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K Y B E R N E T I K A — V O L U M E 13 (1977), N U M B E R 1 

On a Problem of Evasion 

MILAN MEDVEĎ 

A strategy of evasion for a class of nonlinear differential game is constructed. 

B. N. Pchenitchny [1] has solved a differential game described by the system 
of differential equations 

(1) z=f(z,u,v), 

where z e R", ueU c Rr, veV c Rs, f: R" x Rr x Rs -*• R". He suppose that the 
function j has continuous derivatives with respect to z of sufficiently high orders, 
satisfying the Lipschitz condition with respect to all their arguments on arbitrary 
compact set. Furthermore, the function j is assumed to be of the form j(z, u, v) = 
= j0(z, u) + fi(z, u) v, where j 0 e R" and f1 is an n x s matrix, i.e. the function j 
is convex in the variable v. 

We shall construct a strategy of evasion for a class of nonlinear games described 
by the system (1), where 

m - l 

j(z, u, v) = X dj(z, u, vu v2, . ..,vj+1) , 
J = 0 

where g}(z, u, vu v2, . ..,vJ+1) = jiy(z, u, vu ...,v}) + f2j(z, u,vu ..., Vj) vJ+1, 
j = 1, 2, . . . , m - 1, g0(z,u,vt) =f10(z,u} +f20(z,u)v1, zeR", ueRr, v = 
= (vu v2, ..., v,„), vt e Rqi, i - 1 , 2 m, ji/z> u> VL> • • • > vj) e ^" a n £l fn (z> M> 
Dj, . . . , Vj), j = 0, 1, . . . , m — 1 are n x <?; matrices. The function j(z, M, V) need 
not be convex in v, but it is convex in vm only. We shall construct a strategy of evasion 
v(t) = (^(t), t>2(t), . . . , vjt)) in such way that first we shall construct vt(t) and 
then one after the other vt(t), i = 2, 3, . . . , m, where for the construction of each 
Vi(t), i — 1, 2, . . . ' , m we shall use the method of Pchenitchny. For m = 1 we get the 
result of Pchenitchny [1]. 

We shall suppose that the terminal set M is a subspace of R" of dimension g n - 2. 



Definition. A mapping E : R" x U x [0, oo) -» Rs is said to be a strategy, if for 
every absolutely continuous function x(t), 0 g t < oo, and for every measurable 
function u(t) e U, 0 g £ < oo, the function E(x(0, M(0> 0 is a measurable function 
with values in V. This strategy is called a strategy of evasion, if for arbitrary z0£M 
and for arbitrary measurable function u(t), 0 £ t < oo, the solution z(0, 0 ^ t < oo, 
of the equation 

z ( 0 = / ( z ( 0 , « ( t ) , £ ( z ( 0 , « ( ^ 0 ) 

with initial condition z(0) = z0 does not intersect the subspace M for any t ^ 0. 

We shall assume that 

(1) U is a compact set and V = Vt x V2 x . . . x Vm, where V <= R?i are compact 

convex sets, £ <?; = s, int V; == 0 in R4"'. 
i = l 

(2) We suppose that the function / (z , u, v) has the above form where the functions 
gj(z, u, vu v2, ..., vJ+l), j == 0 ,1 , . . . , m — 1, have continuous derivatives 
with respect to z of sufficiently high orders, satisfying the Lipschitz condition 
with respect to all their arguments on arbitrary compact set. 

(3) There exists a constant C > 0 such that |(z,/(z, u, v))\ ^ C(l + ||z||2) for all 
(z, u, v) e R" x U x V, where we denote by (x, y) the scalar product of the 
vectors x and y and [|z|| is the euclidean norm of the vector z. 

(4) Let q> : R" -* R" be a C1 function. Denote 

(2) Vzf/>(z) = .D<p(2)/(z,M,t;), 

where D <p(z) is the matrix of the first derivatives of <p(z) at z. We shall suppose 
that 

(A) there is a subspace W <= L (L is the orthogonal complement of M in Rn) 
of dimension g ^ 2 and an ineger k such that all functions <p°(z) = JTZ, 
<p'(z) = Vz <pl'1(z), i = 1, 2, . . . , fc — 1 do not depend on u and i>, where 
n : R" -* W is the orthogonal projection. 

