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KYBERNETIKA — VOLUME 76 (1980), NUMBER 5

On an Equivalence of System-Theoretical
and Categorical Concepts

J1ki ADAMEK, HARTMUT EHRIG, VERA TRNKOVA

Minimal reduction of systems is investigated in a general categorical setting. Considering
a base-category & and a concrete category Z of systems in ¢, the existence and uvniversality
of minimal reductions is characterized in terms of the forgetful functor 2 — %",

1. INTRODUCTION

A very general model of systems in a category & has been sketched by Arbib and
Manes [5]: systems form an (abstract) category &, endowed with a forgetful functor

U:9->X

(which forgets the dynamics) and a factorization of Z-morphisms. The latter allows
to study subsystems and reductions. This model was further developed by Ehrig and
Kreowski[7] who gave general sufficient conditions on the functor U for the existence
of reductions and minimal realizations. The aim of the present paper is to prove
that these conditions are also necessary. Hence, the given categorical concepts are
cquivalent to those of system theory. Since the mentioned model is, in fact, not
specific for system theory but has a much wider scope, our results reveal interconnec-
tions of other parts of structural mathematics to this theory.

A rough formulation of the main results:

(i) All systems have minimal reductions iff the functor U preserve cointersections.

(ii) Reduction is universal iff U preserves cointersections and co-preimages.

(iii) If U is a (right) adjoint and preserves cointersections then minimal realizations
can be obtained via Nerode equivalence.

In case of Arbib-Manes machines, where & is the category of dynamics over some
varietor (input process) F: A — A, these results have been proved earlier:

(i) in [1], [13];
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(ii) in [15];

(iii) in [2].
What is new is the generality in which these results hold, moreover, with a small
number of side conditions. In contrast, various side conditions have been used
in the previous papers — owing to the fact that the characterizations there concerned
the varietor F, not only the forgetful functor U. New is also a solution of these
problems in terms of factorization properties of output morphisms UQ — Y, as
explained in [7]. (These factorizations have been introduced by Herrlich [11].)

I. MINIMAL REDUCTION

1,1 A system is, roughly speaking, a dynamics on a set. To determine a system
theory means to specify 1) what dynamics are considered 2) what are dynamorphisms,
i.e. maps compatible with dynamics and 3) what are subsystems. In a more general
setting we start with a structured set (e.g., a vector space or a topological space) and
we specify dynamics with respect to this structure. Thus, we start with a “base”
category 4 (of sets or vector spaces or topological spaces, etc.) and we form a system
theory over #'. Here is the abstract concept.

1,2 Definition. A system theory S in a category A consists of

(a) a category 9, the object of which are called dynamics and morphisms are
called dynamorphisms;

(b) a faithful (so-called forgetful) functor U : @ — ';

(¢) a factorization system (é’, ) for dynamorphisrus.
A system is then a triple S = (Q, Y, y) which consists of a dynamics Q, an output
object Yin the category & and an output morphism y : UQ — Y.

I,3 Remark. Recall that a factorization system (&, .#) in a category @ consists
of a class & of epimorphisms and a class .# of monomorphisms such that:

() 2 = M . &, i.e. every morphism f:Q — Q factorizes as f = m.e, where
e:Q > Qyisingandm: Qy, — Qisin 4

(b) M. ME M and &.8 < &, i.e both classes are closed to composition;

(c) & n M is the class of all isomorphisms;

(d) in every commutative square



there exists a ‘““diagonal” morphism d, making the following diagram

commutative.

The reason for considering this general notion is to specify what is a subobject and
a quotient object: given an object Q in %, each monomorphism m : Q" — Q in A
represents a subobject of Q (informally denoted by Q') and each epimorphism e : Q —
- Q' in & represents a quotient object (Q') of Q.

L4 Example: sequential Z-machines form a system theory in the category 2
of sets and mappings. Dynamics are pairs @ = (Q,, 8) where Q, is the set (of states)
and §:Qy x X — Q, is the (next—state) map. Dynamomorphisms

J:(Q0,0) ~ (20, )
are maps f: Qp = Qg subject to f(q0) = f(g) o, more precisely
f(8(q, 0)) = 5'(f(q), 0) foreach qeQyoeX.

