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K Y B E R N E T I K A — V O L U M E 31 (1995), N U M B E R 1, P A G E S 4 5 - 6 4 

ON CONSISTENCY OF THE MLE 

F R A N T I Š E K R U B L Í K 1 

Convergence of the maximum likelihood estimator is established without the assumption 
that the true value of the parameter belongs to the null hypothesis QQ. It is shown, that 
the MLE exists with probability tending to 1, and that the distance of the MLE from a set 
H of parameters from Qo tends to zero almost everywhere, where H are parameters of the 
probabilities best fitting the true distribution in the sense that they maximize the mean of 
logarithm of the likelihood function. 

1. INTRODUCTION AND THE MAIN RESULTS 

It is well known that the MLE is consistent if the true parameter belongs to the 
null hypothesis and certain regularity conditions are fulfilled, and some consistency 
results can be proved also in the case, when the theoretical model is misspecified. 
Let us mention some papers, whose results or methods are related to those in this 
paper. Compactness of the parametric set is an essential condition for consistency 
of the MLE in the paper [11]. Consistency for exponential families is investigated in 
[1], existence and uniqueness of the unrestricted MLE is a topic of [8]. Consistency 
of the MLE for Markov processes is under misspecification assumption established 
in [4]. A misspecified i . i .d . case is treated in [12], and consistency of MLE in a 
misspecified model is under general conditions on dependence of observations estab­
lished in [13] and [3]. The aim of this paper is to establish convergence of the MLE 
in the setting admit t ing misspecification of the model, and with emphasize on the 
case of independent sampling from finitely many statistical populations. 

We shall assume, that (S, S) is a measurable space, 0 is a parameter set, { .Tul^ i 

are sub-cr-algebras of S, vu is a measure on Tu and {PJju';9 6 0 } are probabilities 

on (S, Tu) defined by means of the densities 

d p («) 
fu(s,6) = -f-(s). (1.1) 

ai/u 

To ensure measurability of the likelihood function we shall impose the following 
assumption. 

'This research was supported by a grant from the Slovak Academy of Sciences No. 999366. 
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( A 1 ) . 0 is a separable metric space endowed with a metric p, and fu(s,9) is a 
continuous function of 9 G 0 for each s G S. 

We shall admit a possible misspecification of the model, but the true probability 
P, defined on (S,S), will be subjected to some regularity assumptions. In these for 
fiC0 and s G S we put 

Lu(s,n)=sup{fu(s,6);6ett}. (1.2) 

( A 2 ) . There exist norming constants {nu}u
<L1 such that for each 0* G 0 

Km — log/u(s,0*) = JOH (1-3) 
u—oo nu 

P almost everywhere, and I is a continuous function of 9*. 

( A 3 ) . For each 9* G © there exists a positive number A* = A*(9*) such tha t for 
any arbitrary fixed number A G (0, A*) and for the set 

V(9*,A) = {9eO;p(9,9*)<A} (1.4) 

one can find an Tu measurable function gu(s, 9*, A) of the argument s such tha t on 
S for the constants {nu}u

<L1 from (A2) 

— logLu(s,V(9*,A))<gu(s,9*,A) (1.5) 
nu 

and 
lim gu(s,9*,A) = I(9*,A), (1.6) 

u—»oo 

P a. e., where in the notation from (A2) 

lim 1(9*, A) = 1(9*). (1.7) 
A—0+ 

( A 4 ) , Let {nu}u
<>-1 be the norming constants from (A2). If c is a real number, 

then there exists a compact set T C © such that 

lim sup — logL u ( s , 0 — T) < c (1-8) 
u—>oo 1 U 

P a .e. 

In the following theorem we shall use for Q C 0 in accordance with (A2) the 
notation 

I(Qo) = sup{I(9*);9en0}. (1.9) 
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Theorem 1.1. Let us assume that the regularity conditions (A1)-(A3) hold and 
the set 0 is either compact or (A4) is fulfilled. Further we suppose that fio C 0 is 
a closed set and T//»*\ ^ «~.\ 

1(0 ) > -oo (1.10) 
for some 6* £Qo-

(I) The set 
H = {6* g f i 0 ; / ( ^ ) = -(fto)} (1.11) 

is compact and non-empty. 

(II) There exist mappings ~ ^ ^ fi ^ _ 

measurable with respect to Tu and such that 

P Lu(s,Clo) = Lu(s,9u(s)) for all u > u ( s ) = 1 , (1.13) 

with Lu(s, Q,o) = Lu(s,6u(s)) for all s E S in the case when QQ is compact. If (1.12) 
are any measurable mappings satisfying (1.13), then the random variables 

p(6u,H) = mi{piOu(s),6*);d* E H } (1.14) 

converge to zero P a.e. 

To pronounce the Corollary 1.1 we shall suppose that v is a measure on (X,T) 
ana {fe(x\y); 0 E 0 } is a family of transition density functions (with respect to v) 
of transition probabilities P$(A\y) of a Markov process. 

(A*l ) . 0 is a separable metric space endowed with a metric p, and fe(x\y) is a 
continuous function of 6 E 0 for all x, y E X. 

Let us further suppose that Xi,X2, • • • is a process whose true distribution is 
such that the law of large numbers holds for sequencies {$(Xi,Xi+i)}fl1 with finite 
E ( £ ( x i , x 2 ) ) (this is for Markov process according to Remark 2.2 in [4] guaran­
teed by validity of the condition (A\) in [4]). Obviously, in the notation S = x°°, 
S = T°°,Tn = T*...*T,s = {xn}%L1 E S a n d 

n - l 

fn(s,0) = fn(xi,...,Xn,6) = f(xi) f j fff(xi + 1\xi) (1.15) 
t = l 

the assumption (Al) is fulfilled, provided that (A*l) holds. As it is observed in [2] 
p. 4, information about the initial density f(x,9) does not increase with n, and [2] 
therefore uses as log-likelihood the function 

n-l 

L(6) = ^2logfe(xi+l\xi), (1.16) 
1=1 

which is also the approach used in [4]. The initial term f(x) is in (1.15) included 
to fulfill the requirement (postulated at the begining of the paper) that {/u} are 
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probability densities, and simultaneously to ensure that the MLE based on (1.15) is 

the same as the one based on (1.16). 

