability p; and good



with probability 1 — p;, and that these values are known. Let all the elements be
statistically independent. Let us have random variables &,, &,, ..., &, given by

&; = 0 if the i-th element is good,
= 1 if the i-th element is defective.
Then
P(§i=1)=Pi=1—P(€i=0)
and random variables (6‘, [STRTN E,,) are independent.

Let us assume that the whole system does not operate if at least one element is
defective. Every element of the system found to be defective is immediately exchanged

A N1 Yon—2 2n—1

Fig. 1. Elements connection in the type (i).

by a good one or repaired. In any of the three discussed procedures we do not include
the cost of repair into the cost of procedure, because the cost of repair does not depend
on the used fault-finding procedure.

As we have mention above, we shall discuss three basic types of the fault-finding
procedures, which are defined in the following way:

(i) The signal-measurement procedure is based on the assumption that the system
is composed by elements functionally connected in a chain-like form as shown in
Fig. 1. The signal-measurement is possible on the output of any element only. If in
the chosen point of the chain the measured signal is good, then all preceding elements
are good, and in the opposite case, i.e. if in the considered point the measured signal
is not good, then surely at least one of the preceding elements is defective. This
procedure corresponds mathematically to the following problem: is the chosen
random variable g, for given i equal to 0 or to 1, where

ne=max & (i=1,2..n).
1558
(if) The element-measurement procedure is based on the assumption that we can
decide by measurement of elements their state, i.e. if the considered element is good
or defective. Moreover we suppose that in this procedure the determining of a defec-
five element is followed by its repair and by checking the entire-system performance,
immediately.
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(iii) The replacement-of-element. procedure is based on the assumption that there
are not any measuring devices available and elements of the system can be replaced
by spare parts only.

Whereas the first type of procedure can be used for special configuration — the
chain-like connection of elements — the other two types are more general and can be
used for any configuration of elements, of course for such configurations correspond-
ing to the above assumption that the whole system does not operate if at least one
element is defective. :

For any of the considered types of procedures the optimum procedure means that
its expected cost will be minimum and moreover in the case (iii) that none good
clement of the system will be replaced.

On following simple examples all types of fault-finding procedures and their
optimization will be illustrated.

+ Henceforward we shall use the following symbols:

Di measuring on the i-th element (i.e..in the type (i) measuring of #;, in
the type (ii) deciding about the state of i-th element);

D determing of the entire system performance;

Ni replacement of the i-th element of the system by spare part (in the
type (iii));

Vi re-replacement of the i-th element (i.e. the replacement of the installed

. spare part by the original element of the system) (in the type (iii));

oi repair of the i-th element which is found to be defective (in types (1)
and (ii));

P(i,, gy ones ik) the procedure, for determing all defective elements in the set of

elements (iy, i, ..., i), when it is known that there is at least one
defective element in this set;
Q(iy, i5, .:.,iy) the procedure for determining all defective elements in the set of
’ elements (iy, is, ..., i) when nothing is known about these clements;
d the cost of procedures D;
I the cost of procedures Di, Ni or Vi (foreveryi = 1,2, ..., n);
N(P(iy, iz, -, i), N(@(iy, iy, ..., i) the minimum expected costs of procedures
P(iy, iy, ..., i) and (i3, iy, ..., i), Tespectively.

In the graphical description of different procedures we shall use the following
symbolic form in connection with D or Di. These operators correspond to the
questions:

D = Is the entire system in the operating state?

Di = Is the i-th element (or the chain of elements 1, 2, ..., i) good?

The positive answer leads to the rightward continuation in the graphical form, and
similarly the negative answer to the downward continuation.



Example 1. The signal-measurement procedure for n'= 3. All possible fault-
finding procedures of this type in the case of an unoperating system containing three
elements are given in Fig. 2. There are only four possible procedufes‘ Now, we will
ook for the optimum procedure between them for the case 8 = 1. The costs for

() P1—D2—02 @ D1—D2—03— Lo
AZ-—D}—*- °|2~ D3—
P Ose
O01—D2—D3—-. 01— D3 oy
63—- D‘Z*—O}——c
02—fD‘3~—4 Oll—«—D:i_.
d3 . 0‘3-_\ ©
(3 D2—O3— . (4 D2—O3—— .
D1—O02—D3— D[1-——OZ—D3—-
03— . 03—
01— D2—D3— o1— Pl
olaAa |:)‘2-;o‘3;_. :
Fig. 2. i -
e e . oA AT
O3 O3 —« ° n=13.

Table 1.
Costs of all different procedure in the type (i) for n = 3
e e e Procedures
S1s $2y $3
B 0 @ | o | @
0 0 1 2 2 1 1
o 1 0 3 3 3 3
0o 1 1 3 3 3 3
1 0 0 3 2 4 3
10 1 3 3 4 4
1 1 0 3 4 4 5
111 3 4 4 5
[

different combinations of &y, &,, &3 are summarized in Tab. 1. From tabulated data
the expected cost and the minimum can be easily calculated.
. The following relations between the expected costs for different procedures, (1),
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(2), (3) and (4), denoted by N, N,, N, and N, respectively, are obviously vatid:

N, <N, and N;<N, ifandonlyif (1 —p)(1—p3)—p 50,
N,£N, and N, £N, ifandonlyif (1 —p)(l~p)ps—p £0.