Thus, 2 is the category of Medvedev machines (= sequential machines without
output).

The forgetful functor U : @ — SET simply forgets the next-state map, thus UQ =
= Q, for objects; Uf = f for morphisms.

Finally, the class & consists of all onto dynamorphisms and the class . of all
one-to-one dynamorphisms.

Here, systems are precisely sequential machines, more specifically, non-initial
Moore sequential Z-machines.

Remark. With the above example it can be easily seen how more complex system
theories fit in the general framework, e.g.

machines in a closed or pseudo-closed category [9];

Arbib-Manes machines in a category [5];

continuous-time systems [8].

1,5 A system morphism is a dynamorphism which respects the outputs. Thus,
given systems
$=(0,Y,y) and 5 =(Q,Y,))
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then a dynamorphism f: Q — Q' is a system morphism provided that

Uf
uQ—UuQ'
AN /
NS

' Y

commutes.
Denote by S(Y) the category of all systems in § with the output object Y and all
system morphisms.

1,6 A notion, fundamental for further development, is the reduction of a system.
For systems over sets, reduction is an identification of indistinguishable states.
Generally:

Definition. A reduction of a system S is any system morphism f : S — S’ such that
feé.
A system S is reduced if it has no reductions other then isomorphisms.

Example. For each sequential machine

s:oxzhoSy
denote by 6% : Q x Z¥ —» Q the usual extension to input strings. The minimal
reduction of S (= the one with the lcast number of states, in case S is finite) is ob-
tained as a quotient under the Nerode equivalence =, defined on the state set Q by
g, ~ g, iff for each input string w e Z*

(6*(ar, w)) = ¥(6*(qz, w)) -
Put S/~ = (Q/~, 3, Y, j) where

3(q], o) = [8(q,6)] and J([q]) = y(q) foreach geQ, oeZX.

Then the canonical map f : @ — Q/~ defines a reduction f: S —» §/~.

This is the only reduction of S which is itself a reduced system. In fact, this is the
minimal reduction in the following sense:

1,7 Definition. A reduction f: S — S, of a system S is minimal provided that
any other reduction can be further reduced to S, i.e. for each reduction g : S —» §
there exists a reduction § : S — S, subject to f =g . g.




A system theory is said to have minimal reductions if for each system there
exists a minimal reduction.

Fact: Minimal reduction is unique up-to isomorphism. l.e., given a minimal
redaction f: S — S, then

(i) for each isomorphism of systems i : S, — S; also

i.f:S- S
is a minimal reduction;

(ii) for each minimal reduction f’:S — S, there is a unique isomorphism of
systems i : S, — S with " =i .f.

Remark. Minimal reduction is always reduced. (Proof. Given a minimal reduction
f:S > Syand areduction i : S, - S, of S, we are to verify that h is an isomorphism.
Since g = h.f:S — 5, is a reduction of S, there exists a reduction §: Sy — S,
subject to f = g . h . f. Since f is an epi, there follows Ig, = g . h; thus his a split
mono as well as an epi — hence, an isomorphism.)

Conversely: in a system theory with minimal reductions every reduced reduction
(i.e. every reduction f:S — S, with S, reduced) is minimal. Indeed, besides the
reduced reduction S, the system S has a minimal reduction f’ : S - Sy and there

s s,
l Ve
f / f
Sl

0

exists, by definition, a reduction f : S, — S subject to f* = f. f. Since S, is reduced,
fis an isomorphism. Hence f : S — S, is also a minimal reduction.

I,8 We are going to state a necessary and sufficient condition for a system theory
in a category to have minimal reductions. The sufficiency of this condition is proved
in [7’] under a different terminology: the .4 oy -morphisms, studied there, are easily
seen to coincide with the present reduced systems. The condition is stated in terms
of cointersections of quotients (which is the dual to intersections of subobjects).
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394 Given a collection (possibly large but non-void) of quotients of an object 0, i.e.
a collection of epis

Q- Q; (iel)

their cointersection is the multiple pushout ().

