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KYBERNETIKA CiSLO 4, ROCNIK 6/1970

On the Amount of Information Contained
in a Sequence of Independent Observations

IGOR VaDA

In the present paper basic properties of a Chernoff bound established previously are summarized
and new ones are derived. The Chernoff bound is figuring as an asymptotic parameter in a formula
for Shannon’s information contained in a sequence of independent observations concerning
a discrete parameter,

By 6 we denote a random variable taking on a finite number of values 1, 2, ...
and by ¢ another random variable with a sample measurable space (X, ). By
&4, &5, ... subsequent realizations of £ will be denoted; they are supposed to be
mutually independent for any given value of 6. Finally, I(6, &,, ..., &,) will denote
the Shannon’s information contained in (&,; &,, ..., &,) concerning 0.

The information 1(9, Eisenns é,,) can serve as an important numerical characteristic
of the following statistical problem: the statistician is interested in the value of 6
which is not directly observable but he can observe the values of &, &,, ..., &,.
It holds I(8, &,, ..., &,) = Oiff (if and only if) the sample (;, &5, ..., &,) is independent
of 8. In general I(9, ¢,, ..., &,) € [0, H(0)], where H() is the Shannon’s entropy
of the random variable 8; relation I(6, &,, ..., &) = H(6) holds iff for any realization
of (?jl, &y ouuy &) the value of @ can be uniquely determined with probability 1.
(Remark that the first equality holds iff § and £ are independent whereas the second
equality holds iff there exists a deterministic relation between 0 and f.)

It can be relatively very easily shown (cf. Th. 1 in [1]) that*

1) 100, ¢y, ..., &) ~ H(6) — exp (—nD),

where D € [0, + oo depends on a conditional distribution Pgyg of & only. The parameter
D has been independently evaluated by A. Rényi [2] and by the author (cf. Th. 2
in [1]); it was shown that D is the Chernoff bound [3] corresponding to a Bayes
testing of the simple hypotheses H;: 0 = i, i = 1,2, ..., on the basis of (51, YN

* We write a, &~ a — 4" instead of a, = a— A"*°®) p— 1 2, ..,




..s &,). In [3], D has been interpreted as an asymptotic efficiency of the Bayes test
suggested above.

Some basic properties of the parameter D were presented in [3], another ones
were stated in [1], however, without explicite proofs. Moreover, it is to be noted
that assertions (d), (¢), and (g) in [1] hold only if the probability measures considered
there are absolutely continuous (this supposition was not explicitely emphasized
in [1]). Consequently, an analogical investigation of the “discontinuous” case
which is very interesting too is advisable. Therefore, by the present rather review
paper we are resuming the subject of [1].

In Theorems 5—7 and 9, 10 below the assertions of [1] are summarized (including
the case where the probability measures' mentioned above are not absolutely conti-
nuous). In Theorems 1—4 basic properties of a modified a-entropy and a modified
relative Shannon’s entropy are established. The modified concepts differ from
non-modified ones in the ‘“discontinuous” case mentioned above only; it seems
however that they are not only more suitable than the non-modified ones when
asymptotic problems of the present type are solved, but also provide tools for a more
accurate analysis of such problems. (In this respect, compare, for example, (b) and (d)
in [1] or (2.8) in [2] with Th. 5 below.) Finally, in Th. 8 a convergence property
od D’s corresponding to a sequence of sub-g-algebras of & is established. Though D
is a special version of the a-entropy, this property cannot be deduced directly from
the semimartingale convergace theorem.

1. MODIFIED CONCEPTS OF «- AND SHANNON’S ENTROPY

Already in [3] a functional of the following form
J gt dp, «e(0,1),
X

(cf. also [4]) has been investigated, where p, q are the Radon-Nikodym densities
of probability distributions P, Q on (X, &) with respect to another (dominating)
probability distribution g on (X, Z). In accordance with [4], the functional will be
denoted by H,(P, Q) and called, simply, a-entropy. Some basic properties of this
functional can be deduced from Theorem 4.1.s in Chap. VII of [5]. \

Before going into a more detailed discussion of a-entropies, let us note that in the
statistical model itroduced above we shall suppose that 8 takes on two values 1 and 2
only and that P[f = 1] = P[0 = 2] = 1. It follows from what was said in [1, 2]
that the general case where the number of possible values of 8 is arbitrary finite does
not present any essential new difficulty. (In the general case D is defined as the mini-
mum of the Chernoff bounds corresponding to the pairs of hypotheses 8 = i, 0 = j
such that P[6 = i] > 0, P[@ = j] > 0, taken over all such pairs.) In the sequel,
P or Q will be interpreted as the conditional distribution Pgjp=; Or Py = respectively.
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Thus,
2 P, ego=1 = P x P x ... x P(ntimes),
Prig cpo=z = @ x O x ... x O(ntimes).