Put t ing nu = n and denoting 

L(XІ,XІ+I,V) = sup{/ø(xi+i|зčť); e V} 
n-l 

logfizú + ^ìogLfaxi+uVЏ*,*)) gn(s, *,A) = -
n 

i = l 

we see that (A2), (A3) follow from (A*i) and the following assumption, where E 

denotes expectation with respect to the true distribution P. 

( A * 2 ) . For each 9* £ © there exists a number A* = A*(9*) such that for the set 

(1-4) r -
E mxx.{Q,logL(Xi,X2,V(e*,A))} <+oo (1.17) 

and 1(6*) = E(\og fe*(X2\Xi)) is a continuous function of 9* £ O. 

From Theorem 1.1 we therefore immediately obtain the following assertion. 

Coro l lary 1.1. Let us assume that the assumptions (A*2) and (A*l) are fulfilled, 
the set QQ is closed in 0 , and for some 9* £ fio the inequality (1.10) holds. Then the 
assertions (I) and (II) of Theorem 1.1 remain true provided that either 0 is compact 
or the assumption (A4) holds. 

We remark, tha t on the one hand the asssumptions used in the Corollary 1.1 are 
less restrictive, than the assumptions of [4] imposing on the functions \ogfg(x\y) and 
on their expectations some differentiability conditions, not required in (A*2). On the 
other hand, the condition (A*2) requires validity of (1.17) for all 9* £ 0 , while (A6) 

of [4] requires uniform convergence of - YH=\ -0S/f(^-V'+l 1^') o n a neighbourhood 
V* only for the unique 9* £ 0 , postulated in [4] to maximize E(log/6>(x2|^i))-
However, [4] does not deal with the general case Qo = Q D C, where C is a closed 
subset of Rk, while the Corollary 1.1 guarantees consistency of MLE for any closed 
subset of the parameter space. 

A more general framework is used in [13] and [3], where the conditional densities 

are allowed to vary for all t = 1 ,2, . . . , and the limit in (1-3) may not exist in such 

a case. In these papers convergence to zero of 9n — 9n is established under different 

conditions, with 9n being the MLE and 9n denoting the postulated maximizer 9n of 

the mean of logarithm of likelihood function of n observations; the parameter space 

is in [13] assumed to be compact, and [3] deals with the case fio = B, where B is an 

open subset of Rp. Thus while in [13] and [3] dependence of observations may be of 

a type not allowed by ( A 1 ) - ( A 4 ) , these conditions allow to establish consistency of 

MLE for types of the null hypotheses, not included in [13] or [3]. 

The main goal of this paper is to prove consistency of the MLE in the case when 

inference is based on independent random samples from q populations. 
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Let {H7; 7 G 3 } be a family of probability measures, defined on (X, T) by means 
of the densities rp 

f(x,j) = -^(x) (1.18) 
av 

with respect to a measure v. Let us denote the g-fold products 

S = X°° x ... xX°° , S = T°° *...*T°° , S = Eq. (1.19) 

If 0 = (6\,... ,6q) G 0 , then 6j is the parameter assigned to the j-th population. 
We shall asssume, that statistical conclusions about 9 are for 

« = ({-?)}S'.i.....{4*)}^i)€i' 

b a S e d ° n «„ = *<") = (!/(l,«<1)) >/(«,"«)), (1.20) 

where y(l, n„ ) , . . . , y(qr, nu
9') are independent random vectors, and 

y(i,n</)) = (4 i ) , . . . ) ^ ) ) 

is a random sample (with the sample size nu ) from the j-th population. In this 
g-sample case the cr-algebras Tu and the norming constants nu are determined with 

Tu = Tn^ *...* Tn^ , nu = nM + . • • + nu«>, (1.21) 

and the densities on which the MLE is based 
q n (

ц

я 

fu(s,9) = fu(x^\6) = J ] I I f(*i\0j) • ( L 2 2) 
i = i . = 1 

(RA1). 3 is a separable metric space endowed with a metric p, and the function 
f(x, •) is continuous on 3 for each x (E X. 

The true distributions Pi,..., Pg of the q underlying populations will be subjected 
to the following regularity assumptions. 

(RA2). For each 7 E 3 there exists a positive real number A* = A*(7) such that 

f ° r ^ ^ V(y,A*) = {7 G 3; p(jn) < A*} (1.23) 

in the notation L(x, V) = sup{/(x,7); 7 G V} the inequality 

/ max{0,logL(;r,l/(7,A*))}dp,(.r) < + 0 0 (1.24) 

holds for j = 1, . . ., q. 

(RA3). The integral 

- ) ( ? ) = / \ogf(x,1)dPj(x), (1.25) 
Jx 

which according to (RA 2) exists with —00 as a possible value, is a continuous 
function of 7 G 3 for all j = 1,. . . , q. 
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(RA4) . If c is a real number, then for j = 1 , . . . ,q there exists a compact set 
Tj C S such that i 

limsup — logL( :r i , . . . , xn, E — Tj) < c (1-26) 
n—KX> Ti 

a.e. Pj50, where in accordance with (1.2) 

L(xi,..., *„, U) = sup i f[ f(Xi , T ) ; 7 € U 1. (1.27) 

In this setting and the notation 

P = P™ x . . . x P?°° (1.28) 

Theorem 1.1 gets the following form, where measurability of (1.12) with respect to 
Tu obviously means that 9U = 0u(x(u)), with a:(u) described by (1.20). 