Q
N

y l \‘\-nieI[eieE]
/

x) Q

3. ‘,
\ g /

(Remark: it follows from the axioms of factorization system that if each e; belongs
to & then so does each 2;.) A system theory is said to have &-cointersections if for
each dynamics Q € 2 and each collection of its &-quotients (i.e., dynamorphisms
¢; 1 Q — Q; in &) this multiple pushout exists. This is a weak requirement, indeed:
every co-well powered category 2, which is lither complete or cocomplete, fulfils it.

Another weak requirement is that the forgetful functor U : 2 — A4 should preserve
&-epis, i.e., for each dynamorphism e¢: Q — Q' in & the morphism Ue is an epi
in A

1,9 Theorem. For a system theory § with cointersections and such that the
forgetful functor U preserves &-epis, the following holds:

S has minimal reductions iff U preserves &-cointersections (i.e. iff U maps each
diagram (*) to a cointersection in ').

Proof. If U preserves é-cointersections then the minimal reduction of any system
S is obtained as the cointersection of all reductions of S — see [7].

Conversely, assume the existence of minimal reductions. Given a cointersection
in the category 9:

with each e; in & (i e I} we shall prove that U maps it to a cointersection in 2. In
other words, given a collection of morphisms

y:UQ;»Y in A (iel)




such that y = y;. Ue; : UQ — Y is independent of i, we shall prove that there exists
y UQ" — Y subject to
yi=y .Uk, (iel).

~<
LS
o

Remark: this y’ is then unique because each k; belongs to &, hence each Uk; is
epi in A,
The system S = (Q, Y, y) (where y = y,. Ue,for each i) has a minimal reduction

FiS-50=(0% %)),
For each i e I we clearly have a reduction of S:

¢:S~S;,=(0,Y, ).
By definition of minimal reduction there exist reduction

E,-V:Si—>S“ with f=2¢.¢e (iel).

AN
7

Q
Since &;. e, is independent of iel, there exists a unique €°: Q' — Q° subject to
g, =e .k (iel).
Put y’ = y°.Ue® : UQ’ — Y. Then for each i e I we have
Y . Uk, =y°.0(°. k)= y°.Ug.

395
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Since & : S; —» S® is a system morphism, the proof is concluded: y; = y°. Ug; =
=y . Uk; (iel).

1,10 Example: tree machines. Let Q = {n‘-}is, be a type of algebras, i.e. a collec-
tion of (possibly infinite) cardinals n; denoting the arity of the i-th operation. Then
Q-algebras with outputs are called Q-tree machines. More precisely, form a system
theory over " = SET, denoting by 2 the category of Q2-algebras and homomorphism
with the usual forgetful functor U : 2 — SET and with the factorization system

& = all onto homomorphisms

M = all one-to-one homomorphisms.

Systems in this theory are just Q-tree machines (cf. [4]). There the forgetful functor
preserves cointersections iff the type Q is finitary (i.e. cach n; is natural number).

Thus, for finitary tree machines (which is the case usually considered) each machine
has a minimal reduction. And infinitary tree machines do not share this property.

Remark. Functors U : SET — SET, preserving cointersections, are described
in [ 13]: these are precisely all quotients of coproducts of finite hom-functors. More
generally, Barr [6] exhibits simple side conditions under which each finitary functor
U:92->H (i.c. a functor, preserving filtered co]imils) preserves &-cointersections
for & = all coequalizers.

11. UNIVERSAL REDUCTION

II,1 Given a system theory with minimal reductions, several natural questions
arise, e.g.:

a) Are minimal reductions f:S — S, universal arrows?, i.e. does there exist,
for each system morphism g : S — T with Treduced, a system morphism g* : S, > T
for which g = g* . f?.

S——5

b) Are reduced systems hereditary?, i.e., given a reduced system S and its sub-
system m : S; — S (m e ), does there follow that S, is also reduced ?
We shall show that these two problems are equivalent and the answers are often
negative.

