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K Y B E R N E T I K A — V O L U M E 30 ( 1 9 9 4 ) , N U M B E R 5, P A Q E S 5 1 7 - 5 2 4 

CONTROLLABILITY OF SEMILINEAR 
DELAY SYSTEMS 

K. BALACHANDRAN AND P. BALASUBRAMANIAM 

Sufficient conditions are established for the controllability of semilinear delay systems. 
The results are obtained by using the Schauder fixed point theorem and generalize the 
previous results. 

1. INTRODUCTION 

The problem of controllability of nonlinear systems has been studied by several 
authors by means of fixed point principle [1]. In [7] Lukes showed that, if the linear 
system 

x(t)=A(t)x(t) + B(t)u(t) 

is controllable, then the perturbed nonlinear system 

x(t) = A(t) x(t) + B(t) u(t) + f(t, x(t), u(t)) 

is controllable, provided the function / is bounded. The case where the function 
/ is independent of the control parameter u was considered by Vidyasager [8]. He 
showed that if the function | / | grows slower than \x\ as \x\ becomes large, then 
the controllability of linear system implies that of the perturbed system. Dauer 
[3] obtained several sufficient conditions on the function / for the controllability 
of perturbed nonlinear systems. Recently Do [5] made another weaker condition 
on / for the controllability of perturbed system and deduced Dauer's results as a 
particular case. 

Dauer and Gahl [4] considered the controllability on a bounded interval J = [0, ii] 
of nonlinear perturbations of the linear delay system 

x(t) = L(x,u) 

where the operator L is defined by 

L(x,u) = A(t)x(t) + B(t)x(t-l)+ I K(t,s)x(t + s)ds + C(t)u(t) + D(t)u(t-h). 
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They showed that, if the linear system is completely controllable, then the perturbed 
system 

x(t) = L(x, u) + f(t, x(t), x(t - 1), u(t), u(t - h)) 

is completely controllable provided the function / satisfies certain growth conditions. 
Several types of controllability for delay systems are considered in the literature [2,6]. 
Here the perturbed system is said to be completely controllable on J if, for every 
continuous function <p defined on [—1,0] and every x\ 6 Rn there exists an admissible 
control function u(t) such that the solution of 

x(t) = L(x, u) + f(t, x(t), x(t - 1), u(t), u(t - h)), t £ J 

x(t) = 4>(t), < € [-1,0] 

satisfies x(ti) = X\. In this paper we shall study the controllability of semilinear 
delay system, that is the system without delay in control of Dauer and Gahl [4], by 
suitably adopting the technique of Dauer [3] and Do [5]. Here our control functions 
are continuous functions. 

2. PRELIMINARIES 

Consider the semilinear delay system of the form 

x(t) = A(t)x(t) + B(t)x(t-l) + J°1K(t,s)x(t + s)ds + C(t)u(t) 

+f(t,x(t),x(t-l),u(t)), * € J = [0.t1] (1) 

x(t) = <f>(t) on [-1,0] 

where x G Rn, u £ Rm and A, B, K and C are continuous matrix functions with 
appropriate dimensions and / is continuous. We shall assume that the linear system 

x(t) = A(t) x(t) + B(t) x(t - 1) + I K(t, s) x(t + s) ds + C(t) u(t) (2) 

is controllable. The solution of system (1) on J with x(t) = <j>(t) for — 1 < t < 0 is 
given by the solution of integral equation: 

x(t) = x(t,0,(f>)+ j X(t,s)C(s)u(s)ds+ J X{L,s)f(s,x(s),x(s-l),u(s))ds 
jo jo 

where 
,0 

s(t,0,4) = X(t)<j>(0)+ j X(t,s+l)B(s+l)<f>(s)ds + 

/•O rr + l 

+ f X(t, s) K(s, T-S) (J)(T) dsdr 
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and X ( i , s ) i s a n n x n matrix function satisfying 

^p^- = A(t)X(t,s) + B(t)X(t - l,s) + j K(t,TX(t + T,s)dT 

for 0 < s < t < t\ such that X(t,t) = I, the identity matrix and X(t,s) = 0 for 
t < s. Further X(t, s) is continuous in the compact region 0 < s <t <t\. 

Define the controllability matrix by 

W = W(0,t\)= f ' X(t\,s)C(s)C*(s)X*(t\,s)ds, 
jo 

where the star denotes the matrix transpose. It is clear that x\ is reachable from 
the initial function <j>(t) if there exists continuous functions x(-) and «(•) such that 

u(t) = C*(t)X*(t\,t)W~1 \x\-x(t\, 0,<f>)- j 'X(t\, s)f(s, x(s), x(s-l),u(s)) ds\ (3) 

x(t) = x(t,0, </>)+[ X(t, s) [C(s) u(s) + f(s, x(s), x(s - 1), «(s))] ds (4) 
jo 

a n d x(t) = 4>(t) on [-1,0]. 

