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K Y B E R N E T I K A - VOLUME 25 (1989), N U M B E R 3  

ABOUT OPTIMUM SIGNALLING OF INFORMATION 

IGOR VAJDA 

Signal alphabets for information transmission through noisy wave channels and their optimum 
demodulation are considered. Explicit formulas for demodulation risk are obtained in case the 
channel is Gaussian. Optimization of signal alphabets with respect to the demodulation risk, 
as well as with respect to other information-theoretic criteria (Shannon information, capacity, 
cutoff rate), is studied. These criteria may lead to different alphabets. Quite paradoxically, one 
of these alphabets may decrease the cutoff rate of the other by almost 100% and, at the same 
time, the demodulation risk also by almost 100%. The risk and capacity (or Shannon information) 
display similar paradox but with the percentage level of about 40%. Practical consequences 
are deduced from these circumstances. Some interesting open problems are outlined. 

1. SIGNAL ALPHABETS AND DEMODULATION 

We consider a discrete information source able to deliver every T seconds one 
of M information symbols { 1 , . . . , M}, where M ^ 2. Transmission of information 
produced by the source usually consists of the following steps. 

(a) The transmitter modulates a waveform depending on the information symbol 
delivered by the source. The waveform is assumed to be a real valued Lebesgue 
square-integrable function defined on the interval [0, T]. A family 

<? = (Si(t)\i= 1,... ,M) 

of waveforms corresponding in a one-to-one way to the information symbols is 
assumed to be designed in advance. This set, called the signal alphabet, is supposed 
to satisfy for some E > 0 the condition 

cH = E , 1 = 1 M . 

Here cn are diagonal elements of an M x M-matrix C, called the configuration 
matrix of the alphabet £f, with the general element 

ctJ = lT
0St(t)Sj(t)dt. 
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The quantity E is an energy of the alphabet. Hence the modulation reduces to 
a simple choice of waveforms from £f and their subsequent sending through a channel 
which is assumed to connect the transmitter with the receiver. 

(b) The channel is supposed to be of a waveform nature too. It operates by adding 
to the transmitted waveform a random noise waveform. The additive random 
noise waveform is assumed to be a generalized zero-mean random process 
(X(t) | 0 ^ t ^ T). As well known, this means that there is a linear mapping / from 
the Banach space L2 of real functions S = (S(t) \ 0 ^ t :_ T) to the space of zero-
mean real random variables. The values l(S) are interpreted as correlations between 
signals S and the process trajectories, i.e. 

ftS(t)X(t)dt=l(S), SeL2, 

(c) The receiver observes a random waveform, i.e. a realization of a real valued 
random process (Y(t) I 0 ^ t ^ T). This process is defined by 

Y(t) = Si(t) + X(t), 0 S t = T, 

under the condition that the ith information symbol is transmitted. Thus the receiver 
has at its disposal a statistical experiment described by the Kolmogorov's sample 
space (R[0'r:i, ffl°'T1) of real valued random processes with the time domain [0, T] 
and by a family (vt \i = 1, . . . , M) of measures on this space defined as sample 
measures of the process (St(t) + X(t) \ i = 1, ...,M). We shall restrict ourselves 
to the correlation demodulation (cf. Chap. 8 in [3]) where, instead of the process 
(Y(t) | 0 ^ t T), the receiver observes only the vector-valued statistic 

(1) Z = (Zu ..., ZM) = (H Sx(t) Y(t) dt, . . . , JJ SM(t) Y(t) dt) . 

In this case the receiver's statistical experiment has the Euclidean sample space 
(UM, &M) and a family (fit\i = 1,..., M) of probability measures on it, where 

Hi = ViZ"1 . i = 1, . . . , M . 

The demodulation itself is a measurable mapping A from the sample space 1RM 

into a decision space Q> = {1 , . . . , M'} where M' ^ M. The receiver's decisions are 
said hard if M = M' and soft if M' > M. In the case of hard decisions the event 
A(Z) -= ie @ is interpreted that the t'th information symbol was transmitted. In 
the case of soft decision with M' = 2M the event A(Z) = i e { 1 , . . . , M} is inter
preted as above and the event A(Z) = M + i may have the same interpretation, 
but with the appendix: "this decision is unreliable". Another possibility is to interpret 
all decisions from the set [M + I, ..., M + M] as an erasure of the transmitted 
information symbol — in this case it suffices to take Qi = (1, ..., M, M + 1}. One 
may also consider M' = rM with r — 1 different levels of unreliability etc. 

The following fact is frequently used in the sequel. 

Proposition 1. For every i = 1, ..., M, \it is the sample probability measure of the 
random vector ct + W where ct is a deterministic vector defined as the ith row of the 
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configuration matrix C, i.e. 

Ci ~ VCil? • *•' C ' ' M ) 

and 
W=(W1,...,WM) = (JJS^*) *(*)<!.,..., J£SM(t)X(t)dt) 

is a random vector the distribution of which is independent of i. 

Proof. Let us assume that the ith information symbol is transmitted. Under 
this condition it follows from (1) and from the definition of configuration matrix C 

Z = (J0
r Sx(t) (sit) + X(t)) dt,..., JJ SM(t) (St(t) + X(t)) dt) = 

= (cn + Wx,...,ciM + WM) = Ci + W. • 

Measures /.ix, ..., \iM are very simple if the channel is Gaussian. We speak about 
a Gaussian channel if random variables l(S), S e L2, of part (b) above are normal 
with the variance 

fiS2(t)dt, 

i.e. if the noise is white Gaussian with spectral density 1. In this case the signal 
power E/T represents a signal-to-noise ratio). The following assertion holds (cf. 
e.g. [5]). 

