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K Y B E R N E T I K A — VOLUME 30 ( 1994 ) , NUMBER 3, P A G E S 2 7 1 - 2 7 8 

GENERALIZED BAYESIAN-TYPE ESTIMATORS 
ROBUST AND SENSITIVITY ANALYSIS 

J A N H A N O U S E K 

Let Xi, X2,... ,Xn, be i.i.d. random variables with a density function f(x,9) where 
0 £ 0 C Rkis an unknown parameter that we are interested in estimating. Following up 
robustification procedure presented by Huber [10] we shall study one possible approach for 
using (non-sample) prior information for robust type estimators and prove some asymp
totic properties of introduced estimators. We shall show that the Bayes-type estimators 
and maximum posterior probability estimators are asymptotically equivalent to the order 
Op(»-1) or o p (n - 1 ) , depending on some regularity conditions. Because of this asymptotic 
relation, one expects that with an appropriate choice of p (i. e such as we would use in 
generating an M-estimator) we can obtain a Bayesian type estimator with good robustness 
properties. 

In addition, if f(x, 9) = exp{—p(X%, 0)} then these results lead to relations of maximum 
likelihood and Bayes' estimators. 

1. INTRODUCTION 

Let X\, X2,. •., Xn, be i.i.d. random variables with a density function f(x, 9) where 
0 € 0 C Rk is an unknown parameter tha t we are interested in estimating. 

In this paper we shall deal with the problem of how we can use prior information 
about some unknown parameter in estimation procedure, if the da ta contain gross 
errors or are contaminated by a heavy-tailed distribution. 

We shall concentrate on a possible modification of s tandard robust procedures 
that operates with a prior distribution and we shall show tha t the Bayes-type esti
mators and maximum posterior probability estimators are asymptotically equivalent 
to the orders Op(n~l) and op(7i"1) (Hanousek, Lachout [9]), depending on some 
regularity conditions. 

Def in i t ion 1 . The Bayes-type (or B-) estimator (see Hanousek [5], Hanousek, 
Jureckova, Saleh [6]) Bn is defined as 

J ^ . exp { - g ^ p(Xi,9)} • -r(fl)dg 
n / , e*P {-£?=!/>(*. ,*)} •*(')<-* 

if both integrals exist. 
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Definition 2. The maximum posterior likelihood-type estimator (MPL- or pos
terior M- estimators) M* is defined as 

M* G argmax I - £ p(X{ , 0) + In ir(9) J . 

Remark . B-estimator is a generalization of Pitman type or P-estimator (see Johns 
[17]), Huber [12] and Hanousek [4]) Pn, 

Pn = ^ j JZ ,1 J L • l f b o t h integrals exist. 
feexv{~_2i=iP(xi>e)}de 

Recalling a relation between Pitman and MLE estimators (see Janssen, Jureckova, 
Veraverbeke [16]) or Bayes' and MLE estimators (cf. Ibragimov, Khasminskii [13], 
[14]), we expect, because of similarity, corresponding relations between robustified 
versions of these estimates. Johns [17] has shown that there is a connection between 
P- and M-estimators; another proof could be found in Hanousek [4]. 

In Section 2, we shall show, under some regularity conditions, asymptotic, equiv
alence of B- and MPL-estimators. Particularly, if 

f(x,9)=exv{-p(Xi,0)} 

then these results lead to the well-known relations of maximum (posterior) likelihood 
and Bayes' estimators. 

2. ASYMPTOTIC BEHAVIOUR OB BAYES-TYPE ESTIMATORS 

We consider the following sets of regularity conditions (A), (B) and (C): 

(A) 

(Al) 6 C R' is an open set. 