Hence:
Procedure (1) is optimum if and only if

(1—p)(1—ps)—p, <0 and (1 —p)(1 = p2)ps —pi 0.
Procedure (2) is optimum if and only if

(1=p)(1—ps)—p, 20 and (1 —p)(1 —p)ps—py SO.
Procedure (3) is optimum if and only if

(1-p)A~ps)—p, <0 and (1 —p)(1—p)ps—p 20,
Procedure (4) is optimum if and only if )

(1=p)(1=p)—p20 and (1-p)(1 = ps)ps—ps 20.

The expected cost is given by the following formulae:

1
1“(1 _171)(1 "Pz)(l —Pa)

N(P(1,2,3)) = (371 + 3p; + 2p3 ~ 3p1pr —

= 2p\p3y — 2p;p3 + 2pypaps)
if the procedure (1) is optimum;

1

= (26, + 3ps + 2p5 + 2p,ps —
L—1-p){ - p)(1 - p3) ’ -

— 4p,p3— 2p2ps + P1P2Ps]
if the procedure (2) is optimum;

B 1
- —p)( =) (- p)

(4P, + 3p> + ps — 3psps —
— P1P3 = PaP3 + P1PaPs)
if the procedure (3) is optimum;

1
= 3py+ 3p, + p3 —
1 - (1 —p)(1—py) (1 _ Ps)[ 1 P> + P3 = P1P2

. — Paps]
if the procedure (4) is optimum.




In the special case for p; = p, = ps = p the optimum procedure is (1) or (2)
according to the validity of following conditions:

Procedure (1) is optimum if and only if

(t-p-p

Procedure (2) is optimum if and only if

A
<

(t-p~-pz20.
In this case we obtain:

N(P(1,2,3)) = - [8p—7p*+2p°] if l—pP—-p=o0, .

I
(1-pp
1

=T-j(i-__p)—3[7p—4p2+p3] if 1-pP—p20.

Another formal description of the above procedures — shown in Fig. 3 ~ can be
used, which is more convenient for further generalization. For the discussed special

) D1—P(2,3) (@1) D2—P(3) Fig. 3. All possible proce-

| dures P(1,2, 3).in the ty
o e ,2,3) pe
O1—a@3) . D]1 02—Qg) (i) for n = 3. (An equiva-

O1-—Q(2,3) lent description to Fig. 2.)

case p; = p, = p; = p the expected costs denoted by N, and N,; are given by the
following formulac:

Ny={(t+ NP2 -t - (- pf]+

+(1+ NOE ) 2}~ ﬁ

Ny = {1+ NPE)) (1 - p)* [1 = (1 = p)] + [2+ N@B)] ot — p) +

+ (2 + N(Q(2, 3))) p} 1_~(11——vp)—3 .
However, N(Q(3)) = 1, N(P(3)) = 0, N(P(2, 3)) = (3 — p)/(2 ~ p)and
N@(2,3))=2 if (1-pP-p=0, ‘
=1+3p~p* if 1-p—-p=0

as can be easily proved.
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Thus, the.corresponding expected costs are

_8p = 7p + 2p° _8 =57 +p°
1 1_(1 —p)3 s i 1"“—_ (1 2o .
for(1 — p)> — p £ 0,and
N=TP=4tp  _ Tp -2
! 1—(1—p)3, 1—(1-ppP

for (1= pP—pz0.

In both cases Ny £ Ny, and therefore the procedure (1) is optimum.

(1) Di—DP—Ok— (2) Di—Dj—Ok—.
| |
‘ o,‘—? — Oj—D —.
|
i Ok—-s Ok—-e
Oi—D . ' Qji—D—F
| |
Dj—Ok—s : Dk—Oj—
]
. . f |
Fig. 4. All typfes _of p({ssxblg 0j—Db Ok—D .
procedures P(, j, k) in the |
type (ii) for n = 3. Ok—os (’Dj

Table 2.
Costs of both procedures (1) and (2) in the type (ii) for # = 3 and for given permutation (i, j, k)
. Procedures !

Ei9 Ez: 53 T T

- U} @ |
0 o0 1 2 | 2
0 1 0 2+d ‘ 2+4+d
o 1 1 2+4+d 2+d
1.0 o0 1+d | 144 |
1 0 1 24+ d 2+ 2d
i 1 0 2 +2d 24 d
1 1 1 2+2d 2+ 2d \

Example 2. The element measurement procedure for n

3. For this type only

two procedures for every ordering of elements i, j, k are possible, as shown in Fig. 4.
Tab. 2. presents the costs for both the possible orderings i, j, k. For procedures (1)
and (2) the expected costs, denoted by Nj and N, respectively, are given by the

following formulae:
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Ny = L= (=)0 =) (1= 12) 2= = pd (1 = p)(L = p)] -
=l = p) (L = p) + d(p; + p))}
Ny= e (01~ (1= ) (1~ p) (1 — p) —

L=(1=p)(1=p)(t=p)
—pll = ) (1 = p) + dlpi + p; + pdoe — P} -

It can be seen that the procedure (1) is better than the procedure (2) if and only if the
inequality p, £ p; is valid. The optimum procedure is determined by such an ordering
i, j, k for which the expected cost is minimum. This minimum can be attained by
comparing the second and the third terms of the above formulae for N, and N,.