Proposition 2. If the channel is Gaussian then the random vector W of Proposition 1 
has the M-dimensional normal distribution N(0, C), where C is the configuration 
matrix of the signal alphabet. 

Corollary. For every i = I, ..., M it holds /^ = N(ct, C), where c{ is as in Pro
position 1, i.e. 

ci = l£ 

where all components of lt are zero but the fth which is 1. 

2. OPTIMUM DEMODULATION 

In Section 1 we formulated the demodulation as a statistical decision problem 
with parameter and decision spaces {1, . . . ,M) and { l , . . . , M ' j respectively, and 
with a family {/(; | i — 1, ..., M) of probability measures on (UM, ^M).This problem 
is defined completely after specifying a loss function 

L(i,j), i= 1 , . . . ,M, ; = 1,. . . ,M' 

and a prior probability distribution p = (pu ..., pM) on the parameter space. In this 
paper we consider the hard decision case where M' = M, and where the only natural 
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II- .. J° if ' 
candidate for the loss function is 

;0 if i = 7 
+ j 

Unless otherwise explicitly stated, we restrict ourselves to the uniform prior distribu
tion 

v ' \M M M 

Under these assumptions with each decision function A we connect a risk 
A M 1 M 

^) = ~ 1 ^ 0 = ™ E(i-^--i)) 
M i=i M ;=i 

where <fA = (E; = ^ - 1 ( i ) j i = 1, . . . ,M) is a measurable disjoint decomposition 
of the sample space UM. It is well known that a decision function A minimizes the 
risk (i.e. attains the so called Bayes risk of the problem) iff for every i e (1, ..., M) 
and every z e Et = A ~ i(i) 

(3) mi{z) = max m / z ) , 
; = i , . . . , M 

where m7- is the Radon-Nikodym density d/^/d^ with respect to a cr-finite measure fi 
dominating the family {//,• j i — 1, ..., M}. A minimum risk decision function A 
(or a minimum risk measurable decomposition $ of UM) is called the optimum 
demodulation. 

Proposition 3. If $ = (E,- | z = 1, ..., M) is an optimum demodulation then 

H-lE) = max \ij(E^), i = 1, . . . , M . 
7 = 1 M 

Proof. It suffices to integrate both sides of (3) over E,- with respect to the measure 
jx and to take into account the evident relations 

max J"£. mj(z) dpi(z) ^ jEi m a x mj{z) d/j,(z) 
j = 1 ,...,m j = 1 , . . . ,m 

and 
/i£(E;) ^ max /zy(E;). D 

i=l,...,M 

Proposition 4V Let the channel be Gaussian. Then (3) holds for z = (z1? ..., zM) e 
eR M i f 
(4) Zj = max z7-

j=l,...,M 

If the configuration matrix C is regular then the statement above holds with "if" 
replaced by "iff". 

Proof. (1) Let us first assume that C is regular. Choose j e {1, ..., M). By Pro
position 2, the density ntj(z) is a decreasing function of the quadratic form 

(Z - ijC) c-\z - ijcy = (zc-1 - lj) (z - ljcy = 
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- (zC~l - lj) (zr - CI]) - zC~xzr - zl] - ljZT + ljCl] = 

= zC~1zr - 2zj + CJJ = zC~lzr - 2zj + E. 

Therefore (3) holds iff (4) holds. 
(2) Let us now suppose that the rank of Cis m < M. Since Chas positive elements 

E on the diagonal, it holds m _• 1. Further, since C is symmetric, we may assume 
without loss of generality that it holds 

c = / c , | c 2 

where Cx is a regular m x m matrix. Finally, it follows from Proposition 2 that 
there exists an m x (M — m) matrix D such that the random vector W defined 
there satisfies the relation 

(Wm + 1,...,WM) = (Wl,...,Wm)D. 

This relation can be rewritten into the form 

w=(wi,...,w;n)(im\D) 

where, here and.in the sequel, lm denotes the unit m x m matrix. The relations 

BVTW - C, E(W1 ?..., Wmf(Wx, , Wm) = Ct 

imply the identity 

c = ( Й C l ( / " | f l ) 

It follows from there 

_ ! _ £ 
C-> C i 

Q 
DTC, ( 4 I D) 

Çi 
DTCX 

Cx C,D 

DтCtDj V(Ci^)T 

g i g \ 

(C,D) 

i.e. C-, Cx D and 

c, ) = (^Ж\D). 
C3J V̂ -2 

Multipying both sides of this identity from the left by lj one obtain the relations 

Cj - (cJU ..., cjm) ( 4 | D ) , 7 = 1, . . . . . .M. 

Therefore if z e Um then there exists j e (1, ..., M) with the property 

Z — cj — ( Z l — Cjl> •"> Zm ~~ Cjm) \lm | D) 

iff 

(5) z = (zu . . . , z m ) ( / M | Z>), 

in which case all / e (1, ..., M} are possessing this property. 
(3) Let the assumptions and notations of part (2) hold and let us denote by (z)m 

and (cj)m the subvectors consisting of the first m coordinates of z and Cj. It follows 
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from the result of part (2) and from Proposition 2 that it holds 

(6) ntj(z) = const, exp {-((z)m - (cj)m) C^fc^ - (c)m - (cy)m)T} 

for j = 1, ..., M or my(z) = 0 for j = 1, ..., M, depending on whether z satisfies 
(5) or not. If z satisfies (5) then the quadratic form occurring in (6) equals 