(B) The function fk(z, u, v) = Vz <pk~1(z) depends on u and v. The assumption 
m - l 

(2) implies that /*(z, u,v) = Y, dkj(z, u, vu v2, ..., vj+1), where g\z, u, vlt 

J = 0 

V2, . . . , VJ + 1) = f\j(z, U, VU V2, . . . , Vj) + f2j(z, U, VU V2, ..., Vj) Vj+i, j = 
= 0, 1, . . . , m - 1. It is clear that f\z, u, v) e W. 

(C) Denote 

F0(z) = D 0o(z, «, Vt) , 
ueU 

Fj(z)= fl g\z,u,vu ...,vj, Vj + 1) 



j = 1, 2, . . . , m — 1. Let there exist continuous functions q>) : R" -* R" 
and e : R" -> R1 such that for all z e R" e(z) > 0 and 

(3) (p)(z) + e(z) nS <= Fj(z), j = 0, 1, . . . , m - 1 , 

where S is the unit sphere in R". 

Theorem. Under the assumptions (l) —(4) there exists a strategy of evasion. 

Before proving this theorem consider the following equations 

(4) f\j(z, u, vu v2, ..., vj) + f2J(z, u, vu v2, ..., vj) vJ+l = 

= <p)(z0) + - e(z0) £0 , ; = 0, 1, . . . , m - 1 , 
m 

in a neighbourhood of a point (z0, u0, vu ..., v°, £0) 6 R" x U x Vx x . . . x Vj x 
x 7tS in vJ+1 for; = 0, 1, . . . , m — 1. The assumption (C) implies that for arbitrary 
such point, there exists a point v°+1eVJ + 1 that f1J(zo,u0,vu...,v

o
j) + 

+ f2j (z0, u0, vl . ..,v°j) v°j+l = (p)(z0) + (1/m) e(z0) «J0, j = 0, 1, . . . , m - I. 

Lemma 1. Let Z be a compact set in R". Then for j = 0, 1, . . . , m — 1 there exists 
a number e^ > 0 such that for arbitrary (z0, u0, v°, ..., v°, £„) e X x U x Vt x . . . 
. . . x Vj- x 7iS there exists a continuous function Uj(z, u,vu ..., vJt £|z0, u0,v1, . . . 
. . . , (;°, f0) with values in VJ + U which is the solution of the equation (4) for all 
(z,u,vu . ..,Vj, £)e{(z,u,vu ..., Vj,E) | max( |z - z0\, \\u - u0\\, \\v1 - v°\\, ... 
..., \\vj - vj\\, I? - £0 |) = 8̂ -}. Moreover UJ-(Z0,M0,7J?, . ..,v°,Z0 | z0,u0,v\, ...,v), 
£0 e int Vj + 1. 

Proof. The proof is almost the same as the proof of [1, Lemma 3] and therefore 
we shall sketch it only. Let V(z, u,vu ..., vs, £) = {vJ + i e VJ+1 | g)(z, u, vu ... 
...,vj+1) = (p)(z) + (l/m)e(z)}. By the same procedure as in the proof of [1, 
Lemma l ] it is possible to prove that V(z, u, vu ..., Vj, £) n (int Vj + 1) +• 0 for 
arbitrary c, e nS. 

If a.(vj+l) is a continuous function, then by [1, Lemma 2] the function 
/3j.(z, u,vt, ..., Vj, £,) = max {a.(vj + 1) | vJ + 1 e V(z, u,vu ..., Vj, £)} is a continuous 

«i*i 
function of the variables z, u e U, vk e Vk, k = 0, 1, ...,j,c,e nS. 

Let a(fj + i) = min {\\vj+1 - vJ+A \ vJ + 1 e dVJ + i}, where dVJ+1 is the boundary 
f j + i 

of the convex set VJ+1. Since V(z, w, u1, . . . , D7, £) n (int Vj + i) 4= 0, then ftj(z, u, 
vu ..., Vj, £,) > 0. This means that if X is a compact set in R", then there exists 
a number r'x > 0 such that for arbitrary z e X, u e U, ut e VA, /c = 1,2, . . . , j there 
is a point t>°+1 e V(z, w, u t, . . . , Vj, £) which is contained in the interior of the set 
V(z, u,vu ..., Vj, £) together with the ball with center u°+ 1 and radius rJ

x. 



