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K Y B E R N E T I K A — V O L U M E 15 (1979), N U M B E R 6 

On Modelling of Large Variable Systems 
of Higher Degree by Means 
of Language Systems 

ROMAN BEK, MILAN RLTZICKA 

There will be presented a few non-traditional definitions of several basic notions from a theory 
of complicated time variable systems modelling. In particular, a special concern is devoted 
to a relation between accurate language systems and real (ontic) ones. 

1. PRELIMINARIES 

The formulations in this article will be based on the set theory concept and principal 
terms of this theory will be used accordingly. Especially the following ones: 

— Cartesian product (symbolically: M, x M2 for sets Mu M2), 

— Cartesian power (symbolically: M<n> the n-th power of a set M), 

— ordered set (symbolically: <a1( . . . , a n > , ordered set consisting of elements 
a „ ...,a„), 

— elementshood of a set (symbolically: a e M), 

— intersection of sets (symbolically: Ml n M 2 for sets M, , M2), 

— subset (symbolically: M, <= M2 for sets M, , M2). 

Further we assume the same distribution of ontic reality as accepted in the logical 
theory of types: individuals of the universe of a language reasoning we consider 
as entities of the zero degree, their sets and relations as entities of the first degree, 
sets of these sets and relations and relations among these sets and relations as entities 
of the second degree,.. . . , sets and relations of entities of the (s — l)-th degree as 
entities of the s-th degree. 

The language of language systems we shall discuss is built-up on the predicate-
logical basis. Its predicate constants and variables resp. will be denoted by corres
ponding type symbols again within the requirements of the types theory. For instance: 
a predicate constant of the type (s)R denotes an ontic entity of the s-th degree. This 



language will also use time terms, constants and variables. These terms will join 
individual terms of the language. Statement: R u ) (a t , . . . , a,, f;) will for example 
mean: "Objects at, ..., aj are at a moment rf in relation R 0 )" . 

We shall further suppose existence of a time structure containing a set of moments 
T. Let this set be ordered by a time relation "forecoming", i.e. the precedence relation. 
Individual time intervals are ordered subsets of the set T. Suppose, to respective 
moments from the set T have been assigned real numbers by a convenient metric 
function. To the precedence relation corresponds then a relation " < " between 
these numbers. 

2. DEFINITION OF THE NOTION "SYSTEM OF THE n-th DEGREE". 

Dl . An ordered pair <U, 3/1) forms at a time interval At system of the n-th degree 
(symbolically: < y , At} e Se^(n)) iff: 

Uis a set of some objects ( = individuals = entities of zero degree), 
M is a set of all entities of the form (s)R(

k
J), where for s = 1: (s)R(

k
J) c U<J> x At 

for every s > 1: there is at least one from su ..., s — 1, where s — 1 exists, hence 

(s)R(
k
J) c U<Jo> x {^R^f, . . . , ( S , ) R ^ ; ) } x {Mug?, ...^Rgf} x 

x . . . x { ( s _ l ) <; i ) , . . . , ( S _ 1 ) R ^ ) } x At, 

s,, s2, . . . , s _ 1 may or may not be equal in pairs, all st from them which are not 
equal to s — 1 are less than s — 1. 

J - jo + in + • • • + Jiu + Jzi + • • • + j.„ + • • • + J'n + • • • + Jiz, 

the greatest s (from upper left index of these entities (s)Rk
J) e 8£) is equal to n. 

The set Uis said to be "the universe of the system". 

Remark. (s)R(
k
]) e M is (j + l)-th terms relation (on its last place is always time term) 

the s-th degree among individuals from the universe of a system and/or other relations 
from & of the lower degree than s. Among them there must be however at least 
one relation of the (s — l)-th degree. Denotation k in the lower index marks an order 
of relation (s)R(

k
j) among other (jf + l)-terms relations of the s-th degree belonging 

to if. 
Due to the logical principle of extensionality as it is known, we consider j'-terms 

relations and sets of ordered /-tuples objects among those the given relations are 
defined, as identical ones. For j = 1 the relation results to a set of objects having 
corresponding property. 

Proposed definition generalizes the notion "system'", as it is commonly used. 
System is usually defined as a pair from the set of objects (the universe of system) 



410 and from a set of relations among these objects. In the suggested definition, system 
is specified with respect to a given time interval (within its limits given objects with 
corresponding relations are considered). Further we admit that in the set of relations 
there may be not only relations among individuals from the universe of system, but 
also relations among relations of individuals, relations of relations among relations 
of individual etc. We hope that by doing so we may satisfy needs of the system theory 
operating with large variable systems and considering there entities of various degrees. 

Examples 

P 1. A system of the first degree is on an interval At = {tu t2, t3} an ordered pair 
<£/, my, where: 

U = {aua2,a3,a4} , 

m = {(1)R(
1

1), WR2
X\ ( 1 ) M 2 ) } , 

and 
(1 )R (1 ) = {<a., O , < f l l, f2>, <a1; f3>, <a2, f3>} . 

MRP = {<a2, f2>, <a2, f3>, <a3, t.>, <a3, f2>, <a3, f3>, <a1; f3>} , 

(->*<-> = {<flls a2, txy, <a3, a2, f2>, <a., a4, f2>, <au a4, f3>} . 

Object fli hence belongs to a set (1)R(
1

1) (= has property (1)R(
1

1)) during the whole 
period At, whereas an object a2 belongs here ( = taking on this property) later 
on at a moment f3. Obviously: (1)R(

1
1) c [ 7 < 1 > x At, similarly (i)R2

l\ Objects 
au a2 are connected by a relation (1)R1

2) at a moment tu objects a3, a2 at a moment 
f2, objects au a4 at moments f2, f3. Obviously: (1)R(

1
2) c U<2> x At. 