Corollary 1.2. Let us assume that the regularity conditions (RA1)-(RA3) hold 
and in the notation (1.21) 

n(J) 
lim nu = +oo , lim = pj E (0,1) for j = 1 , . , . ,q . (1.29) 

Further we assume, that the set E is either compact or (RA 4) holds, and the set 
fi0 C O = Eq is closed. If for some 9* — ($*,..., $*) G l-o and the quantity 

3=1 

the inequality 

holds, then in the notation 

I(0*,P) = YJPJ / log/M))<-P; (*) (1.30) 
- = i J 

1(0*,p)>-co (1.31) 

I(Q0,p) = sup{/(r,p); 9* G ^o} (1.32) 

t H e S6t H = H(p) = {0* G Qo; l(0\p) = /(fio.p)} (1-33) 

is compact and non-empty, and the assertion (II) of Theorem 1.1 remains true. 

A similar assertion for the one-sample case q = 1 and based on stronger con­
ditions can be found in [12], where convergence to the postulated unique parameter 
minimizing the Kullback-Leibler information quantity K(g : / , 0) has been proved 
under the assumptions, that the parameter set is compact, the true distribution G 
has a density g with respect to the measure v occurring in (1.18), E(log<7) exists 
and the densities (1.18) are uniformly bounded with a G-integrable function. These 
assumptions remain in force also when the general setting in [13] is applied to the 
i.i.d. case. We remark, that in the g-sample case described in Corollary 1.2, the 
assumption (RA4) is imposed to remove the condition of compactness of the pa­
rameter space. However, as we shall prove in the following theorem, in the case of 
exponential families of probabilities even this condition may be omitted. 
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(RC1) . The measurable space (X,T) = (Rm,Bm), the dominating measure v is 
not suppported on a flat, the parameter set 

S = j 7 G Rm; / e7 x dv(x) < +00 ^ (1.34) 

is open, and the densities are determined by the formula 

d ~P 
/ ( ^ > 7 ) = £ r 1 W = e7 x~c^, (1.35) 

dv 

where prime denotes transposition of the vector, and 

C(j) = \og f ei'xdv(x). (1.36) 

(RC2) . The true distributions Pi,.... Pq of the q populations are such that 

xdPj(x)eB(v), j = l,...,q, (1.37) 
/ 

W h e r C B(v) = {Ey(xy,ye~}. (1.38) 

The condition that the dominating measure v is not supported on a plane, i.e., 
thai v(Rm — N) > 0 for every hyperplane N = {y G Rm; c' x + b = 0}, is according 
to Lemma 2.1 in [1] equivalent to the fact that the probabilities {JP7; 7 G 2} are 
mutually different. In (1.38) we use the notation 

E7(x) = f xf(x,1)dv(x), (1.39) 

where the integral is taken coordinate-wise. Since the set S is open, all derivatives 
of the function f e7 x dv(x) of 7 may be computed, according to Theorem 9 Chapter 
2 in [7], by differentiating under the integration sign, which together with Lemma 
2.2 in [1] means that the mapping 

i(l) = E7(*) (1.40) 

is 1 — 1 on S. Hence under validity of (1.37) there exist unique parameters 9\,..., 9q 

from S such that r 
J xdPj(x) = E9j(x), j = l,...,q. (1.41) 

Similarly as in Theorem 1.1 and Corollary 1.2, also in the following statement we 
use the notations (1.19)-(1.22) and (1.28). 

Theorem 1.2. Let us assume that the regularity condition (RC 1) holds, and in 
the notation O = S ? _ _ _ .. .„. 

Qo = QnC, (1.42) 
where C C Rmq is a closed set. 
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(I) Let us denote a?= * Xw = i x j a n d Pu^ (cf- (1-38)) 

An = {(xu ...,xn)tR
mn;x£ B(u)} . (1.43) 

This set is open and there exist measurable mappings 

~9U : Du = v4na) x . . . x i4B(,) — • fto (1.44) 

such tha t (cf. (1.2)) L{xiu)Qo) = j r ^ W *„(*(-))) ( 1 . 4 5 ) 

for a l l x ^ ) £DU. 

(II) Let also both (RC 2) and (1.29) hold. Then in the notation (1.28) and (1.20) 

P su Є Du for all u > гí(.s) = 1, (1.46) 

the set (1.33), where p = (p\, • • • ,pq) are the numbers from (1.29), is compact and 

non-empty, and if 9U : XUu —• Q0 are any measurable mappings such tha t 

P [ S 6 S ; L(x^u\Q0) = L(x^u\0u(x
{u))) for all « > « ( « ) ] = 1, (1.47) 

then the random variables 

p(9u, H) = inf{ p(9u(x^),9*);9* G H } , (1.48) 

where p(0,9*) is the usual Euclidean distance, converge to zero a.e. P. 

Let us denote for 7, 7* from E 

H(T,7*)= Jlog(J^^f(x}7)du(x) = (1-j*)%(x)-C(7)+C(7ni (1.49) 

and for 0 = ( # i , . . . , B q ) , 9* = (9\, . . . , 9*) belonging to 0 = Eq and a vector p = 

(pi,... ,pq)' with positive coordinates 

я 
K(M>) = £ P І K ( M ; ) - (--50) 

;'=i 

If the parameter 9 determined with (1.41) belongs to fi,0, then making use of (1.35) 

and (1.49) we get that 

\ogf(xi$i)dPj(x)-f\ogf(x,e*)dPj(x) = K(ej,B*). 