In a connection with an evaluation of the parameter D, the following slightly
modified concept of the a-entropy will be useful

6] H{P, Q) = pq' T d,
c(@,0)
where C(P, Q) = {pq > 0} € Z is a set of absolute continuity of P, Q.
It is to see at the first sight that H, = H, if P, Q are mutually absolutely continuous
and

@) , HYP,Q) = H{P, Q) «+0,1,

for every P, Q. (Let us note that, unless the contrary will be explicitely stated, we shall
consider the a-entropies for « [0, 1] only.) Further, it is fruitful to notice (cf. [4,6])
that H(P, Q) is the real restriction of

+ @
H(z) =J e dF(u),
~ 0
where z = « + if is a complex number and F(u)} = Q({p < gexp (u)}) is the
distribution function of the likelihood ratio coresponding to the simple hypotheses P
and Q. It follows from the theory of bilateral Laplace transform (cf. [7]) that H,(P, Q)
is finite for « € [0, 1] and that H,(P, Q) is an analytic function of « on (0, 1) with

derivatives (cf. [4])

) ;— H(P, 0) = f

k
p’qt" (log B) dp forevery 2€(0,1),k=1,2,...
X q

which, however, need not be always continuous at « = 0, 1.

Using (4) these results may be immediately applied to H_; as we shall prove below
(cf. Th. 2, where properties of H, as a function of « are summarized), H(P, Q)
is continuous on [0, 1] (or, more generally, on the set J of all « for which H,(P, Q) <
< 0; it follows from the theory of bilateral Laplace transform that J is always
an interval on the real line). '

Since

(6) H{(P, 0) = EoXcr0) (f)u’

the semimartingale theorem cannot be applied to H; unless xcp,0) = 1 [@]. Never-
theless we- shall see that H, possesses all the convergence properties, which can



be derived for H, from the semimartingale convergence theorem. Of course, in view
of (4), we may restrict ourselves to the case @ = 0 or 1.

Let £, =« &, < ... be sub-g-algebras of Z and let P,, Q, be restrictions of P, Q
on &y n = 1,2,... Clearly, C(P,, Q,) € Z,.

We shall say that a sub-g-algebra &, < 2 is C(P, Q)-sufficient if P(C(P,, Q,)) =
= P(C(P, Q)). Obviously, if &, is C(P, Q)-sufficient, it need not be also C(Q, P)-
sufficient, but if it is sufficient with respect to P and Q, then it is C(P, Q)- as well
as C(Q, P)-sufficient.

Theorem 1. For every a e [0, 1]
©) H{P;, Q,) 2 Hy(P2, Q1) = ...
and, if & is generated by the algebra

Zo=UZ,,
n=1

then
(8) lim, H{P,, Q,) = H{P, Q).
If a€(0,1) then H(P,, Q,) = HAP, Q) iff (if and only if) Z, is sufficient with
respect to P and Q. If o = 0 or 1 then this equality holds iff Z, is C(Q, P)-sufficient
or C(P, Q)-sufficient respectively.

Proof. By (4), the assertion stated here for « e (0, 1) has been proved in [5].
If o = 0, 1 then, it may be easily deduced from the inclusion

) : c(P,, Q) > C(P, Q)

and from the fact that {1 — ¢, gn}> # = 1,2,... is a semimartingale with respect
to both P and Q.
To prove (9) it will suffice to prove that the conditional densities

(10) P=Ep|Z), 4, =FEa|Z)

may be defined in such a way that p(x) g(x) > 0 implies p,(x) q.(x) > 0, xe X.
If E = {p, = 0} € Z,, then the equality defining p, implies that the set F < E of all
x € X for which p(x) > 0 is of P-measure zero, i.e. we may put p, = 1 on F. Thus
pu(x) = 0 implies p(x) = O for every x € X. Since we may analogically proceed with

4, 4, the implication requested above is true. (9) implies that {1 — xcp, 0.y}
n=1,2,..,, 0 is a semimartingale, Q.E.D.

Theorem 2. H (P, Q) is continuous convex function on [0, 1] with
(1)

gk ,

22 P, 0) = J'

[of

k
p’ql"’(log E) du forevery k=1,2,...and ae[0,1],
(P,Q) q
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where the integrals in (11) are finite for « € (0, 1) and well-defined for « = 0, 1, and
0< H(P,Q) <1,

where HJP, Q) = 0 for some ae[0,1] (and, consequently, for all ae[0,1])
iff P L Q and H(P, Q) = 1 for some a € (0, 1) (and, consequently, for all a € [0, 1])
iff P=Q.Fora=0o0r1, H(P,Q0)=1iff Q < P or P < Q respectively. H is
strictly convex if neither P L Q nor P = Q.