These terms for different orderings i, j, k are presented in Tab. 3.

Table 3.
Expected costs in the type (ii) for # = 3 and for different permutations of (i, j, k)
i, j, k Expected cost
1 2 3 ' d(py + py) — py(1 = py) (1 — p3)
13 2 [ dpy +p3 +pylpy — 30 ~ (1= ) = p3)
2 13 apy +py) — (0 —pp) (1 —py)
2 3 1 d(py + p3 + p2(py — P3)) — P20 — p) (1 — p3)
312 d(py +p3) —p3(l —py) (L= py)
302 1 d(py + p3 + p3(py — p)) — 3l — p) A — p3)
4 N—D— . @ N2—D—
| |
Vi v2
| | Fi i
g. 5. All possible proce-
N2—D . N1—D —
| | dures P(1, 2) in the type
N1— N2—- (i) for n == 2.

1t can be shown that in the case the elements are numbered in such a way that
py £ P> £ p3, and if the assumption d £ 1 — p; holds, the optimum procedure
is (1) by the ordering i = 3, j = 1, k = 2.

Example 3. The replacement-of-element procedure for n = 2. In this case there
are only two possible fault-finding procedures shown in Fig. 5. Let us assume that
the cost of replacement of re-replacement of an element equals 1, i.e. d = 1. Then



" we obtain the costs of both possible procedures as shown in Tab. 4, and the expec-

ted costs are given by the formula
S S
1—(1=p)(1- Pz)
+2d(1 = (1 = p)) (1 = p,)) — dpy(1 — p2)]
for the procedure (1) and by the formula
1
Ny = e [(1 = p1) 2 + 3p,(1 ~ p2) +
2 1~(1_p1)(‘1—p2) 1 2 1( 2)
+4pips +2d(1 = (1~ p) (1 — p)) — d(1 — py) p2]

for the procedure (2).

Ny = B -p)p, + Px(l — p2) + 4pipy +

Table 4.
Costs of alt different procedures in the type (iii) for n = 2
. . Procedures
Stp $2
m_ | o
[ 34-2d 1+d
1 0 1+d 3+2d
1 1 | 4-+2d 4+ 2d

i I i

Let the elements be numbered in such a way that p; < p,. Then we obtain N, <N,
because

(N, — Nx) [1 - (- py) (1~ Pz)] =
= "2(1 - Pl) P2 + 2P1(1 - Pz) - d(l - PI) p: + dp1(1 - Pz) =
=@2+d)(p,—p) =0,

i.e. the procedure (2) is optimum for the case p; £ p,-

The above examples illustrate the three discussed types of fault-finding procedures
and the technique of determining their optimum. In the following sections the
introduced methods will be discussed in more general form.

SIGNAL-MEASUREMENT PROCEDURE

In this section we shall discuss the first type of fault-finding procedures used for
the chain-like system (as shown in Fig. 1). Let us assume that by signal measurement
on the output of the i-th element we can decide only whether all elements 1,2, ...,
are good or whether at least one of them is defective. The general solution of this



problem is very tedious and principally it is similar to a special case of well known
classical problem of determining randomly chosen number from the set 1,2, ..., 2" if
permitted questions are of the type: Is the chosen number greater or smaller then 2*?,
only. In authors’ opinion this classical problem has not yet been solved.

Our problem could seem to be solved by well known ideas of the information
theory, i.e. by measuring #; for such i for which the conditional entropy H(r]i/n,, = 1)
is maximum. However, in the general case this method does not lead to the optimum,
as it will be shown for n = 6.

In the following we shall give an algorithm for determining the optimum procedure
which is suitable for computers. Let us assume that p; = p, = ...'= p, = p and
& = 1. Then all possible procedures for P(l, 2, ..., n) are given in Fig. 6. The minimum
expected costs denoted by N, ;, N, ;,..., N,y ,, _, for different procedures are
given by the following expressions:

! Vi n— 1
Nia =1’—(T—T)"{[1 + NP, ... n)] (1 — )= (L= pf ™) +

+[1 + N@(2,....,n)] p},

Naw = i A+ NPG, )] (1= PP (1 =(1 = ) +
-(-p
+[2+ NQG,...,n)]p(1 — p) + [2 + NQ(2,...,n))] p},
Notmees = gy [+ MR =y (1= (1= )+

+[2+ NMQE)] p(1 — p) 2 + .. + [ — 1+ N(@Q(3, ..., n))] x

xp(l —p)+ [n—1+ NQ2,..,n)]p}.

The optimum procedure is that one for which the expected cost is minimum, i.e. for
which the equation
N(P(1,2,...,n)= min N

1<iga—1
1=jsm;

i

is valid.