Consider the equation defining the set V(z, u,vu ..., v}, £) : f\j(z, u,vu ..., v}) + 
+ f\j(z,u,vu ...,Vj)vj + 1 = (p)(z) + (1/m) B(Z) ^ in a neighbourhood of (z0, 
u0, vu ..., v], c0). This equation is solvable in vj+1 for z = z0, u = u0, vk = v°, 
k = 1, 2, . . . , j for arbitrary c; e nS and therefore there exist v linearly independent 
columns of the matrix f\j(z, u,vu ..., Vj), where v = dim W. Let J} denote the set 
of indices of arbitrary chosen columns of the matrix f\j(z, u,vu ..., v}) and let 
f\jj(z, u,vu ..., Vj) be the corresponding matrix. Denote 

m(z, u,vu ..., Vj) = max det(/2*.(z, u,vu ..., Vj)fj.(z, u,vu ..., Vj)), 
h 

where A* means the transpose of a matrix A. Let J0J be the set of such indices for 
which 

max d e t ( / ^ ( z 0 , u0, v°u ..., v°j)f2jj(z0, u0, v\, . ..,v°})) = 
j j 

= det(/**0/z0 , u0, v°, .. .,v°j)f2Joj(z0, u0, v°u . ..,„»)) . 

Then 

d e t ( / f Joj(z, u, vu . ..,Vj)f2JoJ(z, u, vu . ..,v})) > 0 

in some neighbourhood of the point (z0, «0, vu . . . , v°). Let vJoj be a vector with 

components of the vector v°j+1 with indices from J o ; . 

Consider the following equation 

(6) f\j(z, U,VU..., Vj) + f2J(z, U,VU ..., Vj) V°j+ ! + 

+ f\j0J(z, u,vu . ..,vj) (»j - vOJoj) = q>)(z) + - B(Z) C . 

m 

The condition (5) implies that the equation (6) is equivalent to the following one: 

(7) fk2*JoJ(z, u,Vl,...,v}) f2Joj(z, u,vu...,v}) (vJo. - vOJoj) = 

= ffjQJ(z, U,VU..., Vj) \fj(z) + 1 E(Z) CI - f(z, U,VU..., Vj) -

- f\j(z,u,vu ...,Vj)v°+1 . 

The equation(7)has the unique solution vJoJ(z, u,vu ..., v}, cj) which is continuous 
in all its arguments and vJoj(z0, u0, vu ..., v°, c;0) = vOJoj. It is easy to see that the 
vector vj+1(z,u,vu .. .,v}, £) constructed from the components of the vector 
vJo.(z,u,v1, ..., Vj, cj) completed with the remaining components of the vector 
u°+ j. is a solution of the equation (4). We shall denote it by vJ+1(z, u,vu ..., v}, ̂ \ z0, 
u0, vu ..., v°, c;0). In the same way as in the proof [1, Lemma 3] it is possible to 
prove that there exists a number sx > 0 which is the same for all (z0, u0, vu . . . 



. . . , v], £0) eX x Vj x . . . x Vj x nS such that the function vj+1(z, u, . . . . . . 

. . . , Py, £ | z0, M0, v°, ..., v], £0) is defined and continuous for all (z,u,vx, ..., Vj, c) 
from the Ex-neighbourhood of the point (z0, u0, v\, ..., v°, £,0). From the construc
tion of the function vj + 1(z, u,vu ..., Vj, £, | z0, u0, v°, ..., v°j, £0) it is clear that 

vj+1(z0, u0,v°, . ..,v°j, %0\ z0,u0,v°, ...,v°j,QEintVJ + 1 . 

The proof is complete. 
Denote vj+,(z, u, vu . ..,Vj, { | z0) = y; + 1(z, u, vu ..., vJt £ \ z0, u, vu . ..,vjt £). 

In the same way as [1, Lemma 3] it is possible to prove the following lemma. 