We must find conditions for the existence of such x(-) and u ( ) . If a,- G LX(J), i = 
= 1,2,... ,q then ||a,-|| is the L1 norm of a,(s), that is, 

|в.ll - [ Ы 

(5) 

s)|ds. 

Next, for our convenience, let us introduce the following notations: 

K = max{ | |X(t,s) | | :0 < s <t <t\), 

k = max{\\X(t,s)C(s)\\t\, 1} , 

a,- = Qk {\\C*(s)X*(t\,s)\\ \\W-i\\ \\X(t\,s)\\ IKII} , 

6,- = 6K\\ai\\, 

c, = max{a,-,6,} 

d\ = 6k\\C*(s) X*(tus)\\ \\W-l\\ [\x\ - x(tu0, <j>)\], 

d2 = 6k\x(t\,0,<f>)\, 

d = ma,x{d\,d2}-

3. MAIN RESULTS 

Now let us prove our main result in this section. For this we put p = (x,y,u) and 

||P|| = |X| + M + H. 
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T h e o r e m 3.1. Let measurable functions fa : R2n x Rm —• R+ (i = 1,2, . . . ,g ) 
and L1 functions ct{ : J —* R+ (z = 1, 2 , . . . , q) be such that 

i 
\f(t,p)\ < X^M^P) for every (t,p) £ J x R2n x Rm. 

-=i 

Then, the controllability of (2) implies the controllability of (1) if 

limsup ( r - ]Tc iSup{ fa (p ) : ||p|| < r} J = oo. (6) 

P r o o f . Let Q = C(J; Rn x Rm) and define T : Q ~» Q as follows 

T(x,u) = (z,u), 

where 

D(f)=C*(t)X*(<i, t)W r-1 |xi-x(fi ,O,0)-/ ' X(« 1 , s ) / (s ,x(s) ,x(s- l ) ,w(s))ds | (7) 

z(t)=x(t,Q,(f>)+ I X(i,s)[C(s)«(s) + / ( s , x ( s ) , x ( s - l ) , w ( s ) ) ] d s (8) 
jo 

a n d z(t) = <t>{t) on [-1,0]. 

Under our regularity assumptions of / , T is continuous. Clearly the solutions u(-) 
and x(-) to (3) and (4) are fixed points of T. We will prove the existence of such 
fixed points by using the Schauder fixed point theorem. Let 

fa(r) = sup {fa(p):\\p[\<r}. 

Since (6) holds, there exists ro > 0 such that 

i 
~^2citpi(ro) + d < r0. 
i = l 

N ° W ' ^ Qr„ = {(*, u) € Q : |]x|| < ro/3, ||u|| < r0 /3} . 

If (x, u) € Qro, from (7) and (8), we have 

IMI < \\c*(t)x*{h,8)\\ Ww-'W | n - i ( i i ,o ,^ ) | 

+ f1 \\X(tus)\\ V ai(s) fa(x(s), x(s - 1), u(s)) ds 
•lo i=i J 

< | |CҶť)XҶťi,s) | | | |W- {XÍ-XЏU 0,ф)\ 
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+ ̂ ť l | |X(ť 1 , s ) | | í^a i (s)^(r 0 ) j ds 

and 

< (l/6*)íd + 5 > V . ( r 0 ) 

< (r0/6i) < (r0/6) 

< |x(ť,O,0)|+ / ||X(ť,o)C(o)|||H|do 
Jo 

+ / | | X ( ť , s ) | | ] T > ( s ) [0ť(x(o), z ( * - l ) , u(s))ds] 
J° i=l 

< (rf/6) + Jb|H| + iř5*; |H|^(ro) 
i=l 

1 

< (d/6) + *|H| + (l/6)J3d^(ro) 

< (l/6)+[d+£c.ifc(ro)J+*||V | | 

< (ro/6) + (r0 /6) = r 0 / 3 . 

Hence, T maps Qro into itself. Next, we show that T(Qr) is equicontinuous for 
all r > 0. To prove this note that for all (x,u) 6 QT and slt s2 € J, s1 < s2 we have 

K*iЬ»(oa)| |<||C*(в1).YҶť1,в1H7 ,(в2)^ф(.i,«a)|| |W- г | 

л t , 5 

+ / | | X ( ť i , « ) | | У > . ( « ) 0 . ( . ф ) J a ; ( « - l ) , u ( s ) ) d * 
Jo i=l 

| * i - * ( ť ь 0,ø)| 

< | |c*(s 1 )x*(ť 1 ,s 1 )-c*(s 2 )x*(ť 1 ,s 2 ) | | | |py- 1 | 

+ll*(-i,*)llX>.||*-(r)| 

| * i - « ( í i ł 0,0)| 

(9) 

and 
\\z(Sl) - z(s2)\\ < \x(su0,0) - x(«2,0,0)| 

+ £ \\X(Sl, s) - *(o2, o)|| ||C(o)|| ||t;|| ds + £ \\X(s2, o)|| ||C|| |H| ds 

+ f1 \\X(Sl,s) - X(s2,s)\\ ]Tai(s) fc(r) ás + / " ||X(«2, «)|| £ «,(*) fc(r) ds 
Jo , _ j J j , ť = 1 
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< \x(Sl,0,^>)- x(s2,0,<f>)\ + \\X(Sl,s) - X(s2,s)\\\\C\\\\v\\t1 

