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KYBERNETIKA — VOLUME 29 (1993), NUMBER 3, PAGES 210-221 

AN IMPLICIT-FUNCTION THEOREM FOR A CLASS 
OF MONOTONE GENERALIZED EQUATIONS 

WALTER ALT AND IOSIF KOLUMBAN1 

In this paper we prove an implicit-function theorem for a class of generalized equations 
defined by a monotone set-valued mapping in Hilbert spaces. We give applications to 
variational inequalities, single-valued functions and a class of nonsmooth functions. 

1. INTRODUCTION 

Implicit-function theorems for generalized equations play an important role in many 
applications, especially in the stability and sensitivity analysis of variational in
equalities and optimization problems and in the convergence analysis of numerical 
algorithms solving such problems. We refer for instance to Fiacco [7] and Ioffe and 
Tihomirov [9] for applications of the classical implicit-function theorem in this con
text. Further results and some extensions of the classical implicit-function theorem 
can be found in Fiacco [8]. 

In [15] Robinson proved an implicit-function theorem for a class of generalized 
equations which he called strongly regular. This result has been widely used in 
the stability and sensitivity analysis of optimization and optimal control problems 
(see e.g. Robinson [15, 16], Alt [1, 2], Ito-Kunisch [10], Malanowski [13]) and in the 
convergence analysis of algorithms solving optimization problems and variational 
inequalities (see e.g. Robinson [16], Alt [1, 2]). In a recent paper [17], Robinson 
could extend his implicit-function theorem to a class of nonsmooth functions. 

In [11, 12] Kassay and Kolumban derived implicit-function theorems for a class 
of generalized equations defined by a monotone set-valued mapping. They have 
shown that from these theorems the classical implicit function theorem and Brow-
der's surjectivity theorem can be easily derived. They also presented applications to 
variational inequalities. 

The aim of the present paper is to further develop the rather general implicit-
function theorem of Kassay and Kolumban [12] in view of applications to variational 
inequalities and a class of generalized equations defined by nonsmooth functions. 

1 This research was performed while the second author was a visitor at the Institute of Applied 
Mathematics, University of Hamburg, Germany, supported by a grant from the Humboldt-Stiftung, 
Bonn, Germany. 
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Throughout the paper let W be a topological space, and // a real Hilbert space 
with scalar product (•, •). We study generalized equations of the form 

OeTKa:), (1.1) 

where T is a set-valued map from W x // to / / . Suppose WQ £ W, and XQ £ H 
is a solution of the generalized equation (1.1) for w = w$, i.e., 0 £ T(WQ,XQ). We 
give sufficient conditions on T such that there exists a neighborhood IVo of u>o and 
a function x: W0 — II with 

0 £ T(w, J?(w)) for all w £ W0 , 

x(w) —• i'(wo) Tor u> —+ wo . 

The main assumption will be uniform coercivity or uniform strong monotonicity of 
the mapping T(w,-). If the mapping T satisfies additional continuity or difTeren-
tiabily assumptions, then it is shown that the mapping x(-) inherits some or these 
properties. 

The paper is organized as follows. In Section 2 we introduce some basic defini
tions. Further we recall an implicit-function theorem due to Kassay and Kolum-
ban [12]. In Section 3 we prove an implicit-function theorem for a class of coercive 
multivalued mappings. In Section 4 we give some applications to variational inequal
ities. In Sections 5 and 6 the implicit-function theorem is applied to single-valued 
functions and to a class of nonsmooth functions. 

2. DEFINITIONS AND AUXILIARY RESULTS 

We use some usual notations and properties of set-valued maps which can be found 
e.g. in [3], 

Let T: // ~» // be a set-valued mapping. The domain of T is the set 

Dom(T) = {x £ / / | T(x) £ 0} . 

The graph of T is defined by 

Graph(T) = {(x, y) £ // x // | y £ T(x)} . 

The mapping T is called monotone if for all x,y £ Dom(T) and all u £ T(x), 
v £ T(y) the inequality 

(u-v,x-y) > 0 (2.1) 

holds. T is said to be maximal monotone iT there is no other monotone set-valued 
map whose graph contains strictly the graph of T. T is said to be coercive if there 
exists an increasing function a:B& —• M+ such that for all x,y £ Dom(T) and all 
u £ T(x), v £ T(y) the inequality 

(u-v,x-y)>a(\\x-y\\)\\x-y\\ (2.2) 
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holds. T is said to be strongly monotone if for all x, y ~ Dom(T) and all u ~ T(x), 
v € T(y) the inequality 

(x-y,u-v)>P\\x-y\\2 (2.3) 

holds with a positive /?. T is called infective if for each x,y ~ II, T(x) C\T(y) ^ 0 
implies x = y. Clearly, if T is coercive, it is injective, and if T is strongly monotone, 
it is coercive with a(t) — [it. 