Here, N(Q(1, 2, ..., k) is determined as the minimum expected cost for individual
possible procedures Q(l, 2, ..., k)shown in Fig. 7. If we denote the minimum expected
cost for these individual possible procedures by M, ;, M, ,,M;,,M;,,...,
«s My, then we obtain the following expressions for the minimum costs:

M, =[1+NQ2 . k)1 -p)+[1+ N2, .. . k)]p,
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246 N . S (L) D1—P23, ..., n)
o1—a@23,..., n)

1) D2—P(34, ..., n)
D1—O02—Q(34, ..., n)

O1—@(2,3, ..., n)

I€X0) D3—P@45, ..., n)
D1 D2—O3—Q@,5, ... n)
c]vz—a(3,4, vir 1)
o1—aQ@3, ..., n)

@32 D3—P(@4,5, ..., n)
D2—03—@Q(4,5, ..., n)
D1—02—Q34, ..., n)

|
01—@(23, ..., 1)

(1.1 Dn-1—P(n)
D1—D2— ... —Dn-2—On-1—@(n)

‘) On-2—Q(n-1,n)

02—@3,4, ..., n)
|

o1—@2,3, ..., n)

(n-1, ma=1) Dn-1—~P(n)
Dn-2—--On-1—@Q(n)
|
Dn-3—On-2—@(n—1,n)
| .

| .
. D1— 02— Q(34, ..., n)
Fig. 6. All possible procedures

P(1, 2, ..., n) in the type (i). 01—Q(2,3, ..., n)




1)

1)

(3.1)

(3.2)

(n.1)

(n,mn)

Dl—a(23, ..., n)
01—@@3, ..., n)

D2-—Q@34, ..., n)
|
D1—O2—Q(@34, ..., n)

31_9(2,3, )

D3—@4,5, ..., n)

D1—D2—03—@(45, ..., n)

|
02—@(34, ..., n)

O1—(2,3 ..., n)

D3—@4,5, ..., n)

|

D2—03—@(45, ..., n)
|

D1—02—Q(34, ..., n)
|

o1—a@@3, ..., n)

Dn

!
D{—D2— ... —Dn-1—On

.

O!n—1 —Q(n)

02— Q3,4 ..., n)
o1—@@2,3, ..., n)

Dn

.

.

Dtn—1—o(n)

Dn-2—On-1—@Q(n)
|
|
D1—02—@(3.4, ..., n)

i
o1—a@,;3, ..., n)

Fig. 7. All possible procedures
Q(, 2,..., n) in the type (i).
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B Moy =14 N@G, K1 = 4[24 N@G. s K] A = )+
+[2 4 N@Q, ... k)] p,

My, = t(l — p) + kp] (1 — p¥! + [k + N(@(K)] p(t — PP 2 + ... +
‘ +[3+ N@B,....,k)] p(1 — p) + [2 + N(Q(2, ..., k)] p.

My = [0+ 21 (1= P+ [+ N@EY] ol = 2 + oo+
+ ..+ [k + NQG, ..., k)] p(1 - p) +
+ [k + N(@(2,....,k)] p.

These equations imply the formula

N(Q(1,2,...,k)) = min M,;.
1isk
1sjsm; .

The above formulae can be used for determining the optimum procedures giving
the minimal costs N(P(1, 2, ..., n)) and N(@(1, 2, ..., n)) for any n. The calculation
of these optimum procedures is not difficult but is tedious and therefore it is omitted
here and final expressions are shown only. The following Tab. 5 presents the optimum
procedures for particular n. For these procedures, the range of their optimality in
terms of p and corresponding expected costs are tabulated, and presented in graphical
form in Fig. 8, 9 and 10.

As we have mentioned at the beginning of this section, it is not possible to obtain
the optimum procedure for this type of fault-finding by application information

7 6 5 4 3 2 1 Q.(1.23.4.5
s 4 3 T 1 Qi1.2.3.4
Oe——
i3 2 1 Q1LY
ie2 1 Qan
i-8 i 6 5 4 3 2 1 PA1.2.2.4.5.6)
i=6 S 4 3 2 1P1,2,3.4.5)
i-4 3 2 1OPL234
i=2 1 P
PO
! | | | | | Il
018 6215 €245 0295 032 b 0355 038 0.385

Fig. 8. Optimum procedure areas for different p in the type (i).



69 NP(M2....n) n=6 255

nes
n=4
34 n=3
2 n=2
T
0 T T T T T T T T T 7=t
[ 02 0.4 06 08 p 1
Fig. 9. Minimum expected costs for P(1,2,3, ..., ) in the type (i).
n=5
5 M@ 2. )
n=4
n=3
n=2
n=1
0 T T T T i
T T T T
B T 02 04 0.6 2.8 3 1

Fig. 10. Minimum expected costs for @(1, 2, 3, ..., n) in the type (i).
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%

theory ideas as the following example shows. Let n = 6 and p = 0-1. The procedure
can be started by measurement of one of random variables 7y, 115, 173, 74 or 5. We
shall choose such a variable r; for which H(y; | 5 = 1) is maximum. It can be shown
that the conditional entropy is maximal for such a random variable #; for which the
absolute value of difference |P(n; = 0 |ns = 1) — P(y; = 1 | 16 = 1)} is minimum.