In the terminology of [7], the system theory admits universal reduction provided
that each system has a minimal reduction which is a universal arrow. (In other




words, for each fixed output object Y reduced systems form a reflective subcategory 397

of the category of all systems.) The hereditarity of reduced systems is formulated
in [7] as the condition that (&, #,y7) is a factorization system such that Joyr .
M= Moy

1,2 We are going to state a necessary and sufficient condition on a system theory
to admit universal reduction. We shall use, besides cointersections, also co-preimages
(which are duals of preimages — pullbacks along a monomorphism).

Thus, a system theory is said to have &-co-preimages if for arbitrary morphisms
ee & and fin @ with a joint domain there exists a pushout:

ecd

— (i

II,3 Theorem. The following conditions are equivalent for each system theory S
with cointersections and co-preimages and with the forgetful functor U preserving

&-epis:

(i) S admits universal reduction;
(ii) S has minimal reductions and reduced systems are hereditary;
(ii1) U preserves &-cointersections and &-co-preimages.

Proof. (i) - (iii) U preserves cointersections by 1,2. Let
h

Q——P

| |

{reg)r l i

!

GR TR

be a co-preimage and let f;, B be arbitrary #-morphisms with §. Ul = B, . Ur:
" Uh

ua
Ur ur, \

pR RS T \
AR
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We are to show that there exists a (necessarily unique) A : UP, - Y with § = 1. Ur,
and f; = A.Uh,. Then Uh,, Ur, is a pushout of Uh, Ur, which is a co-preimage

(since r € & implies Ur epi).
Consider the following systems in S(Y):
S=(Q,Y,8,.Ur) and S =(P,Y,p);

they both have a reduced reflection, say

f:8-8 =(@.V5)

f:8->8=(PVYy).
Furthermore, r: S = S; = (@, Y, /il) is clearly a reduction, which can be further
reduced to the minimal reduction S: we have g : S; — § with f =g . r. Since h:
S — S is a morphism in S(Y) (because of f.Uh = f, . Ur), we have a corres-
ponding morphism of reflections, say i = § — §’ with'h.f = f'. h. In particular,
since f=g.r,

foh=(.g).r.

Now we use the fact that h,.r = r, . h is a pushout to obtain t:P; — P with
f'=t.r,and h.g=1.h,.

Put A = j'. Ut Since f': 8’ — 5’ is a system morphism, we have § = j'. Uf’,

therefore A.Ur = (y.Ut).Ur,
= y.Uf
=p. .

Since h:S - § and g : S, > S are system morphisms, we have j = j'. Uh and

B, = 7. Ug, therefore
A.Uhy = (¥ .Ut). Uh,



(iii) = (ii) By 1,2, we know that S admits minimal reduction. Let S = (Q, ¥, )
be a reduced system and let m: S = (Q’, Y, ') > S be its subsystem (me .#).
We are to prove that the minimal reduction f: 5" — S = (Q", Y, y") of §" is an
isomorphism. (Then S’ is reduced.) Consider the co-preimage:

0—"»p
f f,
Q" w0

This is preserved by U, hence y.Um = y’ = y". Uf implies that there exists
vo:UQy = Y with y = y,. Uf,.

Um,

Then f : S = S = (Qy, Y, y,) is a system morphism. Since f, is opposite to fe &
in a pushout, we have f, eé&, i.e. f; : S - S, is a reduction. Thus, f; is an iso-
morphism, for S is reduced. Thus, m, . f = f; . m e .4, which implies fe & 0 M —
— hence, f is an isomorphism.

(ii) = (i) Given a system morphism h:S — S’ and given minimal reductions
f:S— S, and f': S — S, we are to exhibit a system morphism h, : S, = S
with hy . f = f . h.

Let f'. I = m . e be an image factorization of f' . h,say e: Q > Pand m : P —
> Qp where S = (0, Y, ), So = (Qo, Y. yo) and 8’ = (@, Y', '), Sg = (6, Y, ¥b)-
Then we have a system morphism m : § = (P, Y, y; . Um) — Sq. Since Sj is reduced,
so is §.

Q—"wq

/|
/ *e lf'
=2 p_m. g

4] o]

Furthermore, e : S — § is a reduction of S, thus there is a reduction &:8 = S,
with f = . e. Since § is reduced, & is an isomorphism. Put

ho=m.&7 '8, S;.