Thus in the notat ion 

K(9,Qo,p) = mf{K(9,9*,p);9* 6 Q0} (1-51) 

the set H from Theorem 1.2(11) can be written as 

H = {9* £ Q0; K(9, 9*,p) = K(9, Q0,p) } = {0} , 

because for 9^9* according to the remark following (RC2) the probabilities Pg}, 

~P9* are different for some ;', and therefore K(9,9*,p) > 0 = K(9,Q0,p)- Hence 

from Theorem 1.2(11) we obtain the following assertion. 
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Corol lary 1 .3 . Let us assume that the assumptions of Theorem 1.2 hold, and the 
parameter 9 = (9\,...-, 9q) determined with (1.41) belongs to QQ. If 9U : XUu —> QQ 
are measurable mappings satisfying (1.47), then 

a. e. P for u —• oo. 

The previous theorem and its corollary are an extension of the Theorem 3.1 and 
Lemma 3.2 in [1], where in the one-sample case q = 1 the true distribution P\ is 
supposed to fulfill (1-41) for some 9\ GOo, and existence of a measurable restricted 
MLE is guaranteed if the maximizers of l o g / ( x i , . . .,xn,y) on fio are unique. 

Let k > 1 be an integer and a = k(k + l ) / 2 . Let us put m = k + a and denote 

E = ( Y = 0 . V ) ' ' Rm> A* € Rk> ^ e Ha and V(a) is positive definite} (1.52) 

the set of parameters of the non-singular ^-dimensional normal distributions, i.e., /i 
is the vector of means, a = ( t>n, . . ., v\k, t'22, • • •, v-ik, • • •, Vkk)' are elements of the 
covariance matr ix and V(a) is the symmetric matrix with V(a)ij = Vij for i < j . 
For Y = (fi',a')' G S let f(x,j) be density of the normal distribution N(/i, V(<r)). 
In this setting from Theorem 1.2 we obtain the following assertion. 

Corol lary 1.4. (I) Let in the notation 9 = Eq and (1.52) 

n0 = enc, (1.53) 

where C C Rmq is a closed set. If we put 

An = {(xl,...,xn) ERkn; d e t S > 0 } , (1.54) 

where E = ^ X^?=i(;Ei — *)(*> ~ ^)'> * = ~ 5Zi=i xi> then there exist measurable 
mappings (1.44) .juch that (1.45) holds. Moreover, if the true distributions of the q 
populations are such that the covariance matrices 

Vj = c o v (x\Pj) (1.55) 

are positive definite for j = 1,... ,q, then the assertion (II) of Theorem 1.2 is true. 

Since for any normal distribution with parameter from (1.52) probability of the 
set (1-54) according to [10], p. 73, equals 1 if n > k, from the previous Corollary we 
get as an immediate consequence the following existential assertion concerning the 
Behrens-Fisher problem. 

Corol lary 1.5. Let 

QQ = {(91,..., 9*q) G Eq; E- j (x) = ... = E9.{x) } (1.56) 

denote the hypothesis of equality of means of q normal populations without restric­
tion on their positive definite covariance matrices. If the true distributions 

PJ=N(/,j,ZJ) 
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where covariance matrices of these normal distributions are regular, then a mea­
surable MLE 0U of the parameter from (1.56) exists on the set where the sam­
ple covariance matrices are positive definite, which has probability 1 provided that 
mirij n\i > k, and under validity of (1.29) the random variables (1.48) converge to 
zero P a.e., where the non-empty compact set 

H = {0* G fi0; K(0,0*,p) = K(0,Q0,P)}, (1.57) 

in the notation (1.50), (1.51) the symbol K(0j, B^)=K(P$i, Pe*) denotes the Kullback-

Leibler information quantity, 0=(0\,... ,0q) and 0j corresponds to N(fij, E j ) . 

We remark, that if X = { 0 , 1 , 2 , . . . } , T = 2X is the system of all subsets of X, 
f(x,y) = e _ 7 7 x ' / x ! denotes density of the Poissson distribution and S = (0 ,+oo) , 
then the assertions (I) and (27) of Theorem 1.2 remain true, if we put B(v) = 
(0, +oo) and f x dPj(x) = X^^Lo x^j({x})- ^ e assertion (I) can be easily improved 
in the sense tha t (1.44) can be written in the form 0U : X n « x . . . x Xn* — • QQ, 
where QQ denotes the closure of QQ, (1.45) remains unchanged and if computation 
of (1.45) involves zero value of the parameter, by density for A = 0 we understand 
f(x,0) = 8x>o, where 8x>o is the Kronecker delta. 

2. PROOFS 

The following assertion is an extension of Lemma 3.3, p. 307 in [9] in the sense that 
the compact set F need not be a subset of Rk. We remark that the presented proof 
seems to be simpler also in the case when T C Rk • 

L e m m a 2 .1 . Let us assume that S is a cr-algebra of subsets of S, I is a compact 
metric space and B are borel subsets of I \ If g : S x T —* R is such that the function 

(a) g(s, .) is continuous for each s £ S, 

(b) g(-,j) is measurable for each j G T, 

then there exists measurable mapping T : S —* V such that in the notation 

g(s,A) = sup {g(s,j); j g A} (2.1) 

the equality 
g(s,T(s)) = g(s,T) (2.2) 

holds for each s £ S. 