A mapping S: H —• H is called noncxpansive, if 

l |S (* ) -%) l l< l l - -y | | 

for all x,y ~ H, i.e., S is Lipschitz continuous with modulus 1. 
The following fundamental characterization of maxima] monotone maps is due to 

Minty [1-1] (see e.g. [3], Chap. 6, Sec. 7, Theorem 5 and Theorem 8). 

Theorem 2.1 . Let T: II ~* // be a set-valued map. Then T is maximal monotone 
if and only if 1 + T maps Dom(T) onto / / . In this case, S = (1 + T)~l is a single-
valued map from II to H which is nonexpansive. 

By Fix(,S') we denote the set of fixed points of S. 

Remark . Suppose T: H -»-» H is maximal monotone, and define S = (1 + T)-1. 
Then x 6 // is a fixed point of S if and only if x ~ Dom(T) and 

xe(l+T)(x) = x + T(x), 

which is equivalent to the fact that 0 £ T(x). 

If x ~ H and r > 0, then we denote by B(x, r) the closed ball with radius r around 
x. For a closed convex subset C C H, Pc'. H —* C denotes the metric projection. 

Definition 2.2. Let r > 0, XQ ~ H, S: H —+ / / . One says that S is retractible on 
B(x0,r) if Fix(PB{xo<r)S) C Fix(S). 

The following lemma gives a sufficient condition for retractability. 

Lemma 2.3. Let T: H —> / / be a maximal monotone set-valued map, r > 0, 
*o € H, and S = (1 + T)~l. Suppose that 

(R) for each x € H with ||a; - xo\\ = r, and \\S(x) — xo\\ > r there exists y ~ 
B(XQ,T), such that the inequality 

(x-z,x-y) >0 (2.4) 

holds for 2 = S(x). 
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Then ,5" is retractible on Z?(xo,r). 

P r o o f . Let the assumptions of the lemma be satisfied, and suppose that 5 is 
not retractible on B(x0,r). Then there is a a; £ Fix(Pa(l0ir),S') with x g Fix(.S). 
The characterization of the projection implies 

(x - S(x), x - y) < 0 for all y~B(x0,r). (2.5) 

In case | |5(x)-x'o| | < r, we obtain x = Pn(Xo,r)S(x) = S(x). Hence ||.S'(x)-£o|| > r, 
and therefore Pi3(r.0,r)S(x) is a boundary point of B(x0,r). This implies j | x - x 0 | | = 
\\P[i(x0,r)S(x) - xo|| = r. By Assumption (R) there exists y G B(x0,r) such that 
(2.4) holds, which contradicts (2.5). D 

Remark . Let iv ~ W. Suppose T(w, •): H ~ . // is maximal monotone, and define 
Sw = (1 + T(w,-))~x. Then by the remark preceding Definition 2/2 x(iv) G H is 
a fixed point of Sw if and only if 0 G T(iv,x(w)), i.e., x(w) is a solution of the 
generalized equation (1.1). 

Based on a fixed point theorem for nonexpansive maps due to Browder ([5], 
Theorems 8.2 and 8.5), Kassay and Kolumban [12] proved the following implicit-
function theorem ([12], Theorem 3.1). 

Theorem 2.4. Let T: W x // -^ H be a set-valued map, x0 € II, w0 ~ W, and 
d > 0. Suppose that there exists a neighborhood W0 of w0 such that 

(Al) 0 G T(tuo,x0), and T(w, •): II ~+ // is maximal monotone and injective for 
all w G w0; 

(A2) for each r G (0,d] there exists a neighborhood wr C wo of iv0 such that 
Sw =(l+ T(w, -))"1 is retractible on B(x0,r) for all w ~Wr. 

Then there exists a unique mapping x:Wd ~* B(x0,d) continuous at w0 such that 
x(w0) = x0 and 0 S T(w,x(w)) for all w ~ Wd-

3. AN IMPLICIT-FUNCTION THEOREM FOR COERCIVE MAPS 

In this section we state the main result of the paper, an implicit-function theorem 
for generalized equations described by a coercive mapping. 