399



400 11,4 Examples. Whenever the forgetful functor U : 2 — A preserves colimits
(particularly, whenever U is a left adjoint) then it preserves cointersections and
co-preimages, of course. This is the case e.g. for

a) automata in a closed cocomplete category, particularly, for sequential machines
in 2 = SETand bilinear machines in ;4 = vector spaces;

b) continuous-time systems in a closed cocomplete category, studied in [8].
On the other hand, Q-tree machines (I,10) do not have universal reduction unless all
arities are unary or nullary (in which case these machines are sequential), see [15].

Functors U : SET — SET, preserving cointersections and co-preimages, are
described in [14]: these are, up-to natural equivalence, precisely the functors Fy
(where Z, and X are fixed sets) defined by

FrsX =X x 2, + %, on objects

Fy 5/ =f xidy, +idg, on morphisms.

Observe that left adjoints U : SET — SET are just U = F; ¢ with 2, = 0.

HI. MINIMAL REALIZATION AND NERODE EQUIVALENCE

HL1 So far we have worked with systems not considering any initialization.
Now we approach the fundamental concept of a behavior of an (initial) system.

We start with an (output) object Ye 2" and an (initialization) object I € #". An
initial system is a tuple S = (Q, Y, y, 1, i), where (Q, Y, y)isasystemand i : I —» UQ
is a morphism in #’. A system morphism (of initial systems) f:(Q, Y, y, I, i) —
- (Q, Y, y'.1,)is a morphism f : Q - Q' in & subject to

y=y .Uf and ' =Uf.i.

This gives rise to a category S(Y, I) ofinitial systems (for each pair of objects
Y, Iex°)

IIL,2 Definition. A system theory § is standard provided that

(i) The forgetful functor U has a left adjoint. Explicitly, provided that for each
object X € & there exists a dynamics X¥ € 9, freely generated by a morphism



n :X = UX* in the sense that, for each dynamics Q and each morphism f : X - UQ
in A there exists a unique dynamorphism f* : X* - @ subject to f = Uf* .n.

XHUG
|

d /*
Ux

(ii) For each dynamics @ the morphism 17, : (UQ)* — Q belongs to &.

f
#

Remark. The latter condition (i) is satisfied e.g. whenever there exists a factoriza-
tion system (&, .#,) in A" such that

& ={eeP"; Ueed,}.

(This is usually the situation in the current system theories. )
Indeed, since U 15, .7 = 1y, we see that U 17, is a split epi, thus an element
of &, and so 1j,€6.

HL3 For each initial system S =(Q, Y, y,1,i) in a standard system theory
we have a dynamorphism i* : I* — @ and we define the behavior morphism

bg=y.Ui* :UI* > Y.

The system S is reachable in case i* € &.

i Y

[ ———UQ—=Y

1 (it

ure
IIT,4 Example. The free dynamics for sequential X-machines is
I* = (I x 2%, ¢)
where Z* denotes the free monoid of strings in X and
@:(Ix3*)x X1 x3*
is the concatenation: ¢(i, 6, ... 6,; 0) = (i, o, ... 0,0).

In the usual situation, [ is a singleton set I = {4} and i(4) = g, is the initial state
of the machine. Then I* = (2*, ¢) and the map i* : Z* — Q assigns to each string

401



42 g,..0,eZ* the statc] i*(o ... 0,) = g, reached from g, when the inputs oy, ...
..., 0, have been applied. Thus, i¥ is onto iff cach state is reachable from g,.

I1IL,5 Remarks. (i) For two systems S, and S, the existence of a system morphism
f:8,; — S, guarantees that their behaviors are equal: bg, = bg,. Indeed, if S; =
= (qu Y, yi. I, il) and S, = (QZ! Y, ya L, fz), then

fof =1
because i¥ is the only morphism with i, = Ui¥ .5 and we have
iy=Uf.i, =Uf. U . n=0(f.i}).n.
Therefore,

bs, =y, . Ui§ =y, . Uf . Uiff =y, . Uif = bs, .

uQ,

. Y
iy /(# \{\
Ui,

L 1 P
\. ) e
'Z\\UQ// Yy

2
(ii) Any reduction of a reachable system is reachable. Indeed, in the above equality
foif =i :ifif e & (i.e., if S, is reachable) and fe & (i.e., S, is a reduction) then
ifed.
111,6 Given an abstract behavior b:UI* - Y we study its realizations, i.e.