P 2. Let an ordered pair <U0j, ^ 0 , > = ^o^ t>e ontic system of the third degree 
on interval Att = <tu t2, t3, t4, f5>, where the universe 

vo, = {au ai> a3> a4, a5, a6, a7, a8, a9, a10} , 

set of relations 

®0i = {(1)R(1), (1)Ra>, (1)R(31), a>R(2>, a>R(
2

2), ( 1)R (
3

2 ) ,««««, (3)R(
t
4)} . 

identification of relations: 

(1 )R (1 ) = {<fll, tiy, < f l l, f2>, < f l l, f3>, < f l l, f4>, < f l l, f5>, <a2, f4>, <a2, f5>} 

(obviously: (1)R(
1

1) c O^1 9 , x zlf,), 

W>Ril) = {<a2,V.>, <«2, f3>, <«2, f5>, <fl4, f,>, <a4, f2>, <a2, f5>} , 
(1>J?(31) = {<a6, ft>, <a6, f2>, <a7, f3>, <a8, f3>, <a9, f4>, <a10, f5>}, 
(1)R(2> = {< f l l, fll, f2>, <a1; a2, ft>, <«2, a., r.>, <a3, a5, f3>, <a5, a3, f3>, 

<a7, a9, f4>, <a9, a7, f4>} 



(obviously: (1>R(!2) = U0
2> x Atx), 

( 1 )M2 ) = {<«., a5, f3>, <«,, a8, .,>, <a., a10, . ,> . <a„ a9, f3>, <a2, a6, f4>, 

<a5, a9, f3>, <a 8 , a 1 0 , f,>} , 

(2>R(/> = {<(1>R(1), .,>, <(1)R(1), f2>, <(1)R(
1

1), f3>, <(1)R(
1

1), f4>, <(1)R(
1

1), f5>} 

(relation (1)R(
1

1) has for the whole period of time Atx property (2)R1
1); obviously: 

(2>R(1) c {(1>R(
1
1)} x Atx), 

(3)KW = {<(1>R(2
1), (2>R(1), WR«\ a5, f3>, <(1>R(

2
1), (2>R(1>, (1 )R (1 ) , a5, f5>} 

(relation (1)R(
2

1) is together with relation (2)R(
1

1), (1>R(
3
1) and object a5 at moment f3 

in relation (3)R(j4), relation (1)R(
2

1) is together with relation (2)R(
1

1), (1)R(
3

1) and object 
a5 at moment f5 in relation (3)R(

X
4); obviously: (3)R(

1
4) c U0l

1:> x {(1)R(
2
1), (1)R(

3
1}} x 

x {(2)R(1)} x At,). 

P 3. Ontic system Sp
0z of the second degree is on an interval zlf2 = (tu t2, f4, f5> 

and ordered pair <U02, ^?02>, where the universe 

Uo2 = {ax, a2, a-j, a8, a10} 
set of relations 

m02 = {(1)Ri(1), (1)R2
(1), ( 1 )Ri (2 ) , (1)R2

(2>, (2>Ri(1)} 

identification of relations 

(1 )Ri (1 ) = {<fll, tx}, <a2, f4>} , 

( , ) ^2 ( 1 ) = « a 2 , f5>} , 
(1 )Ri (2 ) = {<a7, a9, f4>, <a9, a7, f4>} , 

WRW = {<(1>Ri(1), txy, (1>Ri(1), f4>}. 

3. DEFINITION OF NOTION "SUBSYSTEM" 

D 2. System Sf'2 is at a time interval zlf2 a subsystem of system S? x (symbolically: 
< y 2 , Sfx, At2y e Sfafoytt) iff there exists Atx so that zlf2 = zlfj, 

< ^ j , Jf.> e Sfy<it(si), (Sf2, At2y e <9V^ (S2), 

there are sets Ux, U2, 3kx, 012 so that 

^ 1 = < U 1 , ^ 1 > , ^ 2 = < U 2 , ^ 2 > , 

there exists a mapping .Sf, transforming from set of all moments into the same set so 
that to every moment f e Atx located in the field of given relation (Si)R£J) £ Mx (s; = s t) 
uniquelly assigning as its image again an element from field of this relation. 



There is a mapping 30 transforming from the universe Ux into itself so that to 
every element xe Ux from the field of a given relation (s<)R[J) e _?j uniquelly is 
assigning as its image again an element from the field of this relation. For every 
s;, 1 ^ S; 5= Sj there further exists a couple of mappings i_°S|_i, 3sl:3Si~i transforms 
from set of all elements from the field of given relation ( s , )R[J ) e _?t (apart from 
elements from set Atx and Ux) into the same set using this way: to every object 
it assignes uniquelly as its image again some object of the same degree from the field 
of this relation. This mapping regard? all objects from fields of all relations belonging 
to s;. For S; = 1, _?si_i is identical with mapping 3 0. 3SI maps from set of all 
relations s r th degree belonging to __ls into the set of all its subrelations like this: 
to every relation of the type (Si)R^j) € _?x uniquelly assignes as its image some of its 
subrelation — including empty subrelation. For each of these mapping, following 
condition holds: to no object which is being mapped are by two distinct mappings 
associated two different images. If there is assigned to a„ as its image am by some 
mapping, then it must not appear again as image of some object by any mapping 
and the given object and its image must be identical (i.e. it must be image of itself). 

Mentioned mappings ^ ' s l (_ r s l _ 1 (_? s l _ l ( . . ,{3X{30)) . . . ) ) ) associate with indi
vidual relations of the type (Si)R[ j) e 0tx uniquelly relations of the type (Si)R( j) e _?2. 
The universe U2 is set of images of mapping 30, At2 is ordered set of images of 31. 