(z)mC;l(z)l-2Zj + E 

for every j e ( 1 , . . . , M}. This fact can be proved by the method of part (1) if j e 
e {1, ..., m). For j e {m + 1, . . . , M} it suffices to use the same method provided 
one takes into account the relations 

(ci)m = S ak(ck)„ 

and 
k= i 

Zi ~ L-i akZk •> 
k=l 

where (au ..., am)T denotes the (j — m)th column of the matrix D of part (2). Now 
we can conclude that if (4) holds then (3) holds too because either (5) is not satisfied, 
in which case mv(z) = ... = mM(z) = 0, or (5) is satisfied and m,(z) is at least as 
large as any quantity occurring in (6), respectively. • 

Let us now return back to the general not necessarily Gaussian channel. The 
relation (3) represents the well-known maximum likelihood deciston rule. Hence the 
optimum demodulation is nothing but a maximum likelihood decision. 

Analogically as in the statistical model with family (/ij | i = 1, . . . , M) of measures 
induced by the family (vt \i = 1, . . . , M), one can consider optimum demodulation 
directly in the statistical model with the family (v£ I i = 1, . . . ,M). To this end it 
suffices to consider the Radon-Nikodym densities nv = dv,/dv of measures v; with 
respect to a dominating cr-finite measure v as functions of realizations yeU[-°'T} 

of the received random waveform Y(t). If a measurable disjoint decomposition 
iF = (Ej I i = 1, . . . ,M) od IR[0'T] is a maximum likelihood decision rule, i.e. if 
it holds for every i = 1, ..., M 

hi(y) = max nj(y), yeFt, 
i = i M 

then the risk of Jf is obviously the Bayes risk of the latter problem. It is known (cf. 
[4]), that this risk never exceeds the Bayes risk of the former problem. 

Proposition 5. If the channel is Gaussian then the Bayes risk of the experiment 
(vt \i = 1, . . . , M) is the same as the Bayes risk of the experiment (fit \ i = 1, ..., M). 

Proof. Kailath [5] has shown that there exists a function g(y) on U[0,T1 such that 

nt(y) = g(y) exp {zJ , i = l , . . . , M , 

where z ; is the ith coordinate of the statistic defined by (2). It follows from here that 
if #" = (E. | i = 1. .... M) is a maximum likelihood decision scheme for 
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(vf \i = 1, •••, M) then there exist a decision scheme <f = (E,-1 i = 1,.. . , M) for 
(fit | i = 1, . , , , M) such that 

E, = Z" 1 E £ , i = l , . . . , M . 

Let us notice that, by Proposition 4, <f is a maximum likelihood decision scheme for 
(pii \i = 1, ...,M). Since /if = v£Z_ 1 , it holds 

i m * M 

M i=i M i=i 

i.e., the risks of both schemes are the same. • 

Thus in the Gaussian channel nothing is lost by the restriction to the correlation 
demodulation based on the statistic (2). 

The following assertion is useful in evaluating the risk of demodulation. Let us 
remind than a square matrix R is said orthogonal if it is regular and if its inverse 
R1 equals RT. 

Proposition 6. Let X = (Xt, ...,XM) be a random vector with uncorrelated 
standard normal components and let the channel be Gaussian. Then there exists 
an M x M matrix B such that the random vector of Proposition 1 satisfies the 
relation 

W = XB. 

If the first m eigenvalues of the positively semidefinite symmetric configuration 
matrix C are X± > 0 , . . . , Xm > 0 and the remaining eigenvalues are zero then it 
holds B = A1/2R, where R is an orthogonal M x M matrix which diagonalizes C, 
i.e. where 

[K o 
RTCR = 

0 X, 

\ ~ ~ 
and A1/2 is the usual square root of A. 

Proof. Let B = A1/2R and W = XB. Then it holds 

E1W= 0 
and 

EWTW = BT EXTXB = BTIMB = BTB = RTA1/2A1/2R = C. 

The desired assertion thus follows from Proposition 2. • 

Corollary. If the assumptions of Proposition 6 hold then the optimum demodula
tion is defined by a disjoint decomposition 3> = (Dt | i = 1, . . . , M) of the sample 
space IRm of the sub vector (Zx,..., Zm) of Z defined by (4) under the condition (5). 
Moreover, if 

(7) Pij = iii(DJxUM-m) = Vrob{(cl)m + (W1,...,Wm)GDj}, i,j=l,...,M, 
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then 
| M | M 

(*) m = r,^- £ ^ = » I0-"«) 
M ;=i /*« M ;=i 

is the risk of optimum demodulation. 
Proof. AnalogicaJJy as in part (2) of the proof of Proposition 4, we find that 

it holds 
Z = ( Z 1 , . . . , Z „ „ ) ( / m | D ) (cf.(5)). 

The rest is clear from here, from Proposition 4, and from the definition of risk. • 

3. EXAMPLES 

Example 1. Let us consider the signal alphabet 9* = {Sx{t), S2{t)) where 

S . ( . ) - ^ ) _ ^ , S2(r)--S.(t), 

where k is a natural number . The configuration matrix is in this case given by 

E - £ ' 
<9> C = > ^ £ E, 

For a received random waveform (Y(f) | 0 _ t <. T) we consider the statistic 

Z-fZ-.Z*)-^, ; , -zo 
where 

It holds 
E + W, if / = 1 

- E - W! if ' / = 2 , 
where 

(10) z , = 

Let us now assume that the channel is Gaussian. By Proposition 2 it holds 

W, = N(0, E). 