1 #« b

I —Ul

Y

uaQ

systems S with behavior bg = b. Each behavior b has a “free realization” §® =
= (I*, % b, I, n):

(i) S® is a reachable realization of b because * = 1,4 : I — I* belongs to &
and fulfills b . Uy* = b.

(i) Each reachable realization of b is a reduction of S, Indeed, for each reachable
realization S = (Q, Y, y,I,i) of b the morphism i* : 1% — Q (in &) is a system
morphism i* : §® - §.

Dually, the minimal realization of a behavior b is its reachable realization S,
such that any reachable realization has S, as its reduction. Minimal realization is




unique up-to an isomorphism of systems (whenever it exists). E.g., for finite sequential
machines minimal realizations are characterized as the realizations with a minimum
number of states. If each behavior has a minimal realization then we say that the
system theory has minimal realizations. This is no new concept:

III,7 Theorem. A standard system theory has minimal realizations iff it has
minimal reductions.

Proof. Using minimal reductions, the minimal realization of each behavior
b:UI* — Y is obtained as the minimal reduction S, of the free realization S®.
Indeed, each reachable realization S of b is a reduction of S®, hence it can be further
reduced to S,.

Conversely, in a system theory with minimal realizations each system S has a mini-
mal reduction. This is clear for reachable systems: the minimal realization S, of the
behavior b = by is a minimal reduction of S since

(i) S is a reachable realization of b and hence it has S, as its reduction and

(ii) every reduction of S is also a reachable realization of b.
If S is not reachable, we can change its initialization (p]aying no role with respect
to reductions) to obtain a reachable system S with corresponding reductions. More
in detail, for each system S = (Q, Y, y,1,i) put § = (0, ¥, y, UQ, l4). Then § is

reachable by (ii) in IIT,2.
Moreover

/uo\ ua

i 1.7

e f \y\ / \{

~ P uQ Py

PR Tl
ua U, ™

I
0

(a) for each reduction f : § — S, where Sy = (Q, Y, ¥o. I, iy) we have a reduction
e S - (Q(u Y, yo, UQ:f);

(o) for each reduction f: S5 — (Qq, ¥, yo, UQ, iy} We have a reduction f:S —
g (Qm Y, yo, 1, ig - i)~

This shows that the minimal reduction (Qy, Y, v, UQ, io) of the reachable system
§ yields a minimal reduction {Qo, Y, ¥o, I, iy . i) of S.

11,8 Example. For sequential machines, the minimal realization of a behavoir

firroy
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404 is obtained via the Nerode equivalence on Z* (cf. L,6)
uy = u, iff for each string we I* : fu,w) = f(u,w).
Then S, has state set Z*/z and next-state map is

o([u}, @) = [uo]
while the output map is

H[u]) = 1().

We shall present a general notion of Nerode equivalence, based on the ideas
of [4].

A relation on an object X of a category can be viewed as a morphism pair p,, p, :
:E— X (e.g.,inSET, E « X xX and py, p; are the two projections, restricted to E).
Of the three properties, characterizing equivalences in SET, reflexivity is easy to state
generally: a pair py, p, : E — X is reflexive if there exists a morphism d : X — E,
subject to py .d = p,.d = 1.

IILY Definition. Let b : UI* — Y be a behavior in a standard system theory.
A b-equivalent pairis a pair of morphisms in )~

pl,pZ:E-»UI*

such that the corresponding pair of dynamorphisms pf, py : E¥ —I* satisfies
b.Up¥ =b.Ups.

The Nerode equivalence of a behavior b is the largest reflexive, b-equivalent pair.
Explicitly, it is a reflexive, b-equivalent pair p,, p, : E — UI* such that for every
other such pair q,, g, : E' — UI™ there exists a unique morphism k : E' — E subject
tog, =h.pyand g, = h.p,.