Remark. The derivatives in (11) for « = 0 or 1 are to be considered as those on the
right or left respectively.

Proof. We shall prove firstly that H, is continuous on [0, 1]. One of the methods
to prove this is to form a sequence of sub-g-algebras &, = %, < ... of & generated
by finite measurable decompositions of X. As it was shown in [8], the decompositions
may be defined in such a manner that the c-algebra 2’ < & generated by the cor-
responding algebra %, (cf. Th. 1) is sufficient with respect to P and Q. Since, evidently,
every H(P,, Q,) is continuous and convex on [0, 1], it follows from Th. 1 that
H,(P, Q) is a limit of continuous and uniformly converging (on [0, 1]) functions,
i.e. it is continuous as well. The convexity will follow from (11) for k = 2 and the
assertions following (11) can be deduced from (3) and (11).

Thus it remains to prove that the integrals in (11) are finite or well-defined res-
pectively and that (11) holds. But, according to (5) (see also [4]), the integrals (11)
are finite for every ae(0,1) and k = 1,2, ... Since the functions u(log u)* are
bounded from below for every u € (0, +00) and k = 1,2, ..., the integrals in (11)
are well-defined for a = 1 as well. The same is true also fora = 0Oand k = 2, 4,6, ...
If k is odd, then we can write

k k
J q <log£> dy = — f q (logg> du
c(r.0) 4q e, p

so that, interchanging the role of P and Q in the case « = 1 above we obtain the
desired assertion.

Relation (11) holds for every a€(0,1) and k = 1,2,... by (4) and (5). If « = 0
and k = 1 (for« = 1as wellas k = 2, 3, ... a similar argument can be used), we can
write

Hoy(P, Q) — HY(P, Q) = oc.[ u'®@logudQ forevery «e(0,1),
: cr.0

where &(u) € [0, «] is a Borel function of u € [0, +co] and u = p/q on c(p, Q). If

J. logudQ
Cc(P,Q)



is finite the proof is obvious. Now, since logu < u — 1 for every real u, the fol- in
lowing inequality holds

J' logu dQ < P(C(P, 0)) — Q(C(P, Q)) < +oo
P
and it remains to investigate the case
J logudQ = -,
C,

where the set C, € Z is defined by C, = {u < 1} n C(P, Q). Since &(u) € [0, o, it
holds
ulogu < u*logu on C,

and it remains to prove that for every 4 > 0 there exists « & (0, 1) such that
j u*logudQ < —4.
Ce

IfweF,={uz1/n}nCyed,then

lim,,j‘ logudQ = —o0
Fn
so that, for some n,

J. logudQ = -24.
Fn

If now 0 < o < log 2/log n, then
u*logu < 4logu on F,,

and we can successively write
J' u*logu dQ gf u*logudQ < %f logudQ £ —4.
C, Fn Fn

The same modification as above we shall also consider in connection with the
generalized entropy of Shannon (or discrimination information) of P, Q introduced
into the literature by S. Kullback and A. Perez, i.e. instead of

H(P, Q) = j plog P au
x q
we shall consider

(12) H(p, Q)= plogZauz P()10g DD = -

(
C(P.Q) q Q(C)

1
e
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where C stands for C(P, Q). Let us notice that H'(P, Q) may take on negative values
as well and that H'(P, Q) < 0 implies H(P, Q) = + co.

Theorem 3. If H'(P, Q) < 0 then H'(Q, P) = 0 where the strict inequality holds
unless either P L Q on & or P = Q on C(P, Q) N %.

Proof. From (12) we obtain

(13) H(P, 0) + H(Q. P) 2 (P(C) - Q(C))log % 20

so that H'(P, Q) £ 0 or <0 implies H(Q, P) = 0 or >0 respectively. If H'(P, Q) =
= H'(Q, P) = 0 then, by (13), P(C) = Q(C) so that, according to Lemma 1.1 in [9],
either P(C) = Q(C) =0 (ie. PLQonZ)orP=QonCn 2.