Further, by Proposition 4, the optimum demodulation of the information symbol 
i = 1 is defined by the condition Zx _ Z2, i.e. by Zv _• —Zx or, equivalently, by 
Zx ^ 0. Analogically, the optimum demodulation of the information symbol i — 2 
is defined by the condition Z, < 0. Thus, in accordance with Corollary to Proposition 
6, the optimum demodulation is defined simply by the decomposition B = (Di = 
= [0, oo), D2 =.(—co,0)) of the sample space U of random variable Zx. Let 
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us denote by p the common value of the probability 

pl2 = Prob [E + W! e D2] = Prob { - E - Wi e DJ = p2 1 

It follows from the formula for W, above that 

P =--
1 J0-. exP { - (-Zì-jß\ áz, = . J L r : f exp \ - ^ d x = Ф ( - V E ) . 

/(2яE) 2E /(2*) 

By (8), the risk connected with the optimum demodulation satisfies the relation 

0t = p . 

This risk, as a function of the signal energy E (or of the signal-to-noise ratio E/T 

in decibels, for T= 0-005), is shown in Figure 1. 

Fig. 1. T— 0-005 sec (for a + 6/2 cf. Fig. 3). 

Example 2. Let us consider the signal alphabet Sf for M = 4 with 

//2E\ . 27r/v! _ , , //2E\ 2nkt 

s 3 ( t ) = - ^ ( t ) , s4(t)= -s-2(t), 

where /c is a natural number. The configuration matrix of this alphabet is 

(1 C = 

E 0 - E 0 
0 E 0 - E 

- E 0 E 0 
0 - E 0 EI 

Let us note that in this as well as in the previous example the configuration matrix 
is circulant, i.e. its rows are cyclic shifts of the first row. A general theory of signal 
alphabets with circulant configuration matrices can be found in [2]. 
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For the received random waveform (Y(t) | 0 ^ t ^ T) we consider the statistic 

Z = \ZU Z2, Z 3 , Z4) = \ZU Z 2 , — Zj, — Z 2) 

where 
//2E\ r г _„, ч . 2кkt , 

1 = VW fo ( í ) s m Т ' 
//2E\ r Т __, ч 2rc/cŕ . 

Z_ = Д - j J o Г Y ( 0 c o s — d ř . 

It follows from Proposition 1 

(12) (ZuZ2) = (WuW2) + { 

where 

(£, 0) if 
(0, E) if 
( -E ,0 ) if 
(0 , -E ) if 

= 2 
= 3 
= 4 

(W,. " « = / ( f ) ( j f *(<) sin - ^ <_, p r ( , ) cos - 5 £ dl) . 

Let us assume that the channel is Gaussian. In this case it follows from Proposition 2 

'£ . 0N 

(W1? W2) = N (0,0), 
0, E 

This conclusion follows also from Proposition 6. Indeed, the assumptions of Pro
position 6 hold for m = 2, Xx — X2 — 2E, and 

R = 

1 
0 

1 • 

0 
V2~ ~Ђ 

1 1 
0 0 

V2~ " V 2 

1 1 
0 0 

V2 V2 

1 1 
0 0 

~V2 V% 

Therefore it follows from Proposition 6 that 

(Wu W2, W3, W4) = (XUX2, X3, X4) B 

where 
lyjE 0 " V E 0 

« _ ,1/20 _ 0 - V * 0 V/E 
B ~ A R~ 0 0 0 0 

0 0 0 0 

and xfc are uncorrelated standard normal random variables. Therefore 

(Wu W2) = JE(XU X2), (W3, W4) = -(Wu W2) . 
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Let us now evaluate the optimum demodulation under the assumption that the 

channel is Gaussian. It follows from what has been said above and from Corollary 

to Proposition 6 that this demodulation is given by the decomposition Sf = 

= (D1? D2, D3, D4) of the sample space U2 of the random vector (Zx, Z2) defined by 

D, = {(zx, z2) eU2\z1= max {z2, -zx, -z 2}} = {(zx, z2) eU2\z1 = \z2\} , 

D2 = {(zi, z2) eU2\z2> max {z l5 - z l 9 -z 2}} = {(z l5 z2) eR2\z2> \zx\} , 

D3 = {(zx,z2)eU2 | -zx = max {zj,z2, -z 2}} = { ( z ^ z ^ e K 2 | z t ^ - k 2 | } , 

D, {(zx, z2) є U2 | - z 2 > max {z l s z 2 , -z^}} = {(z l5 z 2) < < . | } . 
This decomposition is disjoint provided the point (0, 0) is subtracted either from the 
set Dx or from the set D3. The sets Dx, ..., D4 are illustrated in Figure 2. 

Fig. 2. 

With the help of this illustration it follows from (12) that 
fPn P12 P13 Pi4\ lc a b a 
P21 P22 P23 p 2 4 . \ l a c a b 

P31 P32 P33 P34J \ b a c a 
\P4i P42 P43 P44' \a b a c 

where 
a = Prob {(E, 0) + (Wx, W2) e D4} = Prob {(E, 0) + (Wx, W2) e D2} = 

[1 - Prob {(E, 0) + (Wx, W2) G D, u D3}] = 

2L1 2^ÍDl' Ф3 exp 
2E 
21 

^í-ooЄX P |- | jф( |x+V£|)dx, 
VЄ*) 
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b = Prob [E, 0) + (Wu W2) e D3} = Prob {(E, 0) + (Wu W2) e D2 u D3j — a 

- 1 - - S7в exp | - y j [2Ф(x - V/E) - 1] dx , 

and 1 - 2a 

The optimum demodulation risk, given by 

&=l-c = 2a + b, 

represents the probability of error per one information symbol. Since there are 4 
information symbols, the bit error rate p = M\2 satisfies the relation*) 

p = a + jb . 