Remark. Mentioned definition of notion "subsystem" is more general from a few 
viewpoints than usual specification. First there is an introduction and transformation 
of moments from given time structure (given by mapping 3t). Result of mapping 
is a time interval of the existence of given system (_^2) as a subsystem of other system 
(_^i). This mapping has been enclosed into the definition for a better correspondence 
with intuitive imaginations related with construction of subsystem in epistemic 
process over given system under investigation. We often cannot distinguish two 
different moments located near to each other because of very limited technical 
equipment when studying a variable system. In practice we make these moments 
identical. We consider such a (defined) system as a subsystem of studied system. 

Example. Let a system _>", be defined on an time interval Atl = <r1( t2, t3, t4, 
i*5, t6>. Let mapping 3, associate: 



Interval At2 = <<,, t2, f4, f6> can be hence a period of existence of some system 
y2 as a subsystem Sfx (if the other conditions of definitions are met). 

Secondly, there is an analogous transformation of elements from the universe £/*_ 
of system Sfx given by mapping Jf0. There are similar reasons as in the previous case. 
Frequently we cannot identify two distinct elements from the universe of studied 
system and therefore we make them identical. Sometimes we do such a simplifica
tion even in a case we can distinguish elements under consideration. 

Example. Let the universe Ux of a system S" x be formed by a set of elements 
{ax, a2, a3, a4, as). Let mapping SE0 assign: 

a, ->fl 3 , 

a2 -> a2 , 

The set U2 = [a2, a3) forms the universe of system Sf 2 which is a subsystem SPX, 
so far the other conditions of definition are satisfied. 

It is also obvious that due to specification of 2£0 always holds: if Sf'_ is a sub
system of Sfx, then the universe U2 of system S"2 is subset of the universe _7_ of system 
Sfx. This statement is a part of traditional specification of notion "subsystem". 

Thirdly, there are analogous transformations of those objects from relations 
of given system which are relations themselves (of lower degrees). For every degree 
of these relations there is a mapping (of a form &s._1), having similar function as 
the transformation 2£0. 

Example. Let a system S"x have the universe Ul as in the previous example and his 
set of relations be 

«_ = {wR[l\ wR2
l\ (2)Rf\ ™R{2)}. 

(Let relations (1 )R (1), (1)_?_l) belong to fields of relations <2)R<
1
1), <2)R[2y). Let mapping 

-T2-i assign: 
(1)^(1) _ ( D ^ i ) f 

(!)_?(/)_ m j j w . 

Let the unique image (1)R(
1

1) belong to set M2 of system Sf 2. If Sf2 satisfies all other 
conditions of definition, then Sf2 is subsystem of Sf x. 

Further there is a mapping -?'st defined for every degree (greater than zero) of rela
tion from set fflx of system Sf x. In epistemic process over the system Sf x we can 
meet (or only specify) merely parts of relations, some relations even we vanish 
completely. 



Example. Let relations of system £f x from recently mentioned three examples be: 

( 1 ) K a ) = {<<•„ t2>, <-i, t3>, <a2, t3>, <«3, t4>} , 

' " M 1 ' = (<- l . U>, <«3, t4>, <A3, t5>, <«4, t2>, <«4, t5>, <«5, t6>} , 
(2 )R (1 ) = « ( 1 ) R ( 1 ) , txy, <(1 'R(1), ,3>, <(1)R(2), f5>, <(1 'R(2), t6» , 

( 2 'R ( 2 ) = {(1)R(1), (1)R (1), »3>, <«>*?>, (1 )R (1), t6}} . 

Let mapping 2£x assign: to relation (1)R(
i
1) its image (1 )Ri (1 ) = {{ax, f2>, <a3, f4>} 

(relation WR2
1} has been already eliminated by mapping 2£2-x to (1)R(i1)). Let 

mapping 2£2 assign: to relation mRp its image (2 )Ri (1 ) = {<(1>i?{1), tx}, <(1)R(
1

2), f5>} 
to relation (2)R(i2) its image (2)jRi<2) = 0 (empty subrelation, i.e. empty set of ordered 
triples). (Mapping 2£2-x is obviously not identical with mapping 2£x\) It is clear 
that by simplification of specification for mapping 2£Si in this way: 2£Si assigns to 
every relation of the s r th degree, belonging to 01 x of system ££x, the same relation 
or empty subrelation. Together with simplification 2£0 to identical transformation, 
for set 0l2 of subsystem £p

2 will hold: 0t2 <=. 0tx. This statement forms the second 
part of traditional definition of notion "subsystem". 

Example. Let system SP2 be given on interval At2 = <tx, t2, t3, tA, f6>, £f2 = 
= <U2, 0t2~), U2 = {a2, a3}, 0t2 = {(1)Ri(1), ( 2 )R i ( 1 )}, where 

0)-Ri(1) = {<«3,t2>,<«3,t4>}, 

<->*;(-> = { < ( 1 ) R i ( 1 ) , / 1 > , < ( 1 ) R i ( 1 ) , f 2 > } . 

Since interval At2 was obtained from interval Atx by the use of mentioned mapping 
2£t from previous examples, the universe U2 was obtained from the universe Ux 

by means of the mentioned mapping 2£0 of those examples, set of relations M2 was 
obtained from set of relations 0lx successively by the use of mappings 2£2, 2£2~Xf 

2£x, 2£0, 2£t from those examples, £*\ is subsystem of system Sf x on interval At2. 

Example. P 4. Ontic system £f02 from example P 3 is subsystem of ontic system 
y 0 l from example P 2 on interval At2 because of existence of mapping: 

- M i , 

- + t 5 ; 



Jf0 let be identical mapping 415 

_ r , : ( 1 ) M 1 ) - » ( 1 ) R ; ( 1 ) , 
(DR(1) _ , a)£ ' (u ? 