One of the main assumptions of Theorem 2.4 is the retractability of the operators 
,S't„. We show that this assumption is satisfied, if the mappings T(w, •) are uniformly 
coercive and satisfy a consistency condition (compare Aubin and Frankowska [4], 
Definition 5.4.1). 

Definition 3 .1 . Let T:W x H ~~> H be a set-valued map, xo ~ II, and w0 € W 
such that 0 G T(u>o,xo). Then T is called consistent in w at (w0,x0), if there is a 
neighborhood w0 of w0 and a function /?: w0 —* IK continuous at w0 with /?(wo) = 0 
such that for each w ~W0 there exists yw ~ T(w, x0) with \\yw\\ < /?(«)• 
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Definition 3.2. Let T: W x H ^ H be a set-valued map, and W0 C W. The 
mappings T(w, •) are called uniformly coercive on W0, if there exists an increasing 
function a:]0, oo[—>-]0, oo[ such that for all w G W0 and all a:i,a:2 G Dom(T(iu, •)), 
a:i 7̂  -"2, j/i G T(w,a;i), 1/2 G T(w,x2) the inequality 

(3/1 - 2/2, *i - ajg) > a ( | | s . - x2||) Iki - af2j| 

holds. 

Based on Theorem 2.4 we can state the following implicit-function theorem for 
coercive mappings. 

Theorem 3.3. Let T: W x H —> H be a set-valued map, z0 G H, and w0 G W. 

Suppose there exists a neighborhood W0 C W of tx;0 and d > 0 such that 

(CI) 0 G T ( » o , i o ) , 

(C2) T is consistent in iu at (w0, x0), 

(C3) The mappings T(w, •) are maximal monotone and uniformly coercive on W0. 

Then for any d > 0 there exist a neighborhood W4 C Wo of w0 and a unique mapping 
x: Wd —> S(a:0, (!) continuous at w0 such that x(w0) = x0 and 0 G T(w, a:(w)) for all 
w ewd. 

Proof . Let w G Wo and an arbitrary r > 0 be given. Suppose x e H with 
jjar — -coll = r and \\Sw(x) - x0\\ > r. Define z = Sw(x). Then x-z E T(w,z). By 
Assumption (C2) there exist a function /3:Wo —>M. continuous at w0 with j3(w0) = 0 
and yw G T(w,x0) with ||j/u,|| < /?(tc). Since ||z - a:0|| > r we obtain by Assump
tion (C3) 

(x - z, x - x0) - \\x - z\\2 = (x-z,z- x0) 

= (x - z - yw, z - x0) + (yw, z - x0) 

> a(\\z - x0\\)\\z - x0\\ - p(w)\\z - x0\\ 

>(a(r)-P(w))\\z-x0\\. (3.1) 

By Assumption (C2) we can choose a neighborhood Wr C W0 of WQ such that 

a(r) - 0(w) > 0 

for all w eWr. But then by (3.1) Assumption (R) is satisfied for T = T(w, •) with 
y = x0. Hence, by Lemma 2.3, Sw is retractible on B(x0,r) for all w G Wr, i.e., 
Assumption (A2) of Theorem 2.4 is satisfied. Since (CI) and (C3) imply (Al), it 
follows from Theorem 2.4 that there exists a unique mapping x: Wd —* B(x0, d) with 
the desired properties. • 
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4. APPLICATION TO VARIATIONAL INEQUALITIES 

For a closed convex subset C C H we denote by dipc the normal cone operator 

' { V € H | (y, c - x) < 0 Vc G C } , if x G C, 
8T!>C(X) 

if x ^ C 

Let Q. be an open subset of / / , and / a mapping from W x Q, into H. Furthermore, 
let T be defined by 

T(w,x) = f(w,x) + d4>c(x), (4.1) 

where Dom(T(w, •)) = Dom(/(w, •)) O D o m ^ c ) = f i n C . 
By the definition of the normal cone operator, the generalized equation (IT) is 

then equivalent to the variational inequality 

xEC and (f(w, x),c-x)>0 for all c G C. (4.2) 

We now show how Theorem 3.3 can be applied to variational inequalities of this 
type. 

Definition 4 .1 . Let W0 C W, U0 C 0 and / : W X fi -» / / . Then / is called 
uniformly coercive on W0 x U0, if there exists an increasing function cv: [0,oo] —> 
[0, oo] such that for all w G V̂ o and all x\, x2 G Uo, x\ i1 x2 the inequality 

(f(w,x\)- f(w,x2),x\ -x2) > a(\\x\ - x2\\)\\x\ - x2\\ 

holds. 