P r o o f . Since F is a compact metric space, there exist {jj}fL1 from T and a 
non-decreasing sequence {mn}rT=i of positive integers such that for each n 

Sn = (Til • ••>7m t t} 

is a 2 _ n net in F, i.e. mn 

T=[jU(lj,2-n), 
y=j 
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where U(jj, 6) = { j * £ T; p(jj ,J*) < 6 }. We shall utilize the fact, that the sets 

w[1)={seS]g(s,T)=g[s,u[ji,
1-^ 

are measurable, and 
ť - l 

vm = ww.\jwmt i=1 m i 

i = i 

form a measurable partition of S. Thus the mapping 
mi 

T I ( S ) - y2nxvw(s) 
i = l 

for which __(«) = ji if s £ Vf , is a measurable mapping from S into T. 
Let us assume, that for n = l,...,k we have already constructed measurable 

mapings Tn : S —* _ such that for all n 

m» 1 

TnW=5_TaV(»)W, K T n W . T n + l W ) <------
i = l ' Z 

and for all s £ V{ , » i \ \ 

g(s,Y) = g[s,U\ji,-y^ . 
Denoting 

{. € vf>;»(», r) =g(,,u (7i, i ) ne/ (7i, ̂ L 

(2.3) 

(2.4) 

FV (*+i,0 

г = l 

taking into account the fact that {V- ' ; t =- 1, . . . . m*, j = 1, .. . m^+i} form a 
measurable partition of S, and putting 

mк+1 

T„+iW = X . 
j = l 

53"yi^ví*+i«ť)W 
Í = I 

m f c + i 

5 3 7iXv(*+i)W> (2-5) 
j = i 

wh( 

we see that 

and foг s Є VJ-к+1) 

vlk+1) = UVjk+1'l\ 

1 1 1 
p(Tk(s),Tk+1(s)) < 2* + 2*+T < 2 ^ " 

g(8,Г) = gUU(7j,ъ r) 

Hence existence of measurable mappings {Tn}n%1 satisfying (2.3) and (2.4) is proved, 
a n d t h e i r l i m i t _,, . ,• rr> , . 

rW=J™ r*W 
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is obviously measurable. Since according to (2.4) 

\g(s,T) -g(s,Tn(s))\ < sup l\g(s,j) -g(s,~/*)\; p(y,j*) < ^f , 

also the equality (2.2) holds. • 

P r o o f of Theorem 1.1. (a) Let us first suppose that 0 is a compact set. 
Since the function 1(0*) in (1.3) is continuous, the assertion (I) is obviously true. 
Compactness of £_0 together with (Al) according to Lemma 2.1 mean that there 
exist measurable mapings (1.12) satisfying LU(S,QQ) = Lu(s,Ou(s)) for all s £ S. 

Let (1-12) be any measurable mapings satisfying (1.13) and a fixed number e > 0 
be such that the set r r ,-* _ _. , .+ rrX ^ > ,n „ . 

UE = {0* £ Qo; p(0*, H) > s) (2.6) 

is non-empty. It is easy to see that continuity of 1(0*) together with (1.11) imply 
existence of a real number M < I(9o) such that 

Ue C Qo(M) = {0* E Q0; 1(0*) < M) . (2.7) 

Now we shall proceed similarly as in the proof of Theorem 1 in [11]. Since the 
set _-o(M) is compact, validity of (A3) implies existence of finitely many open sets 
Vi = V(0*,Ai), i=\,...,r such that 

r 

Slo(M)c [jViC 0 - 1 , 
i = i 

m a x { / ( ^ , A 0 ; i = l , . . . , r } < I(Q0) . 

Hence if n E H, then putt ing n 

log 5 = 0 (2.8) 

and making use of (A3) we see that 

.. 1 Lu(s,Q0(M)) ^ 1 Lu(s,Vz) ^ 
lim sup — log — ^ — — ' < max hm sup — log —-— < 0 

u-+co nu L'U(S,UQ) i=l,...,r u_ .oo nu Lu(s,rj) 
P a.e., and (II) follows from (2.6) and (2.7). 

(b) Let us drop the assumption of compactness of 0 . Since (1.10) holds, there 
exists a real number c such that 

c<I(Q0). (2.9) 

Let F C 0 be the compact set satisfying (1.8). If 9 £ @ — T, then 1(0) < c, because 
in the opposite case according to (A2) 

1 1 
liminf — l o g L u ( s , 0 - T ) > liminf — l o g / u ( s , 0) > c 

U—+CO nu u—t-oo nu 

P a.e., which is a contradiction with (1.8). Thus I(Qo) = I(^o n T) and 

{o* Ef i 0 ; i(o*) = i(tt0)} = {o* enQnr; 1(0*) = i(n0nr)}. (2.10) 
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Further, if 77 is a fixed point from 77, then in the notation (2.8) 

.. 1 . Lu(sfQ0-T) 1 Lu(s,B-T) 
limsup — log —————-— < limsup — log — — < 0 

u—*oo Tlu LuyS,\lo) u—>OQ Tlu LU(.S,77J 

P a. e., because c < I(r/). Hence P a.e. 

Lu(s,Slo-T)<Lu(s,n0) 

for all u > u(s). Since the set T is compact, putting 0 = QQ D T and taking into 
account (2.10) and the part (a) of this proof we easily obtain that the Theorem 1.1 
is true. • 

P r o o f of Corollary 1.2. From (1-24) we obtain that the integral 

IJ(1,A*) = J\ogL(x,V(1,A*))dPJ(x) (2.11) 

exists with —00 as a possible value. Employing the monotone convergence theorem 
we get that in the notation (1.25) 

lim /j (7, A) = 4 ( 7 ) . 
A—>-0+ 

Hence putting 

дu(s, *,A)= — log 

,0) 

П Д Д * Г >V(ГjtA)) 
i = l г = l 

(2.12) 

(2.13) 

I( *,A) = J2PjЩ,A) 
i=i 

(2.14) 

and utilizing the law of large numbers we obtain that in the notation (1.30) and 
1(0*) = 1(0*,p) the conditions (Al)-(A3) hold. Thus according to Theorem 1.1 it 
is sufficient to prove (A4). 

