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KYBERNETIKA — VOLUME 30 (1994), NUMBER5, PAGES 563-573 

MEASURES OF INFORMATION ASSOCIATED WITH 
CSISZAR'S DIVERGENCES 

MlQUEL SALICRÛ 

This paper reviews and completes the relationships between the measures of information 
associated with divergences, attending, in the multivariate case, to disturbances of the 
parameter in the directions of the coordinate axis and considering the matrix which defines 
the metric in direction to tangent space. 

1. INTRODUCTION 

An interesting problem, which is set by information theory, arises from the need 
to obtain and to select properly the informative measures. In this way, the differ
ent functionals, which have been proposed as a measure for the information, can 
either come from heuristic considerations, and are therefore subject to being applied 
and interpreted, or from theoretic considerations, founded on good algebraic and 
analytical properties. 

In the present paper, the information measures associated to Csiszar's diver
gencies for the univariate case are revised and completed (Section 3), and these 
are generalized to the multivariate case (Section 5), due to disturbances of the par
ameter in the directions of the coordinate axis. For the multivariate case, Renyi's 
information-matrix is retrieved, as an application for the general result. 

An alternative way of obtaining informative matrices is also presented through 
several considerations of the differential metric in the direction of the tangent space, 
and this for a prefixed distance measure (Section 4). 

2. PREVIOUS DEFINITIONS 

For a measureable space (x, E), and for a family of probability distributions 

{Fe: 9 G 0 , where 0 is an open set of K*} 

which is dominated by the c-finite, /^-measure defined in S, where f(x,9) = ^-
are the densities. The measures based on the following functionals are considered to 
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be distantiation measures 

D$(fi,h) ~ f M \~ d/x (Csiszar divergence) 

Mfuh) = I {M(h) + (1 - m(h) - *(A/, + (1 - A)/2)} dp 
x 

(J-divergence) 
Mt(fi ,h) = J [y/~J~ - y/Hhl]2 d/i (M-divergence) 

where S = {a;; / i (z , 9) > 0} and <£(:c) is a real, convex function, which is three times 
differentiable with continuity, positive for the M-divergences and with <j>(l) = 0, for 
Csiszar's divergences. 

With respect to Csiszar's divergences, the following measures are considered in 
this work. 

D\L (h ,h) = J h log ^ d/i (Kullback-Leibler) 

DfLM (/i ,h)= I h log j d/x (Modified Kullback-Leibler) 

DJ
X (fi ,h) ~ J [/i log | + h log - | ] d/i (Jeffreys) 

Df (ft,h) = J (VK-Vh)2 d» (Matusita) 

D$a(fi,h) = J {h ~ / l ) 2 d/i (Kagan) 

Dx(fi,h) = ^ T J l ° g / /r/2_Q d/i, a > 0 a ^ 1 (Renyi) 

Dx(fi,h) = ~\ogJ / I / P / 2
/ ? d/i, i + 1 = 1 (Bhattacharyya) 

and as an information measure, we considered Fisher's measure, defined by 
| 2 

£(») = 
ra r 

Eg — log / (x , 0) if 9 is univariate 

E* y^\ogf(x,9)^-\ogf(x,9)^j ifflisfc-variate 

For the whole, we also considered the following regularity conditions: 

a) Se = {x; f(x,6) > 0} is independent of 9. 

b) w<' -U-and wMdhexist for every e € e-
c) / f(x, 9) d/i is derivable at least twice within the integral sign. 
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3. MEASURES OF INFORMATION IN THE UNIVARIATE CASE 

Some information measures in relation to the groups of probability measures have 
been obtained from the pre-established distance measures, through the following 
expression 

I%(0) = Iimraf-^D [/(*, 9), f(x, 6 + t)}, 

where D is the prefixed distance. In this sense, if one takes Csiszar's divergence as 
a distantiation measure, one obtains: 

Jj(9)=Ita^//(«,^[«^±a]d,. ( 1 ) 
Note that if one defines the function 

fr/«P" m 
and considers its McLaurin's expression, then 

9(t)=9-^-t* + o(t% (3) 

where 

„"<o) = «D/i[g]V 
In this way the following result is proved. 

Theorem 1. 

ICx(O) = ^ 1 ^ ( 0 ) -

If one considers the same procedure in functions of Csiszar's measure, one obtains 
the following results. 

Theorem 2. 

Ih

x(9) = l iminfly. | | [ / ( x , 9)]" • [f(x, 9 +1)?-° d p } = 

. a(a-l)h'(l) F 

= 2 x^ ' 

for a differentiable function h in the neighborhood of " 1 " , with h(l) = 0. 

P r o o f . 