The values of a, b, 3k as functions of E > 0 are shown in Figure 3. The values of 
a + \b are represented by the interrupted line in Figure 1. It follows from Figure 1 
that for the signal energies E > 0-315 (i.e. for signal-to-noise ratios above 1-8 decibels 
when T = 0-005 sec) the coding of bits by the signal alphabet of Example 1 is better 
than the coding of dibits by the signal alphabet of Example 2. For the signal energies 
below that level the converse is true (unsignificant in view of the footnote). 

Fig.З. T= 0-005 sec. 

*) Exact relation between the bit error rate p and the symbol risk ^ for M > 1 is given by 
(1 — pf°z*M = 1 — gt. Our simplifie approach is justified for p < 0,2. 
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(13) 

Example 3. Let £f consists of orthogonal signals i.e. let 

E 0 \ 
E 

C = 

f> E/ 
In this case, under the condition that the /th signal is transmitted, the statistic (1) 
satisfies the relation 

(14) Z = EI; + W 

where Wis defined by Proposion 1. 
Let the channel be Gaussian. Then it follows from Proposition 2 that W consists 

of M uncorrelated normal random variables, each distributed by N(0, E). Since 
the matrix C is regular, the optimum demodulation $ = (E(- \i.— 1, ..., M) is a de
composition of UM defined simply by (4). It follows from a symmetry in (4) and (14) 

•• PІM\ 

1 - p 

p 
M - 1 

P p 

P l l • •• PІM\ 

1 - p 

p 
M - 1 

M - 1 

1 - p . 

" M - 1 

P •• PІM\ 

1 - p 

p 
M - 1 

M - 1 

1 - p . 
M - ì 

Pмi • • • Pмм] 

1 - p 

p 
M - 1 

M - 1 

1 - p . 
M - ì 

• • Pмм] 

P p 
.. 1 -p 

• • Pмм] 

M - 1 M - 1 
.. 1 -p 

where, by (7), 

í - p = Prob {(E, 0 , . . . , 0) + We £..} = Prob O {E + Wj > Wy] 
j = 2 

X— r-* exp j - ^ | Prob (\{E + w, > W}) dwx = 
v/(2яE) 

V(2тгE) 
í-co ЄXP 

w 

1 

7(2 

2E 

.2 

Ф 
E + W! Ч M _ 1 

JE 
dvvi 

-J^expí-I-U^ + V ^ ^ d ^ 

1 - ^ — i j ^ <P(x) <t>(x + V£)M_2 exp {- fc-±-^í\ dx 
V(2«) 

It follows from here 

M - 1 

? 

(15) , ( 2 я ) í - « * (* " -JE) Ф ( x ) м " 2 exp | - ^ j . dx . 

Further, by (8) the risk of the optimum demodulation satisfies the relation 

0t = p. 

187 



The quantity 
M _ p 

log2 M log2 M 

characterizes the demodulation bit error rate (cf. footnote on p. 186). The risk, 
as a function of the signal energy E > 0, is shown for M = 32 and M = 256 in 
Fig. 1 on p. 568 of Gallager [3]. 

Taking into account the inequality $(x — ^/E) < <P(x) in (15) we see that it holds 

' -^ i - -^ r« {-?}-«-(--i)r.---'-----j-. 
Therefore it holds in the matrix considered above 

l - v > P 

M - 1 

which is the property required by Proposition 3. 

4. OPTIMUM SIGNAL ALPHABETS 

In Example 2 we have seen preferences between the two-signal alphabet 

'-W©-." -if)-"") 
and the four-signal alphabet 

,,.,.„y(S).,s- -j(f)^} 
based on the value of the corresponding bit error rates 

= ^ i and '2 

log2 2 log2 4 2 

We have seen from Figure 1 that ^ is preferable when E > 0-315 (significant case) 
and Sfi

l is preferable when E < 0-315 (unsignificant case). In the significant case 
the bit error probability of the alphabet Sp

1 is below that of alphabet y 2 . This 
is quite natural because the bit transmission rate of alphabet <9"2 is twice greater 
than that of a lphabe t^ : a greater transmission rate leads to a greater error rate. 
Thus, having given a bit error rate maximum level, we may switch from the alphabet 
Sfx to $fi2 o n ty if the signal-to-noise ratio is good enough. Of course, the trade-off 
between the error and transmission rates makes the comparison of alphabets with 
different numbers M of signals very complicated. 

In order to avoid these complications, we shall look more deeply at preferences 
between different signal alphabets of the same cardinality M. 

In Gaussian channels, where the observed statistics Z are completely determined 
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by the configuration matrices (cf. Propositions 1 and 2), we shall in fact compare 
different M x M configuration matrices. In general, our comparison is based 
on the matrix 

(Pi\ (PU ••• PXM 

H :H 
\PMJ \PMI • • • PMMJ 

of modulation transition probabilities defined in general by an optimum demodula
tion $ = (Et | i = 1, ..., M), corresponding to an alphabet £f and to a channel, 
by means of the formula 

Pij = Hi(Ej), i,j = 1, . . . , M . 

If the channel is Gaussian then these probabilities are defined by (7). 