P
E_‘p,UI
A S

\\2 ?

H\\ q1 qZ
N

\E:

IIL,10 The construction of minimal realization as the quotient X*/~ for sequential
machines (I11,8) corresponds to a coequalizer of the Nerode equivalence. Thus,
assume that the Nerode equivalence p,, p, : E — UI* has a coequalizer of the form
Uf, where f:1* — Q is a dynamorphism. Then b.Up; = b.Up; implies

b.py=b.Upf nz=">b.Upf .nz=b.p,;



1

_ R
E——ur- Y
R

hence there exists a unique morphism y : UQ — Ysubject to y . Uf = b. The system

S=(Q Y 5LUf.1)

is called the Nerode realization of the behavior b. We say that a system theory has
Nerode realizations if

(i) each behavior has a Nerode equivalence and

(ii) each Nerode equivalence py, p, : E — UI* has a coequalizer of the form Uf,
where f is a dynamorphism.

III,11 We are going to prove that minimal realizations, whenever they exist,
coincide with Nerode realizations. We shall need some more assumptions on the
system theory.

Recall that the kernel pair of a morphism k: A — B is a pair p;,p,:E— A
which is largest with respect to the property k. p, = k. p,, i.e. which constitutes
a pullback square: D

E
el
A

L SNy
lk
B

Thus, to assume that a category has kernel pairs (of all of its morphisms k) is
weaker than to assume it finitely complete. Each kernel pairs is reflexive, because
the pair 1,, 1, fulfils k.1, = k. 1,, whence there exists a unique d : 4 — E such
that1, = p, .dand 1, = p, . d.

Conversely, given a reflexive pair py, p, : E = A its coequalizer k : A — B makes
the above square a pushout.

Proof: we have a morphism d : A — E subject to p; .d = p,.d = 1,; for
arbitrary morphisms g,, g,:A4 —» C with g;.p, =g, . p, we have

91=9y-P1-d=9s.p,.d=g,,

hence g; . p; = ¢ - P> and the morphism g, = g, factorizes through k.

405
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For the theorem below we assume that a standard system theory S is given such that

(a) S has &-cointersections; ‘

(b) both categories @ and 4" have kernel pairs;

(c) The class & is the class of all regular epis (i.e. epise: Q —» Q' in & for which
there exists a pair py, p, = E —» Q such that e s its coequalizer).

Remark: in category with kernel pairs every regular epi is a coequalizer of its
kernel pair.

(d) The forgetful functor preserves regular epis: ¢ € § implies that Ue is a regular
epiin .

III,12 Theorem. A systcm theory as above has minimal realizations iff it has
Nerode realizations. If so then the Nerode realization of any behavior is its minimal
realization.

Proof. (1) Assume the existence of minimal realizations. First, [et us observe that
theforgetfulfunctor U preserves coequalizers of reflexive pairs: indeed, given areflexive
pair p;, p, : A — B in @ then their pushout

B,

P e

~NO
x
N

Ky )
is an &-cointersection (by definition of reflexivity both p, and p, are split, hence
regular epis) such that k; = k, is a coequalizer. Since U preserves &-cointesec-
tions (1,10) there follows that

_ U
Up2 Uk2
Uk,

is a cointersection, i.e. pushout. Since Uk, = Uk,, this is the coequalizer of Up,
and Up,.

Now, let b : UI™ — Y be an arbitrary behavior. In its minimal realization S, =
= (Qy, Y, yo, I iy) denote, for short,

f=if i1 Q.

This is a regular epi, since S, is reachable; by hypothesis also Uf is a regular epi.
We shall prove that the kernel pair of Uf:

P, po  E - UI*




is a Nerode equivalence. That will conclude the proof that our system theory has 407
Nerode realizations: the coequalizer of p, and p, is Uf, because Uf is a regular epi.

(i,) The pair py, p, is reflexive (since it is a kernel pair) and b-equivalent. Indeed,
since S, is a realization of b, we have

b=y, . UI§f =y,.Uf.
Further, Uf. p; = Uf. p, implies
fopl=f.p} E* = Q
because, denoting g = Uf. py = Uf. p,, we have
g=Uf.Upf .n=U(f.p{).n

hence g *

Thus

= f.p;y — analogously g* = f. p¥.

b.Upl =y, . U(f.p{) = yo.U(f. p¥)=b.Up} .