" 'f(x,9+t 
ЃX( ) = üminfiлjl + jf(x, ) ( 

= limшf±Л{l+ *(<)} 

f(x, ) - 1 џ 
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with g(t) in the form (2), and cf>(x) = x1 a — 1. 
If we consider development (3), while using l'Hopital's rule, we can see that 

IX(B) = l i m b 
;h^ + 0(t3) 

= (.'(I)-«3fi = A'(l)/J(«) ? („.ÍMI> / Í ( 9 )= 

Corollary 1. 

a) For h(x) 
1 

a-1 :*:-£(*)= 2-"£(*)• 

b) For /i(x) = - l o g x , a = - , - + - = ! : /£(*) = r ^ - I x W -
1 1 1 
- , - + - = l:-íH0) = „ 
p ' p 9

 x w 2p? 
c) For h(x) = arcsb(x - 1): Ix(6) = " ^ ~ ^ i£( f l ) 

d) For ft(x) = arctg(x - 1): Jx(0) = ---? ^ ' F 
-"£(')• 

Table 1. 

NAME DETERMINING FUNCTЮN RELATЮNSHIP 

Kullback-Leibleг ф(x) = - log X IxL(в) = \lx( ) 

Modified Kullback-Leibleг ф(x) = xlog X IxLM( ) = \i$(o) 

Jeffreys invariant ф(x) = (x — l)logx IJx( ) = IÏ( ) 

Matusita ^ ( x ) = ( l - V ï ) 2 
Ix ( ) = j / í (в) 

Kagan ф(x) = (1 - x)2 /£•(*) = IF
X( ) 

Rényi Hx) = Г І 0S x 

a — 1 
IU(») = \lFx(в) 

Bhattacharyya 
ґ h(x) = -logx 

. = Ì Д + Ì = 1 
l P P Ч 

/{««£-*(-•) 
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From some particular cases of Csiszar's measure, some relationships between in
formation measures, associated to some Csiszar's divergences and also to Fisher's 
information measure are shown in table 1. In this sense, some results have been 
obtained by Kagan [8], Vajda [15], Aggarwal [1], Boekee [3], and Ferentinos and 
Papaioannou [6], for Csiszar divergences and Renyi distance. 

4. MEASURES OF INFORMATION IN THE fc-VARIATE CASE: FIRST 
ALTERNATIVE 

As a generalization of the anterior method to the multivariate case, it is possible to 
consider the matrix, which defines the metric in direction to the tangent space, as 
an information matrix, associated to a predefined distance. In this sense, and for 
Csiszar's measure, the line element is defined by the following expression 

From analogous considerations in the univariate case, we obtain 

dS
2=iy>(i) -jidffdti 

and taking into account that df = V j —— dOi, the anterior expression can be reduced 

to 

. 2 - f U " ( - ) f 1 9f df 1 

In this way, the elements of the matrix, which defines the metric, are determined by 

and the matrix, which defines the metric, can be reduced to 

Remark 1. The results obtained for the univariate case are also valid for the 
multivariate case. 

When the prefixed distance does not fit to one of Csiszar's divergences, it is 
interesting to consider some functionals, which may come from other divergences. 
In this sense, the functionals, which arise from the J and M divergences, become 
particularly interesting. 



568 M. SALICRÚ 

a) For the /-divergence 

ds2 _ Kmuif i / (A0(/) + (1 - A)^(/ + tdf) - 4>[Xf + (1 - A) (/ + tdf)]} d» = 

-i-f^/ftOWr*-g [-*-=-/«/#£.,] a, a,, 

and the expression of the matrix, which defines the metric, is reduced to 

A ( l - A ) 
Ix-»(6) = 

b) For the M-divergence 

1 fл»(f\дSдf 

7 * U)ҖҖ 
áџ 

ds2 = l i m i n f i / [ v W ) - VW7 + <d/)]2 d/i = 

= /[(v^(7))'] l-/f<-/- = 

= £{/[«T £&*}** 
and the expression of the matrix, which defines the metric, is reduced to 

|2 
jM-D 
Lx 

( ) m] & 
In this way, and with respect to the different functionals, which define the metric, 
we have shown. 

Theorem 3. 

a)Ir>) = ^%W-

Í -W™** * 
c) I%-D( ) mTštU:* 

kxk 

One particularly interesting case for the measure I^-D(0), obtained for the group 
of functions 

фa(t) = 
( a - l ) - Ҷ ť « - í ) f 0 r o î - l 

ťtogť f o т r ү - 1 ' 
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where the value of Ix-
D(9) is reduced to 

. ' - - > . „ . g_____-___l (~ [ - a - l « l o g / a i o g / ] N 

Ix (*) = — 2 ( * [ / W{ Wj \)M 

That is to say that IX~
D(0) turns out to be a multiple of the a-order informative 

matrix. 
If one particularizes the measure IX~

D(0) to the group of functions <j>a(t) = ta, 
one obtains 

w-Ш^-ЯШ 
Some studies in this sense have been carried on, see Burbea and Rao [5], Burbea [4], 
Salicru [11,12] and Rao [9]. 