Lemma 2. The functions vJ+1(z, u,vy, ..., Vj, £,), j = 0, 1, . . . , m — 1 are defined 
and continuous for all z, ||z — z 0 | ^ \s.x, ueU, vt e Vt, i = 1,2, . . . , j , t; e nS. 

Let z0 $ M. Consider the following function 

<p(t, £) = " E ^ cp!(z0) + (cpl(z0) + cp\(z0) + ...+ (pi-ii^o)) 77 + 
j = i i! /c! 

+ r ^ - t r ^ W d T , 

where £(T), 0 ^ T ^ t is a measurable function with values in (l/m) E(Z0) TTS. 

Lemma 3. (cf. [1, § 3]). Let k > 0. There exists a measurable function £(T), O S t i 
<; 2 with values in (l/m) e(z0) nS such that <p(f, £) =1= 0 for 0 g f ^ A. 

Proof of the Theorem. Let z0£M and let u(t)eU, v(t)e V be measurable 
controls. Then by the assumptions (2) and (4) the corresponding solution z(t) of the 
equation (l) is such that n z(t) is of the class Ck and 

— n z(t)|t=o = (p\z0) > i = 0, 1, . . . , fe - 1 , 
at 

and by Taylor's formula 

(8) n Z(t) =k~i 19xz0) + ~~±~~ r (r - xri*w)> «w. * » d T = 
i-o i! ( f e - l ) ! j 0 

"IT. tf-o) + (lS#-o))£ + 
.•=o i! ; = o /c! 

+ . T - 1 ^ r (< - ^ [ / ^W' MW' U(T)) - "i1^)]dT • 
(fc-l)Uo * = ° 

Let 8j(z0), j ~ 0 , 1 , . . . , m — 1 be the diameter of the maximal sphere where the 
function vj + 1(z, u,vu ..., Vj, £ | z0) is continuous (cf. Lemma 1). Denote by Ty(z0) 



the maximal time during which the solution z(t), z(0) = z0 of the system (1) does not 
leave this sphere. By Lemma 2 Sj(z0) ^ \&x and by the Gronwall's lemma Zj(z0) ^ 
2: zx > 0. Denote BX = min sx, z0 = min Zj(z0), <5(z0) = min <5,{z0). 

j i i 

By Lemma 3, it is possible to choose a measurable function £(f), 0 ^ t rg T(Z0) 
with values in (l/m) e(z0) 7rS such that <p(t, f) + 0 on (0, T(Z 0 ) ] . 

Denote v(z, u, £, \ z0) = (vx(z, u, S, \ z0), . . . , v2(z, u, vt(z, u, £, \ z0), £ | z0), ... 
..., vm(z, M, vx(z, u, t; | z0), . . . , 2, | z0). By Lemma 1 this function is defined and 
continuous for all c, e nS, ueU and z e R" such that ||z — z 0 | g <>(z0). Therefore 
for a given measurable function u(t) eU, 0 ^ t ^ T(Z0) there exists a solution 
z(t), 0 ^ t ^ z(z0) of the equation 

(9) z=f(z,u(t),v(z,u(t),i(t)\z0)), 

z(0) = z0 

and we can choose v(t) = v(z(t), u(t), %(t) | z0). The definition of u(z, u, I \ z0) 
implies the following equalities: g)(z(z), u(z), v^z), ..., vJ + 1(z)) — (p)(z0) = l/m . 
. s(z0) ^(T)^ j = 0, 1, . . . , m — 1. Now using these equalities and the formula (8), 
we get 

n z(t) = Y '- <p\z0) + (t\\(z0)) £- + — i — f (t - zf-i l(z) dT , 
; = o ?! ;=o k\ (k - i ) ! j 0 

where l(z) = (l/m) E(Z0) £(T) and such that <p(t, £,) = n z(t) 4= 0 for all 0 g ( ^ T(Z0) 
(cf. Lemma 3) and therefore z(t) £ M for all t e [0, T(Z 0 ) ] . 

For t1 = T(Z0) we can take z(t±) instead of the initial point and we can find the 
strategy of evasion on the interval \tu tt + T(Z0)] by the same construction as before. 
Therefore we can extend the game for arbitrary long time. This proves the Theorem. 

(Received May 6, 1976.) 
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