First we show that for j = 1,.. ., q 

limsup — log L(x\,. ,.,xn,E) < d (2.15) 
n—>-oo Tl 

Pf0 a. e. for some real d. If F is the compact set from it (RA4) satisfying (1.26) with 
c = 0, then according to the previous part of the proof there exist finitely many sets 
V(jk, At), k = 1,.. ., r such that in the notation (2.11) 

Г C \j V(jk, Afe) , mąxmax/j(7Jfc, Ajfc) < + 0 0 . 
k-i 

Thus 
limsup — logL(æi,. . . ,xn, S) < 

n—*oo П 
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< l imsup m a x < - l o g L(xir . , x n , S - r ) , - l o g ( JJL (x ( - , V(jk, Ak))\ ;k=l,. . , r >. 

Choosing real numbers dk > maxj Ij(jk, A*), putting d = max{0, d\,. . ., dk}, uti­
lizing (1.26) and the law of large numbers we get (2.15). 

Now we utilize (RA4) according to which there exists a compact set Tj C S such 
that i 

l imsup - l o g L ( x i , . . .,xn,E-Tj) < CJ (2-16) 
n—*O0 n 

m 

P°° a.e. Obviously, V = Tj X . . . X Tq is a compact subset of 0 and 

— log Luis, 6 - r ) < max — log Lu(s, Dt), (2/17) 
nu ;=--,-,« nu 

where Dj = S X . . . X 3 X (S — Tj) X S X . . . X S. But if we denote ]P the sum over 
the indices 1 < j < ry, j 7̂  t, then in accordance with (2.15), (1-20) and (1.22) 

l imsup — logL u ( s , A ) < 
u—+00 nn 

< J ^ * l imsup — l o g L ( y ( i , n J p ) ; S ) + l imsup — l o g L ( j / ( i , n ^ ) , S - L\-) < 
u—+00 " i , u—*oo nu 

< J2'Pjd + P>ci (2-18) 

P almost everywhere. Hence if c is a fixed real number and the Cj's in (2.16) are 
such that 

max f (1 - pi)d + picA < c , 

then combining (2.17) and (2.18) we get (1.8). • 

The p r o o f of Theorem 1.2 is based on the following lemmas. In these we use 
for 7, 7* from (1.34) in the notation (1.35) the quantity (1.49). 

Let 7 be an interior point of (1.34). As pointed out in [1], p. 195, since according 
to Theorem 9, Chapter 2 in [7] differentiating in (1.36) may be performed under 
integration sign, 

C(j) = EJ(x), — E 7 ( x ) = V a r ( x | P 7 ) , (2.19) 
oj oj 

where Var denotes the covariance matrix. 

L e m m a 2.2 . Let the condition (RCl ) hold. If T is a non-empty compact subset 
of S and c is a positive real number, then 

/C = { 7* G S; there exists 7 £ T such that ^ ( 7 , 7 * ) < c } (2.20) 

is a compact subset of Rm. 
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P r o o f , (a) First we show that this set is closed. Let us assume that {jn}n°-i 

belong to K, and t » D m /o o n 
° hm 7 n = 7 E R . (2.21) 

n—+00 

According to (2.20) there exiso parameters 7 n G T such that 

N(7n,7n)<C (2.22) 

Since the set F is compact, ,. _ ,n n o \ 
hm j n k = 7 - T (2.26) 

k—>oo 

for some subsequence {ri.fc}£_i of 1, 2 , . . . . But C(7) , E 7 (x) are according to (2.19) 
continuous, and from (2.22) and (1.49) we get that 

liminf C(j*lk) < +oo . 
k—*oo 

This together with (1.36), (2.21) and the Fatou lemma means that j * G S. From 
(2.23), (2.21), (2.22) and continuity of (1.49) we obtain that 7* belongs to (2.20). 

(b) It remains to prove boundedness of (2.20). Since T C 5 C Rm, T is compact 
and S is open, according to the Lebesque covering lemma (cf. [6], p. 154) there exists 
a positive number 8 such that 

7 G I \ | |T - Tl! __ 5 = > T e __ - (2.24) 

Suppose that the set (2.20) is not bounded. Then there exist {7n}n°=i from fC and 
{Tn}n*_i from T such tha t 

K(jn,jn) < c for all n , lim | |7*| | = +00 . lim 7 n = 7 € F . (2.25) 
n—+00 n—*00 

Thus the sequence {7n}£°=1 is bounded, and we may assume that j n -£ 7* for all n 
and for the vectors -v* _. ~ 

hn = sn;_ |, (2-26) 
there exists the limit .. , , , . __s 

hm hn = / i . (2.27) 
n —*oo 

From (2.25) and (2.26) we get 
Jn=Jn+anhn, a n == _-_Jl___i _ , + o o . (2.28) 

0 

But if a is a real number and 7, j + ah belong to S, then making use of (1.49) and 
(2.19) we get 

dK(j,j + ah) ~ \ ~ d2K(j,j + ah) ~, - ~ 
— = - /* L 7 (x ) + l^+ah(x) h , - — = h Var(x | P^+ah)h , 

(2.29) 
where the second derivative is positive for h -£ 0, because v is suposed not to be 
concentrated on a flat. Since according to Lemma 7, Chapter II in [7] the set S is 
convex, (2.28) and (2.29) yield 

, w *N „ , , , x , fan dK(jn,Jn+ahn) , 
K(Tn,Tn) = K(yn,yn + hn)+ ---• da > 

> dK(ln,Jn + ahn) ^ _ ^ ^ ( 2 3 Q ) 

a = l <9a 



60 F. RUBLÍK 

because the Kullback-Leibler information quantity is non-negative. Since (2.24) -
(2.27) hold, N(7,7 + Oh) = 0 < N(7)7 + h), which together with (2.29) means 
that 

<9A'(7,7 -f ah) 
>0 . 

a = í 
da 

From continuity of this partial derivative, (2.30) and (2.28) we therefore obtain, that 

lim N(7n,7r*) = + o o , 
n—+oo 

which is a contradiction with (2.25). • 

In the following assertion we use the notation 

7 

1 = { (Pli- • • ,Pq)\ z\Pj = 1 a n d rninpj > 0 } . (2.31) 

L e m m a 2 .3 . Let the condition (RC 1) hold, and the null hypothesis 

Qo = 0 H C , (2.32) 

where 0 = H? and C is a closed subset of Hm?. 