R e m a r k 2. For any information matrix 

G = M= (J *{/)§£: j£dA.) 

the Levi-Civita connection of the first kind associated to G is defined as 

and the generalized connection as 

rf,_ = [y:*]'-§-%•_, 
where 

•o _ _ !%.,,,. 0 / 9 / j9/_ тĘk-Eв[fW) 

In this context, the a-connection defined by Amari [2] is obtained when G = Ix(6). 

5. MEASURES OF INFORMATION IN THE jfc-VARIATE CASE: SECOND 
ALTERNATIVE 

An alternative to the above-mentioned method, consists of defining the elements of 
the information matrix, based on the distance between one given distribution, and 
the result of disturbing the parameter into two directions. In this sense, and for 
ei = (1,0, . . . ,0), e 2 = (0 ,1,0, . . . ,0) , . . . , e„ = (0,. . . ,0,1), the information matrix 
is defined by the expression 

Щ( ) = И m i n f ì ц í /(_, ) , ф(x, + tei)f(x, + tЄj) 

v • r

l f ,i «„ Vf^JTtelJf^J+tej)] , 

= -^Fjfi-'My- T M ^ 
(5) 
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with 6 + tei, 0 + tej G 6 . 

Considering McLaurin's development (the same as in the univariate case), and 
for the function 

g(t) = jf(x,> 
y/ttx^ + teiҖx^ + tej] 

f(x, ) 
dџ 

one finds 

c 4"(l) / l [ 3 / 3 / 1 2 

W ) = ~~8~Jj[Wi + dJj\ d " 

+ 4 J \de? + de] 2f\d9t dOjJ j ^ 

= m^^)+m+m+mm. 

This way, then, we shave shown. 

T h e o r e m 4. 

with 

Jxiß) = 

( hl ••• hl \ 

I22 • • • I22 

\ hk ••• hk J 

,dIU = m = Ą=M}'. 

(6) 

m = ffl^ M + Ml + «-2Wí<« P) 

In an analogous way to the univariate case, considering functions of Csiszar's 
measure, we obtain. 

Theorem 5. 

Ix(0) = limmf^/. {/ [f(x, 9)f [f(x, 9 + tei)f(x, 9 + tej)f-^2 d/ij = 

= h\l){^[Jx(9) + Jx(9)] + {^-IF
x(0)} 

for a differentiable function h, with h(l) = 0. 
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P r o o f . 

lђ( ) = liminf--Л«;i + //(*,. 
^f(x, + te,)f(x, + tЄ]) 

/(M) 
dß} = 

= Iiminf—h[l + g(t)], 
t—o V 

where g(t) is the function defined in (6) with <f>(x) ~ x1~a — 1. This way, considering 
McLaurin's development of g(t), we have 

= ti(l)I?}( ) 

and therefore 

lhx(0) = h'(l) { ^ [JX(9) + Jx(6)} + i ^ i l ! ^ ( 0 ) } . 

If one particularizes the two results obtained above, one can see in Table 2, some 
relationships (for the multivariate case), between measures associated to Csiszar's 
divergences, and Fisher's information matrix. 

Table 2. 

NAME RELATЮNSHIP 

Kullback-Leibler ІX~( )=\[JX( )+JX( )] 

Modified Kullback-Leibler IŘtM( ) = \lFx( ) 

Jeffгeis invariant Ix( )~\\Jx( ) + Jx(Є)} + \lţ(9) 

Matusita Jx(6)-^^[Ы ) + Jx( )}+\lU ) 

Kagan Ixa( )=\[Jx( )+Jx( )\ + \lғ( ) 

Rényi Ш ) = - -i [Jx( ) + JX( )] + ^IF( ) 

Bhattacharyya m = E-ţ±[JX(0) + Jx( )]-~\-IX'{0) 

With the relationship in Table 2 and the values, which take h'(l), one can deduce 
immediately. 
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C o r o l l a r y 2 . 

a) IJ
X(0) = If •(*) = 47^(0) = 7 ^ ( 0 ) + 1$LM(9). 

b) lim7«(0) = 7*L(0). 
a—>1 

c) I${0) = qI»{0). 

Remark 3. Note, that if tf'(l) = ^"(1), then I$(6) = I%~D(e) and also if <f>'(l) = 
4>"(1) = 2, then J£(t9) = 7f (0). 

Remark 4. If in definition (5) one takes | [/(x, 0 + <e,) + / (x , 0 + tej)] instead of 

[f(x, 0 + to) • f(x, 6 + tej)]* , then the value of I$(6) would be 

mlJxW+Jxm]+qiIim 

which is equal t o t h e (7) if <f>'(l) = 0. Some par t icu la r resul ts in this sense have 
been ob ta ined by Ferent inos and P a p a i o a n n o u [6], for Renyi dis tance, Salicrii [12] 
and Salicru and Sanchez [14] (for J -d ivergences) . 

(Received March 27, 1992.) 
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