The matrix P differs from the matrix of channel transition probabilities, which 
is common in discrete information theory, in that it possesses the property 

(16) pu= max pu, i=\,...,M 
j=l,...,M 

resulting from Proposition 3. Thus, for example, the binary symmetric channel 

0.1 

K 
0.1 

seriously considered by the discrete information theory is excluded from the point 
of view of modulation. In general, (16) implies that the Bayes risk 0t of Section 2 
coincides with the minimum average error probability 

I M 

e(P) = min — £ £ Pij 
T M j=\ i*T(j) 

considered in discrete information theory, where the minimization extends over 
all mappings T: {1, ..., M} ~» {1, ..., M}. Indeed, under (16) the minimum is attained 
at the identity mapping T and 

i M 

(17) ' e(P) = - I (1 - Pii) (cf- Sec. 2, in particular (8)) . 
M £=1 

Thus the Bayes risk 01 of Section 2, or equivalently the error probability e(P) 
defined by (17), is a natural criterion of quality of a signal alphabet £f for a channel 
considered in Section 1. Since the alphabet size M is assumed to be fixed, no norming 
to the bit error rate is necessary, 

There are however other possible criteria known from information theory. We 
shall present at least the best known of them. 

We shall consider stochastic vectors p — (pu ..., pM) from the well known simplex 
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P c 1RM. By p, with indices or not, we denote a real number from the interval [0, 1], 
by pp we denote the usual multiplication of a vector p e UM and p + p denotes 
the usual sum of vectors in UM. 

Let us consider the entropy 
M 

H(P) = -lLPil°gPi> P = (Pi> • • •> PM) e P , 
i= 1 

where, here and in the sequel, the unspecified base of logarithm is assumed to be 2 
and 0 log 0 is assumed to be 0. Instead of H(p, 1 — p) we use the symbol h(p) 
commonly used to denote the entropy of dichotomy, i.e. 

h(p) = -p logp - (1 - p) log (1 - p) . 

Each matrix P of modulation transition probabilities will be termed simply a chan
nel. If p = (p l5 ..., pM)e IP is a stochastic input of a channel P = (px, ...,pM)T 

then the information at the output concerning the input is defined as the difference 
between the entropy of unconditional stochastic output 

M 

S PiPi 
1 = 1 

and of the average conditional entropy, i.e. 
M M 

i(p,p) = H(YJpiPi) -T,PiH(Pi)-
i = 1 i = 1 

The information l(p, P) is continuous in variable p from the compact set P. The 
maximum information 

C(P) = max I(p, P), where peP , 
p 

is called the capacity of channel P. The capacity is a well known performance index 
for channels when coding is used. It is the upper bound of transmission rates of block 
codes for which the probability of error can be made arbitrarily small. 

The cutoff rate of channel P is defined by 
M M 

(20) R(P)= -log[minZ(Z P,jPll2)2]> 
P J = l i = l 

where the min is over all p e P. This is an important characteristic of the channel 
from the point of view of coding. Indeed, with convolutional coding and sequential 
decoding, the cutoff rate is the upper bound of code rates for which the average 
per bit computation is finite (cf. [6]). 

An M x M matrix, is said permutational if it is doubly stochastic and its elements 
are 0's and l's. If ix, ..., iM are positions of i's in the rows 1, ..., M then (ix, ..., iM) 
is the permutation of (I, ...,M) represented by this matrix. The unit matrix IM 

represents the identical permutation. 
A channel P is said permutational if 

-° =
 Z('M + P.M) 
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where PM is a permutational matrix with O's on the diagonal. This channel can equi-
valently be defined by the property that in each row and each column there are just 
two nonzero elements which are •§• and one of these elements is diagonal. Permu
tational channels will be denoted by P* and their row vectors by p*. These channels 
represent a generalization of binary symmetric channels 

1 
Z 

to the case M ^ 2. We present in Figure 4 two examples for M = 4. 

Fig. 4. All transitions are from left to right and their probabilities are \. 

A channel P is said a symmetric with a parameter 0 ^ x ^ (M — 1)/M if 

1 — x if j = i , 
x Pu 

M 1 
if J * i 

i= \,...,M 

We restrict ourselves to symmetric channels with parameter 0 <. x < \ and denote 
these channels by Px. By px we denote the row vectors of the matrix Px. This channel 
is a common generalization of the binary symmetric channel 

to M > 2. 
A channel P is said realizable by a demodulation if for every s > 0 there exists 

a signal alphabet and a channel such that the vectors (^,-(E,),..., ^(E^)) corresponding 
to an optimum demodulation (El5 ..., EM) differ from the row vectors pt of P in 
the norm of UM at most s, for i — 1, ..., M. Since e(P),l(p, P) and C(P) are continu
ous functions of row vectors / J ^ ..., pM e P, they can be arbitrarily closely approxim-
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ated in the realizable case by channels actually resulting from a demodulation 
procedure. 

Proposition 7. All symmetric channels and at least one permutation channel 
for M = 4 are realizable. 

Proof. The realizability of symmetric channels follows from Example 3. We shall 
prove the second assertion. Let us consider a signal alphabet with the configuration 
matrix , _ _ _ _\ 

E -E E -E\ 
-E E -E E 

E -E E -E 
-E E -E E) 

As proved by Slepian [7], for every symmetric positively semidefinite configuration 
matrix there exists a signal alphabet. For the present matrix this alphabet may be e.g. 

^ = ( s t ( 0 = / ( f ) s i n ^ , S2(t)=-Sl(t), 53(0 = 5,(0, S4(t) = S2(t)\ 

Let us consider the Gaussian channel. It follows from Proportions 1 and 2 that 
in this case 

fit = ^ 3 and n2 = \i4. 