(i,) For each reflexive b-equivalent pair q;, q, : £ — UI* we are going to verify
that Uf . ¢, = Uf . g, — then, by definition by kernel pairs — there exists a unique
morphisms h . £ — E withq, = p, . hand g, = p, . h.

y E [
- Van o
4 #
2 i B f
ey o, ey S— L
5 b 7
Ug// /
Uk 7 7y k
//
uQ Q

Since 1, g, is a reflexive pair, there exists a morphism d : UI* — Ewith q,.d =
=q,.d = 1y There follows that also the pair gf, q¥ : E* - I* is reflexive
(in 2): put

do:ng.d.y:1—>UE*
then the morphism d§ :1* — E% fulfills ¢f .d§ = qf . d§ = 1,.. (Proof: it
suffices to verify that U(q} . d3).ny = U(q3 - dg).ny = Ulys . ny. This is easy, for
Ugt . Udd .y =Uaf .do=Uaf ng. d.my=gqy.d.q, =
=1y N =1

and analogously Ug¥ . Udy . n; = n;.)
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Therefore, as remarked at the start of this proof, there exists a coequalizer k : I* —
- Qofqf, qF, preserved by U. Now, the pair ¢, g, is b-equivalent, thus

b.Ug¥ =b.Uq¥ .

Because Uk is the coequalizer of Ugf and Ugq5, there exists a unique morphism
y:UQ — Y with

b=y.Uk.
Now we can define a system

S=(0,Y,y1Uk.q).

Since (Uk . n;)* = k, this is a reachable system with behavior bg = y . Uk = b.
Thus, S is a reachable realization of the behavior b. There follows that there exists
a system morphism g = S — S, in &,. Now

io = Ug . (Uk .ny)
implies
f=ig =gk
(proof: if is the only morphism with i, = Uiy . #; and we have i, = U(g . k) . ;).
We get
Uf.qy = Ug-(Uk-‘h): Ug.(Uk.qz)= Uf.q,.

That concludes the proof of (i).

(ii) Assume that the system theory has Nerode realizations. Thus, for each beha-
vior b : UI'* — Y we have a Nerode equivalence p;, p, : E — UI" with a coequalizer
Uf : UI* - UQ,. We shall prove that the Nerode realization

So = (Qo ¥, vo, LUS - 11r) s
where y, fulfils

b =y,.Uf,

is the minimal realization of b.

u

H
h ur,
un b
E —pi*ul’—'fa— Y

BN

Uf ua

Yo
UQy




First, (Uf . n)* = fe &, thus, S is reachable system with behavior bg, = y,. 409
.Uf=b.

Second, given a reachable realization S = (Q, Y, y, I, i) of b, we shall verify that
S, is its reduction. Let r, r, : H » I* be a kernel pair of i* : I* — Q in the category
9. This is a reflexive pair, hence so is (obviously) the pair Ury, Ur, in . Since S
realizes b, we have b = y . Ui* and so

b.Ury=y.UG* .r))=y.UG* .1r))=0b.Ur,.
Thus, Ur; and Ur, is a reflexive, b-equivalent pair. This implies that there exists

a unique morphism h : UH — E with Ur, = p, . h and Ur, = p, . h.
There follows

U(f.r)=Uf.p, . h=Uf.p, . h =U(f.r,)
and, since U is a faithful functor (1,2), we get
fori=f.rs.

Now i* is a regular epi (since S is reachable system), hence a coequalizer of ry and r,.
This proves that there exists a unique morphism g : Q — Q, subject to

f=g.i%.

Since g . i* € & implies g € &, it suffices to verify that g : S — S, is a system mor-
phism to conclude the proof. By f = g . i¥* we have
Uf.ny =Ug.Ui* g =Ug.i
and also
(yo.Ug).Ui* = p, . Uf = b = y.Ui*,
which implies
Yo-Ug =y
because Ui* is epi.

(Received November 6, 1979.)
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