Obviously

Pl = 0l = 1) = LR P,

P = 1o =)= — P

P(1, = 01n6:1)=“%)2_[1(17_%;ﬂ,

ey
P = 0o = 1) =(1_*1_;)3—[_21;_%):J)ﬂ,
Pl = 0] g = 1) = —f;)“_ [2[_(1!,)2 Dl

Pl = 1|16 = ):1_‘_2_1};;,
Plns = 0| ne = 1) = il;ll’li[(ll%(;); P

P(ns=1\'1o:1)=%2,
and thercfore

A1=lP(Vll=0|116=1)—P(r,1=1l,76=1h=11_<1__(%7:_p>)€_i’

1-(-pr

oA - - e
])\711 t—(=-p° |’

AZ:lP(n2=0|”6=l)_P('Izzl‘"b:l)lzil_?[]—_(l—_ﬂia

4; = IP('Is =0 ] s

1)"P(’73=]\’76




| 21 — (1 — p)*
Ay = IP(’M. = 0|116 =1) — P(ys = 1|;16 = ]]] = I 1 - %(%‘%27]
- - D
2[1 = (1 — p)®
As=iP(’k:O"le:1)“P('Is=1|’76:1)['l] _‘Ll-:‘“((l\_;)))é]
For p = 0-1 we obtain
4, = 573159 ;
A, = 1-89003 ;
4, = 1-56738 ;
Ay = 4:67905 ;
A5 = 7-47955 .

This leads to starting the procedure by measurement of 13, but the optimum procedure
starts by measurement of 7, because 0 < 2.95/10° — 93/10% — 1/10, i.c. the optimum
procedure is Pg(1,2,3,4,5, 6) as shown in Tab. 5.

ELEMENT-MEASUREMENT PROCEDURE

In this section the general solution of the second type of fault-finding procedures
will be derived. This type of procedures is based on the assumption that the measure-
ment of any element of the system determines whether this element is good or defec-

Di,—P(iy, ..., i)

é,»1~.‘;

Plig, «ou, iy} Fig. 11. A possible procedure in the type (ii).

tive. The optimum procedure will be derived for the assumption that every element
found to be defective is repaire dimmediately, and this step is followed by the check-
ing of the entire system.

Every procedure is characterized by a sequence of indices iy, i, ..., i, in the formal
description of the procedure shown Fig. 11.

Let the clements of the system be numbered by 1,2, ...,n in such a way that
pLESpyS...Sp.Lletd=1,and d <1 — p;. Then the optimum procedure is
characterized by the sequence n, n — 1, n — 2, ..., 3, 1, 2 as theorem 1 shows.

Let us denote the expected cost of the procedure characterized by the sequence

iy, i ey iy bY N (P(igs ..., i)
According to Fig. 8 we can write
NPy oy i) = P&, = 0] =1 [1 + #(P(iz, ... i))] +
@+ D)PE =1&=0 j=2..,n|ln=1)+
+ 1+ d+ Mz D] P, =1, max &, =1]p=1).
25jsn
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By substituion of terms

P&, =0|n=1) 4 ”“’[l - 110 - p;,)]

Ph[ |
P&, =1, max &, =1|n=1)= e
2%jz%n

=1~ p)

i=t

in the above formula we obtain after simple calculations
K@i i) = [1 ~Ti0- pi,)} WPl i) + dp, +
j=

+ [1 _,Ijl (t - p,.,)]

Whence

./V(P(ip v in)) =1+ __."_lh__— "il <d[7;, +1-— ﬁ(l — [’ik)) =
=T -p) " ”
PIUNR. S
1 —g(l - Pi,)

where
n-1 "
S(iy, izy--ordy) = _}:l(dpi] +1 =11 = p))-
i= k=j

Now we can formulate the following lemma:
Lemma 1. If for any two indices iy and i, (s < r,r = 2,3, ...,n — 1) the inequa-
ity
Pi, < P,
holds, then
S(il) s is? is+1.’ A ir—L’ in ir+19 vy in) 2

2 S(is oo s Byt oo Brmss By i go oeer ) -




Proof. According to the definition of the function S(il, ..., 1) we obtain

S(il, wees B Tgugs o vms By gy oy Tpits - oo i) —
= S(its oo s Tt 1o <os s T Tt woon B) =
= - ) =P ) (=0 ) =P ) (L= p) +
+ (U =pi ) (U=p YA = pid (=P + o+
+ (‘ - I’i,-l) (1- pl}+1)"' (l - I’i,,) + (1 - I’im) (1 - p,)]

and this expression is non-negative because p; 2 pi.-
Theorem 1. If

then
‘ N(P(1,2,...,n)) = #(P(n,n — 1,...,3,1,2)).

Proof. Using the Lemma 1 we obtain for any j = 1,2, ..., n and for any sequence
of indices iy, iy, ..., i, where i, = j

Stnon =1, j+ 1,7~ 1,..,2,L,7) £ S(y,ias 00 i)
and moreover
S(non—1,..,3,1,2) < Sm,n~1,...j+Lj~1,..,1}j)

and therefore N(P(1,2,...,n)) = #(P(n,n - 1,...,3,1,2).
The optimum of the element-measurement procedures P(1,2, ..., n) is given in
Fig. 12.

THE REPLACEMENT-OF-ELEMENT PROCEDURE

The determination of the optimum procedure of the third type of fault-finding
procedures, i.e. by replacement of the elements of the system, is very tedious. In
both preceding types, any procedure terminates by the step when the system is
reoperating, while in this third type of procedures the checking follows, by which we
make sure of the necessity of any replacement. The replacement of a good element
of the system by a spare part would lead to inadmissible losses.

The general case of the system containing n elements seems to be solved only by
the determination of all possible procedures, by the calculation their expected costs
for known values of py, p,, ..., p,, and by the choice of the optimum according to
expected costs. The most tedious step is the determination of all possible methods,
because their number grows very rapidly with increasing n. Therefore in this paper
we will discuss the case n = 3 only, which illustrates quite well the methods.