For the generalized information symbols "1 or 3" and "2 or 4" the optimum de
modulation is as in Example 1, with probability of error p = <P( — ^/E). The optimum 
choice of 1 and 3 or 2 and 4 within the generalized symbols may be random with 
probability \. Thus 

lil(E,) = iilEz) = \(\ -<*>(- VE)), 

fil(E2) = ii{(E4) = i<P(-jE), 

and analogically for i = 2, 3, 4. These probabilities approximate for sufficiently 
large E the transition probabilities presented in the right-hand example for Figure 4. • 

Proposition 8. For a permutational channel P* it holds 

e(P*) = 1, 

l(Pu, p*) = c(P*) = R(P*) = log M - 1 . 

Proof. Since 1 — p*t — \, the formula for e(P*) is clear from (17). Further 

л м 1 —-> .* 

s o t h a t 

UZPT-PV (*•(-)) 
M i = i 

**(T, Z.tf)-logAf. 
\ M ; = i / 

The formula for l(pv, P*) follows from here, from (18) and from the obvious relation 

H(Pl) = log2. 
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We also see from here that, for every p e P, 
M 

I(p, P*) = H(YjPip*)-log! , 
i = l 

where the sum equals 

(J(PI + Pit),-->> i(pM + PiM)) 

and (i l5 ..., iM) is the permutation from the definition of P*. The entropy of this 
stochastic vector is maximum when p = pv. Therefore it follows from (19) that 
C(P*) = I(pv, P*). Finally, for every peP, 

M i 

E PAPD"2 = -TAPJ + PO 
,-=t ^ 2 

where ik = j for k = kj. Therefore 
M 

R(P*) = - log [min \ £ (Pj + Pkj)
2] , 

P . 7=1 

where the min is over all pe P. The sum is minimized if p = pv and its minimum 
value is 4/M. Thus the formula for R(P*) holds. • 

Proposition 9. For a symmetric channel Px it holds 

e(Px) = x, 

I(Pu, p*) = c(Px) = log M - h(x) - x log (M - 1) 
and 

M 
R(PX) = log 

[V(i - x) + VMM - i))]2 

Proof. The formula for e(Px) is clear from the equality 1 — px
u = x. Further 

i Af 

- Y.PX = PV 

M i= i 

and 
H(px) = h(x) + log(M - 1) 

so that the formula for l(pv, Px) is clear from (18). The capacity is equal to this 
information for the same reason as in the previous proof. It remains to evaluate 
the cutoff rate. It holds for every/; e P 

M 

&>MY"->^-*) + <M-ъJ(jži))-
Since 

M i 

min [V(l -x) + V((M - 1) x)Y Z Pj = jz [>/(- ~ x) + V((M - 1) x)]2 , 
P j=i M 

where the min is over all p e P, the desired formula follows from (20). • 
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Using formulas of Propositions 8 and 9, the quantities e(P), l(pu, P), C(P) and 

R(P) for P e {P*, Px] have been evaluated in Figure 5. 

Any of the functions e(P),l(pv, P), C(P), R(P) can be used as a criterion of choice 

0 . 5 

0 . 1 0 . 2 0 . 3 0 . 4 0 .5 

FІg. 5. 
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of an optimum signal alphabet. The error probability e(P) is minimized and the 
remaining functions are maximized. Smaller probability of error usually means 
greater information, capacity and cutoff rate. The curves of Figure 5 are interesting 
in that they offer efficient counterexamples to this rule. At first sight it is clear that, 
when passing from P* to Px, one may quite essentially decrease the probability of 
error and, at the same time, quite essentially decrease the capacity (information) 
and cutoff rate. The existence of such paradoxes was admitted, but not explicitly 
documented, in the literature. The quantitative extent of paradoxes offered by the 
channels P* and Px is quite surprising. It is studied in detail in the next section. 

5. PARADOXES IN SIGNAL ALPHABETS 

By Proposition 7, all symmetric channels Px are realizable by certain signal alpha
bets in Gaussian channels. The same holds also for permutation channels (Proposi
tion 7 is in this respect restricted to M = 4 but this alphabet size suffices to realize 
the paradoxes considered below not only qualitatively but, more or less, also quan
titatively). Therefore the paradoxical properties of channels P* and Px considered 
in this section are in fact paradoxical properties of certain concrete alphabets. 

To be explicite in this important point, let us consider an example of size M = 4 
alphabets 

Sfx = (cxS(t; m), cxS(t; m), -cxS(t; m), -cxS(t; m)) 

¥2 = (c2S(t; m), c2C(t; m), c2S(t; n), c2C(t; n)), m # n , 

where S(t; k) denotes the sine and C(t; k) the cosine of the argument 

2K kt 

T 

Let the channel be Gaussian. Then the matrix of modulation transition probabilities 

of S^i is Px where (cf. Example 3, in particular (10)) 

x = - L - J ? w <P(u - cx VT) $(u)2 exp {-\u2} du . 
J(2n) 

We see from here that all 0 < x < \, which we are interested in from the last section 

Fig. 6. All transitions are from left to right. The solid line transitions have equal probabilities \ . 
The dashed line transitions have equal probabilities close to 0. 
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on, are attainable by a suitable choice of cv The matrix of modulation transition 
probabilities for £f'2 is as follows where the probabilities corresponding to solid lines 
are (cf. Example 1 and the proof of Proposition 7) 

\ ~ i$(c2 y/T) , 

and the probabilities corresponding to dashed lines are 

i$(c2 y/T) -
If we take 

c2 = 7-— , s > 0, 
VT 

then the matrix of Figure 6 differs elementwise by e from the right-hand matrix 
of Figure 4. Therefore all paradoxes considered below for P* and Px with M = 4 
apply at least to the alphabets Sf x and &p

2 explicitly presented here. 