Theo rem 4.2. Let x0 G H, w0 G W. Suppose there exist a neighborhood W0 of 
wo and d > 0 such that with X := B(x0, d), the following assumptions are satisfied: 
(VI) 0 G T(w0,a;o), i-e., x0 is a solution of the variational inequality (4.2) for 

W = Wo-

(V2) / is continuous on W0 x X. 

(V3) / is uniformly coercive on W0 x (C C\ X). 

Then there exist a neighborhood W\ C W0 of w0 and a unique mapping x: W\ —> X 
continuous at w0 such that x(w0) = x0 and 0 G T(w,x(w)) for all w EW\, i.e., 
x(w) is a solution of the variational inequality (4.2). 

Proof . We apply Theorem 3.3 to the mapping 

F(w,x) - f(w,x) + dipcnx(x), 

For this mapping, (VI) implies (CI). Furthermore, by Assumption (VI) we have 
-/(u>o,x-o) G dij>cnx(x0). This implies 

yw = f(w, x0) - f(w0,x0) G F(w, x0). 
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By (V2), the mapping (3(w) := \\yw\\ is continuous at w0. This shows that (C2) 
is satisfied. Furthermore, by Theorem 3 of Rockafellar [18], the mappings F(w,-) 
are maximal monotone. Since the subdifferential dtpc is monotone, (V3) implies 
(C3). Therefore, applying Theorem 3.3 to the mapping F with d = d, we obtain a 
neighborhood W\ C W0 of w0 and a unique mapping x:W\ —> B(x0,d) continuous 
at w0 such that x(w0) = x0 and 0 G F(w, x(w)) for all w £W\. Since x(w) £ int X, 
we have 

drpcnx(x(w)) = dtpc(w) (x(w)). 
Hence F(w,x(w)) = T(w,x(w)), i.e., x(w) is a solution of the variational inequality 
(4.2). D 

Dafermos ([6], Theorem 2.1) proved a similar result where in addition the set C 
may depend on the parameter. However, Dafermos requires Lipschitz continuity of 
/ in x while we only need continuity in x. Moreover, strong monotonicity can be 
replaced by coercivity. 

As we shall see in the following section, mappings of the type (4.1) naturally arise 
in connection with single-valued equations, especially in connection with equations 
considered by Robinson [15, 17]. 

If we impose some more restrictive conditions we can show that x(-) is locally 
Lipschitz continuous. 

Definition 4.3 . Let W0 C W, U0 C fi and / : W x Q -> H. Then / is called 
uniformly strongly monotone on W0 x U0, if for all w £ W0 and all x\,x2 £ U0, 

(xx - x2,f(w, x\) - f(w, x2)) > a\\x\ - x2f (4.3) 

holds with a positive a. 

Corollary 4.4. Let the assumptions of Theorem 4.2 be satisfied. Suppose that 
in addition W is a subset of a normed linear space and that f(-,x0) is Lipschitz 
continuous on W0 with modulus A, i.e., 

\\f(w, x0) - f(w0, x0)\\ < A \\w - w0\\ 

for all w £ W0. Suppose further that / is uniformly strongly monotone on W0 x 
(CC\X). Then the mapping x(-) is Lipschitz continuous on W\ with modulus a - 1 A. 

Proof . By Theorem 4.2 there exists a neighborhood W\ C W0 of w0 and a unique 
mapping x: W\ —> U0 continuous at w0 such that x(w0) = x0 and 0 G T(w, x(w)) = 0 
for all w £ W\. Now let w £ W\. Since the subdifferential dtpc is monotone, we 
obtain for arbitrary zw £ di>c(x(w)) and z0 £ di})c(x0) 

a \\x(w) - x0\\
2 < (f(w, x(w)) - f(w, x0), x(w) - x0) 

< (f(w, x(w)) + zw- (f(w, x0) + z0),x(w) - x0). 

Choosing zw = -f(w,x(w)) and z0 = -f(w0,x0) we obtain 

||ar(w) - x0 | | < a_ 1 | | / ( t«o, ^o) - f(w, x0)\\. 

This proves the assertion. D 
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5. APPLICATION TO SINGLE-VALUED FUNCTIONS 

We consider now the special case of equations defined by a single-valued monotone 
map. To this end let ft be an open subset of H, and G: W x Q —* H a single-valued 
map. Let u;0 € / / and suppose x0 G il is a solution of the equation 

G(u),x) = 0 (5.1) 

for w = WQ. Then we investigate the solvability of (5.1) for w close to w0. From 
Theorem '1.2 we obtain the following result. 