We suppose the cost of replacement or re-replacement of any element to be § = 1.
In the determination of all possible procedures, the following symbols will be used
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260 bn—~>DOp-1— ... —D3—D1—O02—

o1—D —-
&
03—D
n|1—oz_.
—p
.
On-1—Dp-2— ... P3—D1—02—
| o
b
:}>1—oz .
01— D —
02—
on—Dbn-1—r .., —D3—D1—02———»
| S—p— .
. olz .
03—D .
» o2 .
di—p
' b .
i
-

Fig. 12. The optimum procedure in
the type (ii).

in the formal descriptions:

Q(i) = Is the i-th element good?

R(i) = Is only the i-th clement defective?
The positive answer is symbolized by the rightward continuaiion in the formal
description, and the negative answer by the downward continuation. The double

dash represents the common continuation after both answers. The full description of
symbols @(i) and R(i) is shown in fig. 13.



Q(): Nj R(): Ni
N y l' 261
D & =1, & =08 =0
I!:__ =0 I $ 5 «
! P(j, k) and @)
s =1

Fig. 13. The full description of symbols @(i) and R(i) in the type (iii).

Na
R(a) or Q(b) {
D, =15 =0
Va
R(b) or @(a) { 'T"
D-—wfa=0¢ =1
Na
|
=18 =1
R(@) — R(a) — Q) - Qap) —
R(b) — = Q;(a) . = R(b) — = Q[(a) .
|

Fig. 14. The full and shortened description of one procedure P(a, b) in the type (iii).

Type I (A)
Q) — PGk
QK
Type . (81) (B2) (B3) (84)
R() —» R() — R() — R() —e R() —
P(K) and @() aw a0 P @@
P(K) Q@ &) o
Type IlL. (1) (€2) (c3) (C4) (c5)
R() — R(i) — R()—  R()—- R()—  R()—
R(;j) . () — R RG) R — R()—
P(.K) and P(jk) R —  QM— @O — Q) Pl aG.j)
Wi Q) Pl a0 a

!

Fig. 15. All possible procedures P(, j, k) in the type (iii). In the first step of the procedure of the
type I stays @(i), whereas two other types start with the step R(7). The second step is not R(j)
in the type II, and is R(j) in the type IIL



262 - The sense of symbols P(i, j) and @(i, j) is the same as in previous sections. Another

symbol will be used, too:
W(i, j, k) = Are two and only two of three elements defective?

By use of symbols @(i) and R(i) we can obtain four versions of the description
of P(a, b) procedure, which was discussed already in the introductory section. Its
full description and all variants of shortened description are shown in Fig. 14.

(at) (a2) (bt) (b2)
D—00 D-—00 Na Nb
| S | |
Na Nb D — D
| ‘ | 1 |
D—.10 D-—-01 Nb | Na |
| | . Va Va Vb Vb
Va Vb | | | |
Nb No D0l D-—200 D-210 D—s00
| | | | |
D—0 D—10 Na No Nb Nb
| | . ! l l l
Nl" Nlb 1 10 11 0
11 11

Fig. 16. All possible procedures @(a, b) in the type (iii).

All possible procedures for P(i, j, k) are described in Fig. 15. Since for P(a, b)
there are two possible procedures (see the introductory section), for @(a, b) four
possible procedures (see Fig. 16; the figures 0 or 1 at the end points of procedures

Nj
a() { le
D — o1

|
N

a() { N
D— 101

Vk
vi
Qg { 3
D— 110

- Nk
Fig. 17. One possible realization of the procedure W(, j, k) in !
the type (iii). . 111

represent realization of random variables &, and &,; the same holds for subsequent
schemes, t00), and for W(i,j, k) six possible procedures (all permutations of
clements i, j, k according to Fig. 17), and since there are six permutations of three
elements i, j, k, the symbolic description in Fig. 15 represents 228 procedures.



But for three elements numbered in such a way that p; £ p, £ p, one of two
possible procedures for P(a, b) dominates the other (see the introductory section),
and similarly, as shows Tab. 6, one of two procedures for Q(a, b) of the type (a)
dominates the other whereas two remaining procedures of the type (b) are equivalent.
Thus the number of the good procedures diminishes.

Moreover, procedures of type (B3) are contained in the type (B2); (B4) in (B1)
and (B2) or in the type of (C); (C3) in (C5); (C4) in (€2) and (C5); and the procedures

Table 6.
Costs of all possible procedures @(a, b) in the type (iii)

Procedures

l & & T
@ | @ oy | ey

| |
0 o ’ i | d 2+:2 | 2424 |
0 1 343 1 +2d 3424 34 2d I
10 | 1+2d | 3+43d 34-2d 3424 |
11 ‘ 4434 | 4+3d 4+2d 4+2d |

f | ; |

of the type (C5) using the procedure of @(i, j) of the type (a) are contained in the
type (€1).

Let us denote the procedures using the procedure of @(i, j) of the type (a) or (b)
by letter a or b, respectively. Thus the remaining procedures can be listed as follows:

(Aa), (Ab),
(B1), (B2a), (B2b),
(C1a), (C1B), (C2b), (C5b).
Here (Cla) is such a procedure where the third step (say R(k)), i.c the question

“Is only this one element defective?”, is immediately followed by the fourth step of
the type “Is the same element defective?” (i.e. @(k)), whereas in the procedure (C1B)
after the same third question as in the previous case the fourth step is “Is another
element defective?” (i.e. @(k) does not follow immediately after R(k)).