+U(s2,s)\\ | |C|| INI (s2 - Sl) + \\X(si, s) - X(s2,s)\\ J2 IKII Ur) 
i = l 

+ \\X(s2,s)\\(s2-s1)J2^i(s)A(r)-
1 = 1 

Moreover, for all (x,u) G Qr, 

\\v\\ < WC^^X^t^s^WW^W 1 x 1 - ^ , 0 ^ ) 1 

+ ^ V(*l ,*)l l £ * . ( * ) V-i^ds 

< \\CT(t)X*(tU8)\\lW-

(10) 

I*! - x(tu 0, 0)| + |LY(ťi, * ) | | £ ||a,-|| A(r) 

Thus, the right hand side of (9) and (10) do not depend on particular choices of 
(x,u). Hence, it is clear that T(Qr) is equicontinuous for all r > 0. By the Ascoli-
Arzela theorem, T(Qr) is compact in Q, that is, T is a compact operator. Since 
Qro is nonempty, closed, bounded and convex, by the Schauder fixed point theorem, 
solutions of (3) and (4) exist. • 

4. APPLICATIONS 

To apply the above theorem, one has to construct a.'s and 0,'s such that (6) is 
satisfied. These constructions are different for different situations. However, an 
obvious construction of ai's and (pi's is easily achieved by letting q = 1, « i = a = 1 
and 

<Mp) = <Kp) = s u P { | / ( * , p ) | : * e J } . 

In this case (6) holds if 

l iminf(l /r)sup < r } < 1/cj. 

The following two corollaries are the direct consequence of the Theorem 3.1. 

Corollary 4 .1 . If / is continuous on J x R2n+m and 

lim 1 ^ / ^ 1 = 0, uniformly in t, 
M-°° |p| 

then (1) is controllable if (2) is controllable. 
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Corollary 4.2. If f(t,p) is continuous on J x R2n+m, locally bounded in u and 

lim lfl*'p)l = 0, uniformly in t, 
|U |-,oo |u| 

then (1) is controllable if (2) is controllable. 

Corollary 4 .3 . Suppose that there exist L1 functions a, /? and monotonically 
nondecreasing functions <j>, T, ip such that 

\f(t,p)\ < a(t) (<f,(\x\) + T(\y\) + i»(\u\)) + p(t), for all (t,p) <E J x R2"+m. 

L e t c = ma,x{6fc||C*A*(<1,s)| | | |IV-1H||A(<i,s)| | | |a| | ,6A'| |a| |}. 

Then (1) is controllable if (2) is controllable and 

lim sup (r — c(<j)(r) + r(r) + V^7*)) = co

in particular this is true if 

liminf (0(r) + r(r) + tj)(r)) /r < 1/c. (11) 

P r o o f . Apply Theorem 3.1 with 9 = 2, a\= j3, a2 = a 

tfi(p)=-.l and h(p) = 4>(\x\) + T(\y\) + ^>(\u\). 

First, note that c = c2 where c2 is defined by (5). To prove the corollary, we need 
to show that the condition (6) holds. However, this is trivial, since 

limsup r - sup {cx + c2(<f>(\x\) + r(\y\) + <K|u|))} 

> lim sup (r — Ci — c2((j)(r) + r(r) + V'(r))) = °°-

Hence by Theorem 3.1, the controllability of (2) implies the controllability of (l).O 

Corollary 4.4. Consider (1), where 

l/(. ,P)l<or(*)(IWI)+ /?(*)• 

Here, a(t), (3(t) > 0, and both belong to Ll(J). Assume (2) is controllable on J. 
Then there exists an AQ > 0, which depends on only the matrix functions A(t) and 
B(t), such that (1) is controllable on J provided that ||a|| < AQ. 

P r o o f . Apply the above Corollary 4.3, with 

t(\x\) = \x\, r(|y|) = M, 0CI«l> = l«l-

From condition (11), we have 

lim (<f>(r) + T(T) + ^(r))/r= 1/2 < 1/c = (l/£| |a| |) if ||a)| < (2/c) 

where c = max {6k\\C* X*(h, s)\\ WW^W \\X(h, s)\\, 6A'}. 

Here Corollary 4.4 hold with A0 < (2/c). O 
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