Theorem 5.1. Let, x0 g 12, u>0 g IV. Suppose that there exist neighborhoods Wo 
of iD0 and U0 C ft of x0 such that the following holds: 
(51) G(w0,xo) = Q. 
(52) G is continuous on W0 x f/0. 
(53) G is uniformly coercive on Wo x Uo> 

Then there exists a neighborhood H'*i C IVo of u)0 and a unique mapping x: W\ —> Uo 
continuous at ?o0 such that x(tD0) = x0 and G(w,x(w)) = 0 for all w (EW\. 

Proo f . We choose rf > 0 such that X := B(x0,rf) C U0. Define C = H, 
f(w,x) = G(«),x) and r( to ,x) = /(«>,x) + di[>c(x). Since c9^c(x) = {0} for all 
x € / / , equation (5.1) is equivalent to the generalized equation 0 € T(w, x). Since 
Assumptions (VI), (V2), (V3) are satisfied, the assertion follows from Theorem 4.2. 

D 

As in the previous section, by imposing more restrictive conditions we can show 
that .)•(•) is locally Lipschitz continuous. 

Corollary 5.2. Let, the assumptions of Theorem 5.1 be satisfied. Suppose that in 
addition W is a subset of a normed linear space and that for each x 6 U0, G(-,x) is 
Lipschitz continuous on W0 with modulus A, i.e., 

\\G(w\,x)-G{w2,x)\\<\\\iv\-w2\\ 

for all W\,w2 € W0- Suppose further that G is uniformly strongly monotone on 
Wo x UQ- Then the mapping x(-) is Lipschitz continuous on W\ with modulus cv-1A. 

P r o o f . By Theorem 5.1 there exists a neighborhood W\ C W0 of to0 and a unique 
mapping x: W\ —> (70 continuous at iv0 such that x(t«o) = xo and G(w,x(w)) = 0 
for all w G W\. Now let w\,w2 € W\. Since G(w\,x(iv\)) = G(w2,x(w2)) = 0 we 
obtain from (4.3) 

a \\x(w\) - x(w2)\\
2 < (G(w\, x(w\)) - G(wx,x(w2)), x\ - x2) 

= (G(w2,x(w2)) - G(w\,x(w2)), xx - x2), 

which implies 

\\x(w\) - x(w2)\\ < a-1 \\G(wu x(w2)) - G(w2, x(w2))\\. 

This proves the assertion. "3 
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6. APPLICATION TO NONSMOOTH FUNCTIONS 

In a recent paper [17], Robinson proved an implicit-function theorem for a class of 
nonsmooth functions. We show how Robinson's implicit-function theorem can be 
derived from Theorem 5.1. 

Throughout this section let X be a real Hilbert space, Z, W normed linear spaces, 
xo G X and w0 £ W. Further, let Wo be a neighborhood of wo and Uo a neighbor
hood of x0, and suppose F is a function from Wo x Uo to Z, and / is a function 
from Uo to Z. Suppose x0 is a solution of the equation 

F(w,x) = 0 (6.1) 

for w = wo- Then we investigate the solvability of (6.1) for w close to wo. We use 
the concept of a strong approximation introduced by Robinson [17]. 

Definition 6.1 / strongly approximates F in x at (w0,x0) if for each e > 0 there 
exist neighborhoods V of w0 and U of x0 such that whenever u; belongs to V and 
a?i, x2 belong to U we have 

\\[F(w, xO - / ( s i ) ] - [F(w, x2) - f(x2)}\\ < e | | s , - x2\\. 

For a A C Uo let 

*( / , A) = inf{ \\f(Xl) - / (x 2 ) | | / | |x , - 3.-H | xx -t x2, «., x2 G A } . 

Then we can state the following implicit-function theorem. 

Theorem 6 .2 . Suppose that / (x 0 ) = 0 and F(wo,x0) = 0. Assume further that 

(a) / strongly approximates F in x at (w0,x0); 

(b) F(-,x0) is continuous at w0; 

(c) /(Uo) D B(0, p) for some p > 0; 

(d) 6(f,U0)=:d0>0. 

Then there are neighborhoods V of wo and U of xo and a function x: V —* U such 
that 

(i) x(-) is continuous at w0; 

(ii) x(w;o) = xo, and for each w 6 V, x(w) is the unique solution in U of F(w, x) = 0. 