( 1 ) R ( 1 ) - + 0 , 

(1)^(2) _» (D^;(2) > 

(l)R(
2

2) - ( 1 ) R _ 2 ) , 
(1)R(

3
2) -> 0 , 

(1 )R (3 ) -» 0 . 

Let _?2 -1 be identical mapping, 

%2 : WRP -* ( 2 ) « i ( 1 ) , 

_r3_| be identical mapping, 
X3 . (3)^(4) _^ 0_ 

4. DEFINITION OF NOTION "/.-SYSTEM" 

D 3. System <fL = <UL, _?L>, <^ L , At} e S*;yot(1) is said to be U-system on inter
val At iff UL is set of non-logical constants of language L, 52 _ is set of sets of the type 
R(

L
J) correctly formed statements of language L holding in time interval At, where 

each from sets RL
J£ e S^r consists of statements of the type R(

L
J). where RLj. t_ U7

<J> x 
x At<x> x Sf<l> , 

and j is number of occurences of non-logical constants (apart from time constant 
in this statement, 
kt is ordering number of this statement in set R_^, 
At is ordered set of names of all moments belonging to At 
x is number of occurences of symbols from At in this statement, 
SC is set of variables, logical connectives, logical operators and brackets in 
alphabets of language L, 
I is number of occurrences of symbols from set S£ in this statements. 

Example. Let statement 

RL
3) = Vx 3y((F(x, t.) A R(X, y, t.)) - F(y, t.)) 

be correctly formed one of language L, whose alphabet contains symbols: F, R, x, y, 
tu A , -*,V, 3, ( , ) and holding on interval At. Let UL be set of all non-logical 
constants of L, hence F, R e UL, let tt be name of moment (, e At, let symbols x, y, 
A,-»,V, _,( , ) _ _ ? ; then 

R(L,l -= vL<3> X ̂ < 3 > X if< 2 0 > , 



holds because non-logical constants F, R occur in this statement on three places* 
time constant tt occurs in this statement on three places, variables x, y, logical 
connectives A , -», operators V, 3 and brackets ( , ) occur in this statement on twenty 
places. 

Remark. "£-system" is specification of "system". It may be a language system, 
whose correctly formed sentences only describe empirical facts and among them 
there is not logical relation of deduction. However it may also be an axiomatic system 
containing some of its sentences as axioms (holding on a given interval At) and all 
of them correctly logically derived statements (hence valid also interval At). 

We consider merely jL-systems of the first degree, since in set 0lL, other members 
of &tL do not occur in any of its members as elements of corresponding relation 
We understand relations involved in set ^?L (as elements of its sets) as relations among 
symbols of given language L, hence as syntactic formations. 

Fact that set RL does not contain directly these relations, but their sets, is motivat
ed by aim of this reasoning (i-systems will be further associated with ontic systems 
as their language models). More accurate explanation comes out from the following 
consideration. 

Examples 

P 5. /.-system of the first degree S"u is on interval Atl = (tx, t2, t3, t4, f5> an 
ordered pair <ULl, ^ L l > , where 

ULi = {a„ a2, a7, a8, a9, a10, (1)R(1), (1)R(
2

1), (1)R(2), (,->R(
2
2), (2)R(1)} , 

*u = ( - C R%}, Ri2), R£}, R & R £ , K"> <\ Ri2 )) . 
and 

Ri2/ = {Ri2),} • 
RL

2) = Vx Vt;(
(1)R(1)(x, t;) -H. (1)R(

2
1)(x, t ; + ,)) ; 

RL
2) = { R S , R ( 2 ) } , 

Rg ) ,-- (1>Ri1)(a1 ,t1), 
R(2) = ( ' - )R ( 1 )(a2 , t4) ; 

R(
L
2
3
) = {R(2),RL

2
3

)} 

Rg ) , - - ( 1 ) R . . 1 ) (« i . t 2 ) , 

R S = (x)R5.1)(a2,t5); 
Ri2) - {Ri2)J, 

Ri?, = Vx Vy Vt;(
(1)R(2)(x, y, t,) - (1)R(j2)(y, x, t,)) 

("(1)R(j2) is symmetric relation at every moment") 

RL3) = {Rfi.}, 



R£> = Vx Vy Vz Vt;((
(1)R(

2
2)(x, y, t,) A ( 1 )R (

2
2 )(X, Z, t,)) -» (l)R(

2
2)(x, z, t,)) 

("(1)R2
2) is transitiv relation at every moment") 

R L 3 ) = { R ( 3 ) „ R L 3 ) } , 

RiV, = <1>R(i2)(a7,a9,t4), 

Ri3
6»2=

 ( 1 )Ri2 )(a9>a7 , t4); 

Ri37
J -{Rg>,R£> 2 ,Rg>} , 

Ri3) = ( 1>R ( 2 )(a 1 ,a 8 , t ]) , 

R i 3 ) = ( 1 ) R ( 2 ) ( a 8 , a ] 0 , t l ) , 

Ri3) = < « R (
3

a K » J 0 , t . ) , 

RiV = {*$£} > 
R(3) = 3x3t1.((1)R(1)(x,t i) -» ( 2 )R ( 1 )( ( , )R ( 1 ) , t ;)) ; 

Ria) = {Ri2)„Ri2
92}, 

R (2) = ( 2 ) R ( l ) ( ( l R ( D 5 t i ) 5 

R£> = (2>R(1>((i>R(1>, t4) . 