For elements rumbered in such- a way that p, < p, < p, for every general
procedure of our list, the optimum permutation of elements i, j, k minimizing the
expected cost for this procedure can be found. Thus we obtain 10 good procedures,
described in Fig. 18, and the expected costs of which are given by the formula

1
1- (1 - Pl)(l - 172)(1 - Ps)
+ kom(l - Pl.) Pz(l - Ps) + klOOPl(l - Pz) (1 - Ps) + kou(l - 1’1) p2ps +
+ kio1pi(1 = p2) p3 + kuoP1P2a(l = p3) + ky11Pipaps)

H(P(L,2,3)) =

{koor(1 = P (1 = p2) ps +
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(Aa)
[2,1,3] = [2.3,1]
N1
N3
| ;
D — el
| ]
V1 : J
v3 |
N2 \
|
D— 010 ’
N3 vi
| |
D— 011 D—-. 001
| \
v3 v3
N1 N1
| \
D110  D—. 100
|
N3 N3
| |
11 101
(B1)

31,21 = [3.2.1]

D —. 001
|

v3

N1

N2

|

A

N3 y

Vi Vi

| |

D— 011 D—. o010
i |

V2 v2

N1 N1

D— 101 D— 100
|

N2 N2

! .

114 110

(Ab) (two equivalent procedures)
[1,2,3] = [1,3,2] [2.1,3] = [2,31]

N2 N1
N3 N3
| !
B P
N | N2
\'7 T V2 v vl
| | | |
D ! D —. 001 f [>) |
| 1 D P N
N2 N2 N1 | N1
v3 | V3
, 1

D 110 D— 100 D —s 010

| |
N3 N3

i
1
IN3 N3 N3
!
! ! il ! ! vl
M o L0114 11 o 1101
(B2a) (B2b)
[3.1,2] [3,1,2]
N3 N3
| |
D . 00t D —. 00t
| |
N2 N2
| ‘,
D - b —
| |
N1 N1
v2 T
v3 b i
| 1 D H
D — 100 [ | !
\ ' N2 \ ;
N3 I va v3 i V3
| | o
?ﬂ 101 | D— 110 D -« 100
1 1 ’ |
[ ] |
N2 | N3 N3 | N3
v3 v3 P | Y
| ] . |
B 110 D—. 010 |1 10 fom
| i T
N3 N3
[ ]
111 ot



{Cla) (€1B8) (C2a) (€2b) (C5b) . 265

B2 B2l B2 (3241 321
N3 N3 N3 N3 N]3
5 | ‘ !
D +001 D-+001 D .00t D -~ 001 [T" -+ oot
| | |
V3 Vi v3 vi v3
Nil N2 N2 N2 N2
‘
! | |
D200 D .00 D_.010 D . 010
| | |
v2 v2 N'3 N3
N1 N1 i
| | D —. 01t D 011
D-«100 D100 | |
v i N1 N1
N3 v2 iV T
:g i v3 P |
D—. 101 | [ |
| | Do.t00 || |
D—.011 Vi I N2 [ |
i N2 N3 1 V3 !
v2 \ i V\B | |
N1 D—.01 D-—+101 | p 110 D 100]
| | | o | i
D +101 V3 v3 I N3 N3 '
| N1 N2 P [ :
V3 | | Lo o !
N2 D110 D-— 110 | Mt 101 |
| |
D—. 110 N3 N3
{ | |
N‘3 111 11
i
111

Fig. 18. The good procedures P(1, 2, 3) in the type (iii) for the case p; = p, = p3. The dashed
boxes contain the procedure @(2, 3) (or Q(1, 3)) of the type (b), whose second equivalent form
can be obtained by mutual change of figures 2 and 3 (or 1 and 3 respectively) in the dashed box.
The dotted box in the procedure (€5b) is @(2, 3), too, but in this case the second eventuality
would increase the cost of the entire procedure and therefore it is inadmissible. The permutation
of the elements i, j, k of the general procedure (see Fig. 15) leading to the good procedure is
written is square brackets.

‘where coefficients Kooy, koo, ---» K114 are listed in Tab. 7. The optimum procedure
for given py, p,, p5 and d can be now easily determined. It is that one for which
the expected cos A(P(1, 2, 3)) is minimum of all 10 procedures, i.. its value
is N(P(1,2, 3)).

This method for determining the optimum procedure can be applied for any
number n of elements of the system, but for greater values of n the aid of a computer
is necessary.