(I) If 0 e 0 and p £ I, then there exists an rj G ^o such that (cf. (1 .49))-(1.51)) 

K(0,fto,p) = tf(M,p). 

(II) If V^ C 0 and T C I. are non-empty compact sets, then 

L> = {0* £ QQ; there exist 0 6 W, p G T such that K(0, Q*,p) = K(9, ^ 0 , p ) } 
(2.33) 

is a compact subset of Rmq. 

(III) The function K(.,Q,.) is continuous on 0 x I for every non-empty flC6. 

P r o o f . (I) If rf e Qo and K(0,0,p) < K(6trftp)t then for ; = 1, ...,q in the 
notation d(p) = m i n j p i , . . . ,pq} 

d(P)K(0J,~0j) < K(9trftp) < Y,K(9hrfl)t (2.34) 
i = i 

where Qj denotes the j - t h component of 0 = (0X,..., 0q). Hence for c > 0 sufficiently 
large and 

7 

r = U { 7 * e 2 ; K ( 0 , - , 7 * ) < c j , fii = ^ n ( r x . . . x r ) (2.35) 
/=-

the equality , ,„ „ . 
K(O,no,p) = K(0,nup) (2-36) 
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holds. Taking into account (2.32) and Lemma 2.2 we get that the set Qi is compact, 
and therefore K(0, -,p) a t tains on Qi its minimum. 

(II) Owing to compactnes of T the number A = inf{/^-; j — 1 , . . ,,q, p € T} is 
positive, and similarly as in (2 .34) - (2.36) one can show by means of Lemma 2.2 
t h a t D c (r x ... x r) c e, (2.37) 
where T is a compact set. Thus it is sufficient to prove that the set D is closed. 

If {#n}n°=i belong to D and limn_oo 9* = 0*, then (2.37), (2.32) imply that 
0* G fi0- According to (2.33) 

K(0n,0*n,Pn) = K(0n,Qo,Pn) (2.38) 

for some 0n £ W and pn £ T. Since the compactness assumptions allow us to assume 
that 9n —* $ € W, pn - > p £ T, making use of the assertion (I) of this lemma and 
(2.38) we get 

K(0,Qo,p) = K(0,r],p) = lim K(On,n,pn) > l imsupK (0 n , f i o .Pn ) = K(0,0*,p) 
n—+oo n _ . QO 

and 0* £ D. 

(III) Since the function K(0, .,p) is continuous on O, the set Q may be replaced 
with fiflG, and we shall therefore assume that Q = Q0 is the set (2.32). 

T et 0n —+ 0 belong to O and pn —> p belong to I. If 

W={0n; n= 1,2,...} U{0} , T = {Pn] n = I, 2,. .. } U {p} , 

then according to (I) of this lemma there exist r], nn from the set D defined by means 
of (2.33), satisfying the equalities 

K(9,Q0,p) = K(0,n,p), K(On,tt0,pn) = K(On,r)n,pn). 

Since the set D is according to (II) compact, there exists a sequence {"A:}^Li such 
that r)nk —> n* 6 D and liminfn_ oo K(On,Q0,pn) = lim^-^oo K(0nk, Q0,prik). Thus 

K(0,Q0,p) = lim K(On,n,pn) > l imsup K(On,Q.0,pn) > 
n—*co JJ-^OO 

> l i m i n f A ^ ^ ^ O j P n ) = lim K(Onk,nnk,pnk) = K(0,n*,p) > K(0,Qo,p), 
n—<-co k-^oo 

and the continuity is proved. • 

P r o o f of Theorem 1.2. (I) According to Lemma 2.2 in [1] the mapping (1-40) 
is 1 — Ton E. Since differentiating of (1.36) can be performed under integration sign, 
(2.19) holds and v is not concentrated on a flat, Jacobian of £(7) is positive on 2 
and £ has continuous derivatives. This according to Theorem 212 in [5] means, tha t 
the set B(v) is open and £ has continuous derivatives on B(v). Thus An is open 
and £ - 1 is measurable. Let for (x\,. . . , xn) £ An 

0n(x1,...,xn) = r1(x), (2.39) 
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and for *(«) E Du in the notation (1.20) 

0(u)(s<
u>) = («BwWl,nil))),..JBwW«,n?)))) • (2.40) 

Since for (x\, . .., xn) G An in the notation (1.49) 

logL(*i , . . . ,ar n ,7) = gn(xi,...,xn)-nK(dn,j) (2.41) 

where 
.7r.(xi,.. .,xn) = nx'0n -nC(8n), (2.42) 

we see that on Du for 0* G Q 

\ogL(x\u),0*) = G{-U)(x^)) - nuK(9{u),0\pu), (2.43) 

where pu = -*- , . . . , - -*- and 

G(u)(x(u)) = £^ n ( i , (y( i ,n£f) ) ) . (2.44) 
i=i 

Let us denote by H(DU) boundary of Du, and put 

DU
M) = {*(«> E Du ; | | . ^ ) | | < M , p(xM,H(Du)) > - ^ } , 

where p(x,A) = inf{||x - y||; y G A} and p(x,%) = +oo. Then {Du ) M = I ^S a n 

increasing sequence of compact sets and 

oo 

A. = U A<M) 

M=l 

because Du is open. Since continuous image of a compact set is again compact, 

^ ( M ) = { y x W ) ; x W 6 / j W } 

is a compact set. Hence 

VU
M) = { 0 E Qo; there exists 0 G W^M) such that K(0, 6,pu) = K(9, Q0>pu) } 

is according to Lemma 2.3(11) compact, and from (2.43) and Lemma 2.3(1) we 

obtain that on Du 

logL(x -).Qo) = logL(x(u),D iM)). 