It is obvious that in SfLl appear statements: 

R(2) p(2) p(3) p(3) p(2) p(2) p(3) p(3) p(3) 
In> KL41>

 K L 5 1 ' K L 8 1 ' K L 2 1 > K L 2 2 > KL61> KL71>
 K L 7 2 ' 

as axioms, other statements are deduced statements through relation of deduction: 

Ri2)„ Ri2! i- Ri2] , 

Ri2 ; ,R ( 2 ) hRi 2 ) , 

Ri^RSf-R^, 

RiV.^iV.RiV^Ri^. 
R(3) p(2) , p(2) 

Lsi' K L 2 , h KL9 1 ' 

p(3) p(2) , p(2) K L 8 1 ' K L 2 2 r « L 9 2 • 

P 6. L-system of the first degree £fLl is on interval /l/2 = <f,, t2, t3, r4, f5> ordered 
pair <UL,, ^?L2>, where: 

II - (a a a a a (DpO (Dp(l) (Dp(2) (Dp(2) (2)p(i)l 
«̂ Z.2 — \ » 1 , a 2 ' 37> «8> a10> K l ' K 2 ' K l > K 2 > K l 1 > 

^ L 2 = {RL
(2),RL (32)>RL (

6
3,,RL<

7
3),Ri (2 ,}> 



and 

RL(2) = {R1 ( 2 ) ,RL ( 2 )}, 

R&V-^O-i . t . ) . RJJ.V-^i^a.t*); 
RL(2) - {R&V}. 

Rk(2) = (l)R(
2

1,(a2,t5); 

R ^ - W . U & V } . 
R&> = (DR^)(a7, a9, t4), R&> = (a9, a7, t4) ; 

R&> = (i)R/)(aii ag, t9), R&> = <1)R[2
2)(a8, a10, t4) , 

R i . ^ - ^ R ^ K a i o . t , ) ; 

Rl(2) = {Ri(2),Rl(2)}, 
R i (2) = ( 2 ) R a ) ( ( 1 ) R ( 1 ) 5 t ] ) ; 

R i V - ^ T * ^ . - * ) -
/.-systems can also contain their subsystems, which are clearly again L-systems. 

Notion "subsystem of L-system" is again specified by definition D 2. 

P 7. L-system Sf Lt (from example P 5.) is subsystem of L-system 5^., (from example 
P 4.) on interval At2 = (tu tz, t2, r4, t5} as a consequence of existence of the follow
ing mappings: 

Z£t: identical mapping 

2£0: identical mapping 

2£u : R ^ -» 0 , 

R i 2 ) - R i ( 2 ) , 

R i 2 ) - R i ( 2 ) , 

R i V - «>, 
R(,3j - 0, 

R&3). 

R(г2) - R'г(2). 

(L-system ^ L 2 was created obviously from L-system SfLl by eliminating general 
sentences, existentional sentence R^'. There remain statements describing individual 
concrete events). 



5. DEFINITION OF NOTIONS "ISOMORPHY OF SYSTEMS", 419 

"GENERALIZED HOMOMORPHY OF SYSTEMS" 

D 4. System Sfz is at a time interval At isomorphic with system Sp
x (symbolically: 

(Sf2,srx,AtyBj<i<}p<st), 

iff there exist intervals Atu At2 so that At = Atx f] At2, 

(Sfu Atxy e 9>¥<it(sx), < ^ 2 , At2y e Sf¥ot(S2), 

there exist sets Ux, U2, 0tu 0t2 so that Sf\ = (JJU 0txy, Sf2 = <U2, 0t^. 
to every relation of the type (s)R(

k
J) e Mx there exists at every moment tt e At just one 

relation of the type (S , )R;0) g @2 so that ( s )R0) is isomorphic with respect to (s')R[U) 

and at the same time corresponding one-to-one mapping (setting up isomorphy) 
from set 0tx preserves in set 0t2 relation of type superiority, moreover set 0t2 does not 
contain any more relation, which would not be an image of some relation from 2̂ [ 
at this mapping. 

Definition of notion "relation of type superiority": 

D. 5. Relation (sl)R(
k
J) is in relation of type superiority with respect to relation 

(S2)R0) iffsj > s2 (i.e. degree of relation (S l )R0) is greater than that of relation (sz)R(
t
J)). 

D 6. System Sp
2 is on time interval At generally homomorphic with respect to 

system Sf y, symbolically (Sf2,S
fi

uAt\£c§enA#m<iy<)t, 
iff there exist intervals Atx, At2 so that At = Atx f] At2, 

< ^ , Atx} e Sfyot(Si), (Sf2, At2y e Sf¥ot(Sl), 

there exist set U,, U2, 0tu 0t2 so that Sfx = <Ui, ^ i > , Sf2 = <U2, 0t2y , 
there exists single-valued mapping 2£ so that to every relation of the type (s)R(

k
J) e 0tu 

it assigns at every moment tt e At not more than one relation of the type ( s , )R ;0 ) g 0t2 

where 3£ is homomorphism of (s)0t(
k
J) into ( s )RJ 0 ) , 2£ preserved in set 0t2 among its 

relations the same correspondence of type superiority which was in the set 3tx among 
patterns of these relations, moreover set 0t2 does not contain any other relation 
which would not associate with some relation from 0tx due to this mapping. 

Remark. Discussed relation among systems are called "generally homomorphic", 
since its definition is a certain generalization of well-known definition of two-relation 
homomorphy. 

By comparing definitions D 2, D 4, D 6 we can obtain following fact: if system Sf2 

is a subsystem of system Sfx on interval At and system ^ 3 is isomorphic with system 
«9"2 at At, then system 5^3 is generally homomorphic with system Sfx at At. 



6. DEFINITION OF NOTIONS "MODELj" , "MODEL2", "MODEL," 

D 7. System Sf2 is modelx (or model2 or modeI3 resp.) of system Sf1 on time 
interval At, 
symbolically <5"2, Sf x, At} e mod x (or mod2 or mod^ resp.) 
iff there exist intervals Atu At2 so that At = Atx f] At2, 

<yu Atty e sfyaS*0, (se2, At2y e .<**—'(S2) 

moreover holds <5"2, y „ , zk> e Jatyot, (Sf\, Sflt At) e <§ en&omoyoi resp., there 
are such systems Sf"t, S/"2 resp. that (Sf[, Sf\, A t} e SfuSoytt, (S/"2, S^2,At} e 
e Sfa&a-ifat and simultaneously: (S/"2, Sf'i, At} e J'OJ^JJ. 