(A2) p : Rd x O —> H+ is a continuous function. Moreover, -^ exists and for every 
9 € G there exist p > 0, 0 > 0 such that for every 

t,vee:\\t-0\\<6, |to--*||<«, 

and for every x 6 Rd 

Ą ř í ) . Ą м ) д$-Ktą) д ^ , v ) <ß\\t-ч\l 

(A3) ~ : 0 —* R+ is bounded and ln7r is well-defined with a continuous derivative 
a lrnr 

89 • 

(A4) The integral fe \\9\\ exp {-p(x, 9)} *(0) d9 exists for every x e Rd. 
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(B) 

(Bl) For every n € N J Mn(x) dF(x, 0O) < +oo, where 

Mn(x) = sup 
l!«ll<' 

« ţ 
&<-.•> 

(B2) There exists a point 0* <E Rl such that f p(x,9*)dF(x,90) 
and / | f (x, 9*)dF(x, 60) are finite. 

(C) 

(CI) We assume that the function h(9) = f p(x,6)dF(x,60) has a unique absolute 

minimum at 0 = 90, i.e. 90 € argmin h(9). 
066 

(C2) If sup ||0|| = +oo then h(9) <p= inf liminf inf p(x,9). 
S€Q A'>O||0||-.+oo \\x\\<K 

(C3) f-r(0o) is a positive definite matrix. 

(C4) / | f (x, 0O) • ( | f (x, 0O)) dT(x, 0O) is a real matrix. 

Under these regularity conditions the following theorem can be proved: 

Theorem 1. Suppose that conditions (A)-(C) are satisfied. Then, for n —• +oo, 

y/n-\\M:-90\\ = Op(l), 

Vn||Bn - 90\\ = Op(l) 

and 
n\\Bn-M*n\\ = Op(\). 

Moreover, if g | exists and £ £ £ - l & ( * ' ' ^° + 7Z9) ~* f^' a s " u n i f o r m ly f o r 

| |0|| < <50, then 

Bn = мn* + n - 1 - + <rP(n-1), 

where 

*-!/„• £ ft^^sÄ^fc)-'(-J|T£w')d' 
ii,i2,i3=i 

and 

'•/^(-^M"-
P r o o f of Theorem 1 is rather tedious and technical. We give only main steps 

of the proofs (details can be found in Hanousek, Lachout [8]; technical reports are 
available upon request of the author). --
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Lemma 1. Let conditions (Al), (A2), (Bl) and (B2) be fulfilled. Then for every 
9 e 0 the integrals 

iг( = Jp(x, )áF(x) 

g«./S(..W), 
Џto-jЏiß.W') 

are finite. 

Lemma 2 . Let conditions (Al), (A2), (B) be fulfilled. Then, there exists a set 
A £ A, P(A) — 1 such that for every w € A and 0 eQ 

t=i 

»=i 

and 

£ £/<*«(«),*)--^M'). 
hold. 

Lemma 3. Let assumptions (A), (B), (C) be fulfilled. Then, for every 6 > 0 there 
exists A > 0 such that 

^.{li**>*}zli«*-t>)-i*«t')+A 

holds for n sufficiently large with probability 1. 

Corollary 1 . Under assumptions (A), (B), (C) we have §n ----+ ̂ o-

Denote by a the smallest eigenvalue of | p - and define Q = sup||»j-t»0|| ^
n \ir(0o))' 

Notice that a > 0 by (C3) and TT is continuous and positive by (A^)-
By Lemmas 1-3 and Corollary 1 we get 

P{^\\M*n-0o\\>M) 

< P(\\MZ-60\\>6) 

+ p ^ n | | K _ , 0 | | 2 _ Q < _ _ L ^ { м . _ й o ) | W i ( , o ) i s > цк-øoЦ > -Lя 
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< (ll-v; - t0|| > s) 

+ P (£n||_V; -0o||2-Q<V^||M*-6'o|| 
•JŽЂЂ{XІЉ) 

v t = l 

' l!^n-^o||>--=я 
ytП 

< P ( | K - * 0 | | >S) + P 
V 7 " 

Ôp 
ĽE<*.*) 
ť=l >î*-î<-

The remaining part of the proof is divided into the following auxiliary lemmas. 