P r o o f . Choose positive numbers e, a, and a neighborhood Wx of w0 such that 
Wx c v0, 

0<£<d0, 0<a<p (6.2) 

and such that for each xi , x2 G 5(x 0 , d0
la) and each u> G Wx 

\\[F(w, xx) - f(xx)] - [F(w,x2) - / (x 2 ) ] | | < e \\Xl - x2 | | , (6.3) 
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c||xi - _o|| + ||F(u.,x0) - F(w0,r.0)\\ <p. (6.4) 

Now define U = B(xn,d~l(\). By Assumptions c) and d), / - ' i f ^O, / . ) -» f/0 is 
Lipschitz continuous with modulus rf^1, For _: G U, w ' W\ we have by (6.3) and 
(6.1) 

ll/fa:) - F(w, x)\\ < \\[f(x) - F(w, x)] - [/(_•„) - F(w, x0)]\\ 

+ \\F(w.x0)-F(w0,xi))\\ 

< e\\x - ro|| + || F(w, x0) - F(w0,x0)\\ < p. 

Therefore, the mapping G: W\ x U — X, 

G(w,x) = x-rx[f(x)-F(w,x)], (6.5) 

is well-defined and single-valued. Moreover, for (w,x) G W\ x U we have 

F(t . ,x) = 0 <=> G(ir,x) = 0. 

We show that G satisfies assumptions (SI) — (S3). Then the assertion follows from 
Theorem 5.1. (SI) follows from the definition of G. For x 6 U, w ~ W\ we have by 
(6.3) 

| |G(i_>,*)-G(__,-o)| | 
< ((J. _ X()\\ + d~l\\[f(x) - F(w, x)] - [/(co) - F(w0, x0)]|| 

< ||.. _ Xo | | + d~x\\[f(x) - F(w,x)] - [f(x0) - F(w,x0)]|| 

+ £ ^ 1 | | F ( _ , * 0 ) - F ( u , 0 , x0)| | 

< (1 + c/0-'£)||x - Xo|| + rf0-
1||F(ti;,z0) - F(_i0fXo)||. 

By Assumption b) this implies (S2). For fixed w £ W\ and X\,x2 _ U we have 

(G(i., x-i) - G(t_, x2),Xi - x2) 

= ||_. - x2||
2 - (/"' [/(*,) - n - . n ) ] - / ^ [ / ( - a ) - F(t_, *2)],xT - x2). 

Since by (6.3) 

iirM/.xi) - n-.-o] - r![/(x2) - F(_,C2)]|| 
< -o ' l l t /^O - I>>*i)] - [/(-_) - f(u;,x2)]|| 
< ( / - 1 £ | | I ; i - X 2 | | , 

this implies 
( G f t n . - O - G ^ - j ) , - ! - * 2 ) > « | | x _ ~ x 2 | | 2 , (6.6) 

where d = 1 - tf0'e > 0 by (6.2). This shows that (V3) is satisfied. D 

Again by imposing a more restrictive continuity condition on F we can show that 
x(-) is locally Lipschitz continuous. 
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C o r o l l a r y 6 . 3 . Let the a s sumpt ions of T h e o r e m 6.2 be satisfied. Suppose t h a t 

in addi t ion for each x £ UQ, F(-,X) is Lipschitz cont inuous on Wo wi th m o d u l u s c4. 

T h e n the mapp ing *(•) is Lipscliitz cont inuous on V. 

P r o o f . Choose posit ive number s e, a, and ne ighborhoods Wo of w0 and U of 

XQ as in the proof of Theo rem 6.2, and let the ma pp ing G be defined by (6.5) . Let 

x £ Uo and W\,w2 6 Vo- By Lipschitz cont inui ty of F(-,x) we ob ta in 

\\G(wl>x)-G(w2,.x)\\ 

= \\f~l[f(x) - F(wux)]- rx[f(x) - F(w2,x))\\ 

< d-'\\[f(x) - F(wux)]-[f(x) - F(w2,x)][\ 

= d;1\\F(w1,x)-F(w2,x)\\ 

<d^4>\\wi-w2\\. 

Together with (6.6) this implies by Corollary 5.2 t h a t x(-) is Lipschitz cont inuous 
with m o d u l u s 

A = n-1c/^1cA = ( r f o - e ) - V -

This proves the assert ion. • 

(Received May 7, 1992.) 
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