7. DISCUSSION OVER THE DEFINED NOTIONS 

We shall use the defined notions for discussion of notions "language model of 
ontic system" and "semantic model of language system". 

D 8. L-system SfL is on time interval At language model of ontic system 5"0iff 

(SfL, Sf0, At} 6 modx ( o r modi or modz resp.) 

moreover there exists mapping setting-up isomorphy SPL to Sf0 (or isomorphy Sf L 

to some subsystem Sf0 resp., or isomorphy of some subsystem SfL to a subsystem 
y 0 resp.), on interval At and this mapping satisfies following requirements: to indi
vidual non-logical predicate constants of the type (s)R^J) from the universe of system 
SfL (or its subsystem resp.) individual relations of the type (S)R^J) of system Sf0 

(or its subsystem resp.) are mutually assigned, to individual non-logical constants 
of the type am from the universe of system SfL (or to its subsystem resp.) individual 
objects am from the universe Sf0 (or its subsystem resp.) are uniquelly and mutually 
assigned, to individual symbols of the type t,- (to names of time moments) from 
alphabet of language of system SfL individual time moments t( from interval At 
of existence of system Sf0 are mutually uniquelly associated, hence: to individual 
statements SfL (or their subsystem resp.) of the type (s)RJiJ)(ai, . . . , a;, t,) elements 
of relations of Sf0 of the type <a1, . . . , a-p f;> e ( s )R j j ) are uniquelly associated for 
s = 1 and to particular statements SfL (or their subsystem resp.) of the type (S)RJ;J) . 
.((Sl)R^Jl), . . . , ( S J ) R1 J 1 + J ) , t,) elements of relations Sf0 of the type <(Sl)RiJl), . . . 
. . . , (Sp)R^1+j), r;> 6 (s)RJJ) are uniquelly associated by this mapping(to individual 
logical connectives and operators from statements are assigned meanings in accord
ance with rules of interpretation known from logical semantic, similarly are associated 
individual and predicate variables from these statements their domains of variability). 

D 9. System Sf is on time interval At semantic model of language system «5̂ L iff 
(Sf, SfL, At} e modi where mapping setting-up isomorphy Sf to Sf.h satisfies the 
same requirements which were formulated in D 8. 



Remark. In the previous definition D 9 we did not admit in correspondence Sf 421 
and SfL alternatives "mod2\ "mod3" according to traditional concept of notion 
"semantic model" in logical semantic. Semantic model of language system can be 
ontic system, but also some other language system can be applicable (due to common 
semantic practice). 

Examples. 

P 8. Systems S/'0l and SfLl from examples P 3 and P 6 are mutually isomorphic 
on interval At2, because relation (1 )Ri (1 ) is isomorphic with relation Ri.(2), 

« a „ f 1 > E ( 1 ) R ' ( , ) o R i ( 2 ) ( = ( 1 ) R i ( 1 ) ( a 1 , t 1 ) ) , 

« a 2 , / 4 > e
( 1 ) R i ( 1 ) o R i . ( 2 > ( = ( 1 > R ' ( 1 ) ( a 2 , t 4 ) ) , 

relation (1)R2
(1) is isomorphic with relation R^<2), 

« a 2 , t5> e (1)R2
(1) o R£V(= (1>R2

(1)(a2, t 5 ) ) , 

relation ( 1 )Ri (2 ) is isomorphic with relation Ri.(3), 

« a 7 , a9, U) e (1 )R ' /2) o R&>( = (1>R'(2>(a7, a9, t 4 ) ) , 

« a 9 , a7, t4) e
 (1 )R ' /2) o Ri(6

3
2>(= (1>Ri(2)(a9, a7, t 4 ) ) , 

relation (1>R2
(2) is isomorphic with relation R^7

3>, 

« a „ a8, rt> e (1)R2
(2> o R^>(= (1>R'2

(2>(a„ a8, t , ) ) , 

« a 8 , a10, tt)e
 (1)R2

(2) o Rl(32>(= (1>R'2
(2)(a8, a10, t , ) ) , 

« a „ a10, tl) e (1>R2
(2) o R £ > ( = ( t )R., (2)(-i. »io, *,)) • 

relation (2 )Ri (1 ) is isomorphic with relation Ri.<2), 

« (1>Ri (1), tl) e (2 )Ri (1 ) o Ri.(2>(= (2)Ri(1)((1)Ri(1), t . ) ) , 

« ( 1>R i ( 1 ) , u) e
 ( 2 )R i ( 1 ) o R ; . < 2 >(= ( 2 < R ; ( " ( ( 1 ) R ; ( 1 ) , t 4 ) ) . 

Therefore: (S^0l, SfLl, At2) e m»dx, (£fLl, Sf0l, At2) e mod\ (correspondence of 
isomorphy is symmetric). 