From Lemma 2.1 we therefore get existence of measurable mappings 0U . Du —* 

V{M) such that lo g j L ( x(«)> f i o) = logL(x("),f}u
M)(x(u))) 

for all x(u) G Du . Hence if we put 

§u(xW) = §iM)(xM) 
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for z(") G Du — Du , the assertion (I) is proved. 

(II) According to the law of large numbers and (1.41) 

1 n 

lim - VXj = E6j(x) e B(u) (2.45) 
n-+oo n --—' J 

;= i 
a. e. P J 0 . Since the set B(v) is according to (I) of this proof open, (2.45) implies 

( L 4 6 ) ' 
Now it remains to prove validity of assumptions of Corollary 1.2. Since ( R A 1 ) -

(RA3) obviously hold, it is sufficient to prove (RA4). If the set 3 — T is non-empty, 
then on An according to (2.41) 

1 1 -
- l o g L ( x i , . . .,xn,E-T) = -gn(x\, . ..,xn) - K(9n,E- V). 
n n 

This together with (2.45), (2.42), (2.39), continuity of f"1 and Lemma 2.3(111) 
means, tha t 

BKm i \ogl(xu . ..,xn,E-T) = Eftj(x)'0j - C(03) - K(9hE - T) 

Pj° a. e., and existence of the compact set T fulfilling (1-26) can be easily proved by 
means of Lemma 2.2. • 

P r o o f of Corollary 1.4. If we put for x E Rk 

( / \% £ rp Z ~3, Z \ 

xi,.. .,xk, — ^ , - x l x 2 , . . .)-x1Xk)--~-,-x2X3,. . .,-x2xk, •• •>--£ 
and analogously i j r y = (// , a')' £ E 

e(j) = ((V-\a)ii)', V-l(a)u, V~l(a)i2,...,..., V~l(a)kk)', 

then 1 I 
e(7)'T(x) = --(x - v)'V(a)-l(x - //) + - A W " V (2-46) 

and e, e _ 1 are continuous mappings of E onto E. Since the set 5 is open, the 
Corollary 1.4 will be proved if we prove the following lemma, by means of which one 
can easily show that the assumptions of Theorem 1.2 are fulfilled. 

L e m m a 2.4 . (I) If we denote for A G Bin 

u(A) = fiL(T-)A) 

where \ii is the Lebesque measure on (Rk, B ), then the measure v is not supported 
on a flat. 

(II) The natural set of parameters (1-34) coincides with (1.52). 

P r o o f . Since in the notation (1.35) according to Lemma 2.2 in [1] the measure 
v is not supported on a fiat if and only if the mapping y —* P 7 is 1 - 1, making use 
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of (2 .46) we see t h a t it is sufficient t o prove ( I I ) . However , if 7 = ( / / , a')' £ Rrn arid 

the m a t r i x V(a) is no t pos i t ive defini te , t hen 

k 

7 'T(x) = x '/t - \r'V(a)x = z 'Pp - - £ \xz] , 
irsl 

whe re P is an o r t h o g o n a l m a t r i x , z = Px a n d A^ < 0. T h u s after s o m e ca l cu l a t i on 

/ cy'ydv(y)=[ e'y'T^dfiL(x) = +oo 

JR.™ Jllk 

a n d t h e set of n a t u r a l p a r a m e t e r s (1 .34) is a subse t of (1 .52) . Since the reverse is 

also t r u e , t h e l e m m a is p roved . • 

(Received February 23, 1993.) 

R E F E R E N C E S 

[1] R. II. Berk: Consistency and asymptotic normality of mle's for exponential models. 
Ann. M a t h . S ta t i s t . 43 (1972), 103-204. 

[2] P. Billingsley: Statistical Inference for Markov Processes. The University of Chicago 
Press, Chicago 1961. 

[3] L. Fahrheimer: Maximum likelihood estimation in misspecified generalized linear mo­
dels. Statist ics 21 (1990), 487-502. 

[4] R. V. Foutz and R. C. Srivastava: Statistical inference for Markov processes when the 
model is incorrect. Adv. in Appl. Probab . 11 (1979), 737-749. 

[5] V. Jarni'k: Diferencialni pocet II. CSAV, Prague 1956 (in Czech). 
[6] J .L . Kelley: General Topology, van Nostrand, Princeton 1968. 
[7] E. L. Lehmann: Testing statist ical hypotheses. Wiley Sz Sons, New York 1959. 
[8] T . Makelainen, K. Schmidt, and G. P. Styan: On the existence and uniqueness of the 

maximum likelihood est imate of a vector-valued parameter in fixed-size samples. Ann. 
Stat is t . 9 (1981), 758-767. 

[9] L. Schmetterer : Introduction to Mathematical Statistics. Springer Verlag, Berlin 1974. 
[10] M . S . Srivastava and C . G . Khatr i : Introduction to Multivariate Statistics. North Hol­

land, New York 1979. 
[11] A. Wald: Note on the consistency of the maximum likelihood est imate. Ann. Math . 

Stat is t . 20 (1949) , 595-601. 
[12] H. Whi te : Maximum-likelihood estimation of misspecified models. Econometrica 50 

(1982), 1-25. 
[13] H. Whi te : Maximum likelihood estimation of misspecified dynamic models. In: Mis-

specification analysis (T. Dijkstra, ed.), Lecture Notes in Econom. and Math . Systems 
237, Springer Verlag, B e r l i n - N e w York 1984, pp. 1-19. 

RNDr. František Rublík, CSc, Institute of Mcasurement of SAV, Dúbravská cesta 9, 

8J,219 Bratislava. Slovák Republic. 


		webmaster@dml.cz
	2012-06-06T04:42:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