Lemma 4. Let the groups of assumptions (A), (B), (C) be fulfilled. Then for every 
6 > 0 there exists A > 0 such that 

/ 0exp I ~JTp(Xi,9) + \nit(9) 1 d0 
I||tf-ío||>« ( i=i J 

/ exp i - Y" p(Xi ,9) + \n -($) \ d9 
III*-«oii>* [ 7=1 J 

<H n (Д)-O p ( l) 

< H n ( Д ) O p ( l ) 

fín(A) = exp(-nA) • exp ( - £ > ( * ť , M*) + ]nir(M*) . 
ť=i 

Lemma 5. Let the groups of assumptions (A), (B), (C) be fulfilled. Then 

0) +In *-(<?) ) d9 = / exP [-Y2P(XІ> 

= (±^ exp\-JTp(Xi,M*)+lnir(M:)j ^ e x p ^ ^ T 0 ( 0 o ) ^ d^+o p ( l ) 

Lemma 6. Let all the assumptions (A), (B), (C) hold. Then, 

f Oexp [-Y^p(Xi,d) + \nir(6)\ d9 = 

= M*Jexp(-^2p(Xi,9) + lnn(d)\d0 + 

+ i ( ^ expLf^p(Xi,M*) + \n^(M:)YAn, 

where 
An = Op(ì) as n —*• oo. 
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If additionally, | ^ is finite and 

( ; t & ( * - *°> + 7?-) -* S(*°> uniform*for H"" s *» 
then An = A + op(l), where 

*1 »*»!*»—-

By Lemma 5 and Lemma 6, we obtain 

Jggexp(-Er=iPW>g))^)^ 

= jVf* -| —— = 

(7-) ' exP (" £?=, /<*.. Mn) + ln»(K*)) (B + «VU)) 

= ^ + „B$Si)=M- + n ° ^ 
Under the additional assumptions we have 

fl. = M. + I . | + 0 p ( I ) . 
D 

Remarks. 

1. Regularity conditions e.g. (A)-(C) are rather strong, they can be weakened, 
assuming Lipschitz conditions instead of existence of third derivative of p etc. 

2. Let consider estimator of location, e.g. p(X, 0) = 7](X — 8), » is symmetric, 
around zero and the true distribution is symmetric, around 6Q, i.e. F(X,6o) — 
1 - T(20o - X, 0O), we get 0 ( 0 O ) = 0. Consequently, A = 0 and Bn = 
M.t + op^"1). 

3. By linear substitution we get for B-estimator 

s "-* 0 + n ' Cut)d< 
where 

Ln(í) = exp í - X > ( * « > Øo) - p(X,. 00 + n " 1 / 2 • * ) ] ] • ҡ( 0 + n - 1 / 2 • . ) . 
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We can study asymptotic behavior via Taylor expansion of exponential func
tions of the integrands; manipulation with Taylor expansion then brings desired 
equivalence. But the difficulty is, that the error of any expansion (plugged into 
integrals) has to be integrate out and this causes problems. A possible solution 
is to prove tha t the difference between the form with an expansion and that 
without has the proper order. It is easier to use if we apply the results of asymp
totic behaviour of random processes (see Ibragimov, Khasminskii [13,14], and 
Inagaki, Ogata [15]). We get 

1/2 fct-Ln(t)dt 
T* — Bn -f- n ' • —7^ where C is independent on n. 

£cLn(t)dt 
Since constant C is independent on n, we can apply Taylor expansion. This 
technique was used by Hanousek [5], Hanousek, Jureckova and Saleh [7] to 
obtain asymptotic representation of Bn as 

Bi = e0-1-\d0)-Yji>(xi)e0) + op(n-li-2) 
1 = 1 

where 

7(9o) = Eeo(^(Xu0o)). 

One can see that this asymptotic representation does not depend on a prior 
information. It leads to the problem to study a higher order asymptotics. 

4. Some interesting applications of Theorem 1 could be: 

a) Use of the estimator which, in a particular case, is easier to compute 
(switching between multiple-integration and optimalization problems). 

b) Analogously as for MLE we can show tha t one and two-step estimators 
based on any n~l^-consistent estimator will be asymptotically equivalent 
to these estimators. 

c) Study attractive properties of fc-step estimators (easy computation, ro
bustness and bayesian properties). 

(Received March 30, 1994.) 
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