Simultaneously we can consider SfLl as language model] of ontic system Sf0l 

and conversely system Sp
0l as semantic model of language model Sf'Ll, if conditions 

of definitions D 8, D 9 are satisfied: 



422 to constant (1)Ri (1) of system £fLl relation (1)R'1
(1) of £f0z is uniquelly associated 

to constant (1)R'2
(1) of system £fLl relation (1)R2

(1) of £p
Ql is uniquelly associated 

to constant (1)R'/2) of system 5"L2 relation ( 1 )R ' /2) of £f0l is uniquelly associated 

to constant (1)R'2
(2) of system £fLl relation (1)R2

(2) of £f02 is uniquelly associated 

to constant (2)Ri (1) of system ^ L 2 relation (1 )Ri (1 ) of £p
0l is uniquelly associated 

to constant a^ of system £fLx object at from the universe of system £p
02 is uniquelly 

associated 

to constant a2 of system £fLl object a2 from the universe of system £f0l is uniquelly 
associated 

to constant a7 of system £fLi object a7 from the universe of system £p
0l is uniquelly 

associated 

to constant a9 of system £fLl object a9 from the universe of system £f Ql is uniquelly 
associated 

to constant a10 of system £"Ll object a10 from the universe of system £p
0l is uniquelly 

associated 

to symbol tx of system £PLl moment f. from interval' At2 is uniquelly associated 

to symbol t4 of system £" Ll moment f4 from interval At2 is uniquelly associated 

to symbol t5 of system £fL:L moment r5 from interval At2 is uniquelly associated 

P 9. System £fL2 is on time interval At2 generally homomorphic to a system ̂ 0 2 

from example P 2, since there is system 5^02, which is on A t2 subsystem £f0l and y L 2 

is on At2 isomorphic to 5^02- Easily we can find out that mapping founding generalized 
homomorphy 5^L2 to £p

0l we obtain by composition of two mappings from P 4 
and P 8: 

(1 )R (1 ) => R[ ( 2 ) , 
(1 )R (1 ) => RL

<2) , 
(1)R(

3
1) => 0 , 

(1 )R (2 ) => RL
(3), 

(1)R(
2

2) => RL
(3), 

(1 )R (3 ) => 0 , 
(2 )R (1 ) => R'Lf , 
(3 )R (4 ) => 0 . 

Hence £?Ll is also model2 of ontic system £"0l on interval At2 and, if conditions 
from D 8 are met, is also its language model2 on At2. 



P 10. By examples P 4 and P 7 £f0l is subsystem of £f0l on interval At2, £fLz 

is subsystem of £fLl on interval At2. Therefore we can assume £/!
Ll as model3 of ontic 

system £p
0l on At2 and conversely also £"0l as model3 of system SfLl on At2. If 

conditions from D 8 are satisfied, we can consider £PLl as language model3 of system 

•SV 
Proposed definition of notion "model" and its specification for notions "modeli", 

"model2", "model3" may look unusual and perhaps even artificial and strange. 
However consider that in practice of language (especially mathematical) modelling 
of real ontic systems we often use language and axiomatic system with general axioms. 
To these general axioms, we cannot associate mutually and uniquelly any elements 
of relations (or collections of these elements) of real systems. Thus there is no possi
bility to take those language systems for modelsj of given real systems. Despite that 
we do talk about "language (for instance mathematical) model of real system "also 
in these cases. For this reason we have introduced notion "model2". 

Similar reasoning leads to acceptance of specification "model3". In practice 
we hardly detect existing large real and variable systems in their all completeness. 
We cannot hence form language system modelling those real systems in complete 
complexivity due to very strict demand from definition of notion "model!". This 
fact is strengthened by known desires of finiteness imposed on modelling language 
systems when modelling real systems by modern computers (finite automata). Con-
verselly, when we shall use axiomatic language systems with general axioms for 
modelling, then we cannot apply even notion "model2". Therefore we have introdu
ced notion "model3". 

Applicability of proposed concept will be particularly stressed when we consider 
possibility of prediction of future events due to logical operations in modelling 
language system. 

Without formulating the whole concept on general level, we shall present very 
simple example. 

Let us return to examples P 2 —P 10. Suppose that system 5^Ll is given to our 
disposal already at moment tA. From assumptions R ^ and RJL22, it is possible by 
means of logical deduction (by substitution and detachment) to obtain statement 

( 1 ) R a ) ( a 2 , t s ) , 

describing (at given interpretation), that at future moment f5 object a2 will have 
property (1)R2

1). The first proposition R ^ is general sentence which we have accepted 
into system £fLl for instance from a theory. The second assumption R^2 is sentence 
which we can use to describe an event which passed by in system Sp

0l at the same 
moment i4 (<a2, r4> e (1)R(

2
1)) in terms of language of system SfLl. Since language 

system £p
Ll contains this sentence, we cannot classify that at moment r4 as model! 

of system Sf0l (which presumably at t4 we cannot empiricaly detect completely). 



System $P0l anyway encloses events with no corresponding sentences in SfLl -
for example event: <a6, tx} e (1)R(

3
1). For this reason we cannot characterise corres

pondence £fLl and 5"0 l for interval At as "model3". However due to existence of 
model of this kind we can "predict future". 

At the end of this reasoning we introduce example dealing with the correspon
dence "model" among studied system, known only partially, method "black box" 
and deterministic automata. 

Let us have system Sf0, whose structure we do not know and we can determine 
on it two limit points au a2. We shall make large series of experiments associating 
thus one of the elements ax impulsion of various kinds and we shall investigate 
reaction of system on the other limit point a2. Hence we study correspondence 
between assigned value of input element at and values of output element a2 taken 
on aftej duration of given time period. Let experiments be created during given time 
interval AtB. We describe their results in the Tab. 1. 

Tab. 1. 

to element Ű! was assigned element a2 took on 
value at moment value at moment 

X ti X t2 

X tз X t4 

X ts X t6 

X tю X tn 
A tu A -12 

X -13 X tl4 

A t.4 A tl5 

Let results of experiments be resolved and generalized for the whole interval 
AtB as shown in Tab. 2. 

We shall now define system SfB based on mentioned experiments and existing 
on interval AtB: £fB = <UB, ^ B >. 