Let us suppose the case p; = p, = p; = p for the fault-finding procedure by
replacement-of-elements. For 10 procedures from Fig. 18 we obtain the expected



266 Table 7.
Coefficients for the calculation of #(P(1, 2, 3)) for py < p, =< p; in the type (iii)

Procedure koot koto kot k100 k101 kito kiiy
(Aa) i 342d | 5+2d | 6+3d | 5+3d 6+3d| 8+4+4d) 9+ 4d
(Ab) 3424 | 5+3d | 6+3d | 5+3d | 6+3d| 6+3d 7+3d
(B1) 1+d 54+3d | 6+3d | 7T+4d | 8+4d | 8+ 4d| 9+4d
(B2a) 1+d 3+3d | 44+3d | 54+3d | 6+4d 8+5d| 9+ 5d
(B2b) 1+d 3+4+3d | 4-+43d|54+4d | 6-+4d| 6+ 4d| 7+ 4d
(Cla) 1+4d 3+2d | 8+4+4d | 5+43d |10+ 5d |12+ 6d | 13 + 6d
(C1B) 1+d 3+2d | 8+4+5d | 54+3d | 6+4d| 10 +6d | 11 + 6d
(C2a) | 1+4d 3+4+2d | 4+3d | T+4d | 8-+ 5d| 10+ 6d | 11 + 6d
(C2b) 1+d 3+4+2d | 4+3d | 7+5d | 8+5d| 8+5d| 9+5d
(C5b) It +d 3--2d | 8+5d | 5+4d | 6+4d| 6+4d| 9+4d

Table 8.
Coefficients for the calculation of A (P(1, 2, 3)) for p; = p, = p in the type (iii)
Procedure ky ky k3
(Aa) 13 + 74 20 + 104 9+ 4d
(Ab) 13 + 8d 18 4+ 94 74 3d
(B1) 13 - 8d 2411d | 9-+4d
(B2a) 9+ 7d 18 4+ 12d | 9+ 5d
(B2b) 9 84 18 4+11d | 7-+4d
(C1a) 9+ 6d 30 + 15d 13 + 6d
(C1B) 9 + 6d 24 + 15d 11 + 6d
(C2a) 11 +7d 22 + 14d 11 + 6d
(C2b) 11 + 84 20 + 13d 9+ 5d
(C5b) 9 +7d 20 + 13d 9+ 4d

costs by the formula

A(P(1,2,3)) = 1*:(%_*& (1 = PP p + ol = p) p* + Ksp®) »

where the coefficients k,, k, and k, can be found in Tab. 8 for particular procedures,
This table shows that procedure (B1) is worse than (Ab), (Cla) is worse than (C1p).
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Fig. 19a. Optimum border-lines for every two good procedures F(1, 2, 3) in the type (iii).
(Border line 1: in the left area the procedure (C5b) is better than (Aa); 2: (B2a)-—(Aa) and
(B2b)—(Ab); 3: (C18)—(B2a); 4:(C18)—(C5b);5:(C18)—(B2b); 7:(Aa)—(Ab) and (B2a)—
—(B2b); 8: (B2a)—(C5b); 9:(Aa)—(B2b); 10: (C1B)—(Ab); 11:(C18)—(Aa); 12:(C5b)-(Ab);
13: (B2a)—(Ab).)

267



268

100

¢« 7
—
-~
10
1
1
0.1
3
a0t T T T T 7 7 T
0 02 04 06 08

Fig. 19b. Optimum areas for the procedures P(1, 2, 3) in the type (iii).
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Fig. 20a. Minimum expected costs of procedures P(1, 2, 3) in the type (iii).
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Fig. 20b. Optimum procedure areas in the type (iii).

and (C2a) and (C2b) are worse than (C5b). The worse procedures can be thus
omitted and for remaining six procedures the optimum one for given p and d can
be determined from Fig. 19, which shows the areas in the plane (p, d), where individual
procedures are optimum. (The procedure (€5b) is worse than (Ab) for p < 1/2 for
any d, and worse than (B2a) for p = 1/2 for any d.) Fig. 20 shows the expected costs
for the optimum procedures for several values of d. -

(Received November 10th, 1964.)
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VYTAH

Nékteré zptsoby vyhledavani poruch v systému

LiBor KUBAT, MILAN ULLRICH

. . .

V ¢&lanku se probiraji metodami teorie pravdépodobnosti tfi rlizné zplisoby vyhle-
davani poruch v systému a stanovi se takové postupy, které v priméru vyZzaduji mi-
nimalni naklady. UvaZované zpiisoby vyhledavani poruch jsou:

(i) metoda méfeni signalu,
(if) metoda meéfeni prvkd,
(iii) metoda nahrazovani prvki.

Pfi viech metodach se pfedpoklada, e jsou znamy pravdépodobnosti toho, Ze jed-
notlivy prvek systému bude vadny, a Ze naklady jsou zptsobeny pouze zji§fovanim
vadnych prvki, nikoliv jejich opravou.

Metoda (i) je YeSena pro n sériové uspofadanych stejnych prvki a jsou uvedeny
tabulky optimélnich postupii a7 pro #» = 8. RovnéZ je ukézan obecny algoritmus pro
urdeni optimalniho postupu. ’

Metoda (ii) je FeSena zcela obecné a je dan obecny algoritmus optimalniho postupu.

Metoda (iii) je vzhledem k rozsihlosti feSeni demonstrovana pouze pro piipad
n = 3 a je ukézan postup, ktery by bylo mozZno analogicky pouZit i pro vétsi n,
pfestoZe vede k velmi zdlouhavym vypo&tim.

Na rozdil od metody (i), ktera je fe§ena pro sériové uspofadani prvka, plati odvo-
zené vysledky pro metody (ii) a (iii) pro libovolnou konfiguraci prvku.

In2. Libor Kubdt, CSe., Inz. Milan Ullrich, CSc., Ustav teorie informace a automatizace CSAV,
Vysehradskd 49, Praha 2. '
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