A. Error versus capacity (information) 

It follows from Propositions 8 and 9 that 

. , .. e(P*) - e(Px) . . 
Ae(x) = -^— ^—l = 1 - 2x 

V ; e(P*) 
and 

AC(x M) 6 C ( P ' ) ~ C(pX) = /»W + ^ l o g ( ^ - 1 ) - 1 
c(P*) log M - 1 

It follows also that AC(x, M) coincides with the relative decrease of information 
for the uniform probability distribution pv on signal alphabet, i.e. 

AC(*,M) = J ^ - J > , ) - J ^ i " > . 

Let us define 0 < xM < \ by the condition 

Ae(xM) = AC(xM, M) 
and let us put 

AM = Ae(xM) = AC(xM, M) . 

We have found that for every M there is unique xM and that the values of xM 

and Au are as in Table 1. 

Table 1. 

M 3 4 5 6 100 0 0 

xм 
100JM 

0-3157 

36-837 

0-3090 

38-188 

0-3081 

38-373 

0-3083 

38-320 

0-3203 

35-937 

0-3333 

33-333 
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The conclusions which can be made from these results are the following. 

Proposition 10. (i) If M = 3 then the error decrease can be nearly 100% under 
the condition that the capacity (information) decrease is positive. This can be achieved 
by taking x nearly 0. 

(ii) If M = 3 then the capacity (information) decrease can be nearly 
50 log (M — l)/(log M — 1) % under the condition that the error decrease is positive. 
This can be achieved by taking x nearly \. For large M this capacity (information) 
decrease is nearly 50%. 

(iii) If M = 4 then the capacity (information) and error can be simultaneously 
decreased by nearly 40%. This can be achieved by taking x = 0-309. 

B. Error versus cutoff rate 

Let Ae(x) be as above and let 

A^ »_A R(P*) - R(PX) AR(x, M) = - ^ — - —'• . 

R(P*) 

It follows from Proposition 8 and 9 that it holds 

AR(x M) = l o g [ V ( - - ^ ) + V ( ^ - - ) ) ] 2 - 1 
' ^ log M - 1 

Let us define 0 < xM < \ by the criterion 

Ae(xM) = AR(xM, M) 
and let us put 

AM = Ae(xM) = AR(xM, M) . 

For every M there is unique xM which is shown, together with AM, in Table 2. 

Table 2. 

M 3 4 Ю2 10б 
1 0 2 O 10 9 0 oo 

xм 
100J k 

0-244 

51-03 

0-228 

54-21 

0-170 

65-35 

0-91 

81-80 

0035 

92-98 

0010 

97-90 

0000 

1000 

These results can be summarized in the following form. 

Proposition 11. (i) The cutoff rate and error can be simultaneously decreased 
by nearly 100%. This can be achieved by taking M large and x close to 0. 

(ii) For every M = 3 the cutoff rate and error can be simultaneously decreased 
by more than 50%. This can be achieved by taking x = xM shown in Table 2. 
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C. Cutoff rate versus capacity (information) 

Let AR(x, M) and AC(x, M) be as above, let xM be defined by the condition 

AR(xM,M)= -AC(xM,M), 
and let 

DM = 100 AR(xM, M) = -100 AC(xM, M) . 

We have obtained the values presented in Table 3. 

Table 3. 

M 3 4 5 6 12 Ю2 103 

xм 
»м 

0-172 

28-09 

0-124 

25-96 

0-101 

24-67 

0080 

23-74 

0-040 

20-34 

0008 

15-15 

00009 

10-61 

These results can be presented in words as follows. 

Proposition 12. It is possible by almost 30% to decrease the cutoff rate and at the 
same time to increase the capacity and vice versa. This can be achieved by channels 
P* and p 0 - 1 7 2 with M = 3. If M = 4 then the achievable percentage reduces to 
about 26%. The percentage DM achievable for a general M ^ 3 is decreasing with M 
increasing (cf. Table 3). 

It follows from what has been presented in this section that the four procedures 
— minimization of e(P). 
— maximalization of l(pv,P), 
— maximization of C(P), 
— maximization of R(P), 

yield generally different optimum signal alphabets and that each of the four optimality 
indices may differ at these alphabets very significantly, sometimes even by almost 
100%. An important practical conclusion which follows from here is that the signal 
alphabet cannot be optimized independently of the secondary digital information 
processing. 

For example, one signal alphabet may be almost 100% worse in cutoff rate. The 
first alphabet is preferred when error correction is planned by means of a convolu-
tional coding and sequential decoding. The capacity criterion may dominate the 
scene when long block codes are assumed to be used for error correction. 

This area deserves a more systematic attention. For example, the differences 
between the information optimality criterion l(pv, P) and the capacity criterion 
C(P) is not clear from our study. 

An open problem is whether the levels of percentages for controversial relations 
between various optimality criteria can be exceeded by other examples. Of course, 
the 100% level of Proposition 11 can hardly be exceeded. Our opinion about the rest 
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is that the levels of Proposition 10 cannot be exceeded. The remaining ones perhaps 

can, but not very much. The reason for this belief is that the permutation and sym

metric channels have conditional entropies at the theoretically attainable upper and 

lower bounds for the corresponding conditional error probabilities (cf. [8]). Of 

course the cutoff rate is directly related neither to the error probability nor to the 

entropy. Hence we expect slight improvements of levels related to this criterion. 

(Received April 9, 1988.) 
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