UB = {at,a2}, ®B = {X,A,B,C), 

X = {<a„ txy, <«i, t3>, <«i, ts>, <«i, ti3>, • • •, <«2, t2>, <a2, /4>, <a2, t6>, 

<«2, t!4>, • • • , } , 

A - { < « . , f U > , < « l , t l 4 > , <«2, tl2>, <«2, tl5>---} • 



Tab. 2. 

input word at momentь output word at moments 

X ti X ti+, 

XA ' XA ' 

xв xв 
xc xc 
AX ti, ti+. AX ti+l, ti+2 

AA AA 
AB AC 
AC AB 

BX BX 
BA BB 
BB BA 
BC BC 
CX ti, ti+i CX ti+ 1, ti + 2 

CA CB 

CB CA 

CC cc 
(Due to Table l). SfB does not contain other relations except those which were found 

from experiments summarized in Table 1. 

We define further axiomatic language system S"LB holding on interval AtB: S"LB = 

= < v i . B , ^ L f l > , 
ULB - {a„ a2, X, A, B, C} . 

01 LB contains: 

1. general statements 

P t V t ^ a - . t , ) - * ^ . ^ , ) ) , 

P 2 = V t ^ a , , t,) A A(a„ t j + 1 ) ) -> (A.(a2, t i + 1 ) A A(a2, t i + 2 ) ) ) , 

P 1 6 = Vt,((C(a., t,) A C ( a i , t i + 1 ) ) -> ( c ( a 2 , t i + 1 ) A C ( a 2 , t i + 2 ) ) ) ; 

(they are description of result of generalization from Tab. 2). 

2. particular statements: 

V l 2 = X(a., t 3 ) , 

(statements regarding entry at are description of recalled situations in experiments 

described in Table 1, statements concerning output a2 are logical consequence of 

general statements and particular statements about entry at and are in accordance 

with description in Table 1). 



426 Further there are here statements obtained from general ones P . , . . . , P 1 6 by 
substitution of names of time moments from interval AtB and time variables: 

V„.'-(%,t.)-Haa ,t2)), 
V„2 = ((X(a„ tt) A A(a1; t2)) -> (X(«2, t2) A A(a2, t3))) , 

Let us form the automaton shown on Fig. 1 from technical elements. 

Fig. 1. 

Automaton has two binary inputs XUX2 and two binary outputs Yu Y2. Qu Q2 

are binary parts of state. We can describe relations of automaton by canonic equations 
(by means of Boolean algebra): 

7, - & * i + 62*2 , 

Y2 = g l [Q2*2 + Q2(*l*2 + XiXJ] + QyX, , 

Qi -» QtGiXi, 

Q'i = QiQ2x2. 



Let us translate (mutually uniquelly) binary symbols to letters of alphabet according 427 
to code: 

input symbols letter of input alphabet 

X, X2 X 
X,X2 A 
XtX2 B 
XtX2 C 

output symbols letter of output alphabet 

Y\Y2 X 
YJ2 A 
YJ2 B 
Y,Y2 C 

binary parts of state denotation of state 

5 i Q 2 s . 
6ie2 s2 
QiQz s 3 

6iQ 2 s 4 

Because of this translation it is possible to consider automata as a system with 
one input element xl and one output element yx. Both input and output element 
can take on values X, A, B, C. 

Not taking in to mind internal (technical) structure of automaton let us define 
on that subsystem $P A : 

yA = <uA,@A>, 

UA = {xu yi] , mA = {X, A, B, C, Rt,R2, ...}. 

Let £f A exist again on interval AtB. Relations which are elements of set of relations 
MA are more terms relations between input, its values, corresponding moments, 
output, its values and corresponding moments. To element of a relation R;e^x: 

(xx,A,t,,B,t2,yy,A,t2,C,t^ 

there will be uniquelly assigned a statement of language system SfhB: 

V ;. = ((A(a., t t ) A B(a., t2)) A (A(a2, t2) A C(a2, t3))) 

which is element of a set of statements V ; e MLB. 
The automaton has been formed to assign to every relation Rt e MA uniquelly 

a set of statements from set MLB of language system £fLn. If this association is mutually 
unique, there exists a correspondence "modeli", on interval A tBbetween both systems. 

On the contrary, between system £fB and ^ L B there is only correspondence 



"model2" on interval AtB, since to general statements of system Sfhn cannot be 
assigned any relations of system S*\ — system SfB was defined merely for summa
rizing particular empirically obtained knowledge on issuing data of input and taking 
on values of output in individual moments. 

Obviously it is possible to define subsystem S"'LB on system SfLB, isomorphic on 
interval AtB with system SfB. Between Sf A and $PLB is therefore also correspondence 
"model2" on interval AtB. 

System Sf"'B was however defined as subsystem on system Sf0. It is therefore also 
correspondence "model2" on interval AtB between S/'Q and SfA. There surely are 
relations in Sf0 connecting input and output words for those moments in which 
no corresponding experiments were done on S"B. Because of that it is possible by 
experimenting with Sf A (made as experiments with automaton, on which Sf A was 
defined), to predict or postdict or explanate resp. processes which can run on in model 
system Sf0. 

Let us further consider a possibility (which will not be discussed here in details) 
to assess structure of incompletely known automata S/'o on the base of knowledge 
of internal (technical) structure given automata. We can easily construct considered 
deterministic automaton if we know its canonic equations. 

Discussed example corresponds with real procedures in technical practice. On 
incompletely known system "black box" we define, on the base of really created 
experiments, subsystem. To that we search adequate language model. If this model 
is axiomatic system, then statements describing results of made experiments belong 
to its theorems. To such a language system we look for corresponding automata 
modelling (at least some) statements of system. Experiments with automata can be 
replaced by further experiments with system "black box". We assess structure of 
system "black box" due to knowledge regarding structure of modelling automata. 

Let us notice at the end that system Sf A enclosing relations among input, output, 
their values and moments is a system of the fecond degree (values of input or output 
elements resp. are considered as its properties). 

(Received March 9, 1979.) 
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