The following identity (14) was found for discrete distributions by A. Rényi [10]
(cf. also [11]). }

Theorem 4. For every P and Q,

(14) lim —'— log H,(P, 0) = H(P. 0).
aw1- o — 1

(15) lim — log HJP, 0) = H(Q, P).
a0+ a

Proof. We shall prove (14) only; (15) may be proved analogically. If P & Q,
then H(P, Q) = +o and H{(P, @) < 1 (see Th. 2) so that (14) holds. If P < Q,
then, by Th. 2, H; (P, Q) = 1 so that we can succesively write

lim 3 H(P, Q)

1 , a1~ dot H(P, 0)
1 = = _
18 fI"‘(P" 0) lim H)P, Q) H{(P, Q) H(p, 0)

a1~

(cf. (11), (12)). .

It is to see that (14) and (15) may be replaced by

lim
a=1- 0 —

L H (P, 0))umo = —H(Q, P),
da

H(P, Q),

I

d
E; HG(P’ Q)[z= 1



where the derivatives are to be considered as those on the right or left respectively. 313
Analogical relations

"

L HP, Qo = —H(Q, P)
dx

d '
— HP. Q) = H'(P, Q)
da
follow immediately from (11) and (12).
2. D-DIVERGENCE

Now our attention will be paid to D(P, Q) which is a parameter of convergente
in (1). The fact that D(P, Q), as it will be defined in this section, is identical with
that of the formula (1) will be proved, for the sake of completeness, in the following
section.

Let us put* (cf. (e) in [1])

(16) D(P, Q) = sup — log H(P, Q) = —log min H(P, Q).
2e[0,13

aef0,1]

According to (4) and Th. 2, the minimum in (16) exists and the second equality holds.
Th. 2 also implies the following two theorems (cf. (b) and (d) in [1]).

Theorem 5. H'(P, Q), H'(Q, P) > 0 iff

(17 ‘ D(P, Q) = —log H(P, Q),

Jor we (0, 1) which is a unique solution of the equation

(18) f rat~logLan =0,
c(P,Q) q
H'(P, Q) = 0 iff
. (19) ) D(P, Q) = —log II’l(P, Q),

and H'(Q,P) £ 0 iff
D(P, Q) = —log Hy(P, Q).

According to Th. 3, H'(P, @), H'(Q, P) £ 0 iff H'(P, Q) =‘H’(Q, P) = 0 which
is equivalent to P L Q or P = Q. By Th. 2, both later conditions imply Hy(P, Q) =
= H/(P, Q) so that Th. 5 is self-consistent. Let us recall that H'(P, Q) + H(P, Q),

* By log we denote in this paper the natural logarithm,
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ie., particularly, H'(P, Q) < 0, may appear only if P € Q, so thatif P = Q, P # Q,
then (17) is true.

Theorem 6. D(P, Q) is symmetric non-negative extended real valued function
of P, 0. D(P, Q) =0 iff P = Q and D(P, Q) = +c0 iff P L Q.

The symmetry stated in this theorem follows from (16) and from the identity
H(Q, P) = H{_(P, Q) which is true for every a € [0, 1].
In [3] it was proved that (cf. (f) in [(])

D(ij P, .Tle’ §11:‘[1 (P, 0)

and

D([1P,T1Q)=nD(P,Q) it P=P Q=0 i=12..
i=1 =1
Th. 1 together with Th. 2 (cf. (11), (12)) yields the following result (cf. (g)in[1]).

Theorem 7. If P’, Q' are restrictions of P, Q on a sub-g-algebra I’ of &, then
(21 D(P', Q) < D(P, Q)

where the sign of equality holds iff " is sufficient with respect to P, Q or C(P, Q)-
sufficient or C(Q, P)-sufficient depending on whether H'(P, Q), H'(Q,P) >0
or H(P, Q) £ 0 or H'(Q, P) < 0 respectively.

The following assertion is new.

Theorem 8. If 2, P,, Q, are defined as in Th. 1, then
(22) D(P,, ) = D(P, Q) 5 ...

and if 4 is generated by the algebra &' (cf. Th. 1), then

- (23) lim, D(P,, Q,) = D(P, Q).

Proof. According to (16) and Th. 7,
~log H,(P,, Q,) £ D(P,, ,) £ D(P, Q)

where « is defined by D(P, Q) = —log H,(P, Q). Now it remains to apply Th. 1.
Next we shall prove that D(P, Q) as defined by (16) is identical with that defined
by a different manner in (3.2) of [1]. The definition (3.2) was merely based on the
concept of generalized Shannon’s entropy. As a by-product the inequality D(P, Q) <
< min [H(P, Q), H(Q, P)] will be obtained. This result becomes evident if compared
with the Chernoff-Stein asymptotical formulas for the power of Neyman-Pearson
tests of 0 = 1(2) against 0 = 2(1) based on &, &,, ..., &, In these formulas H(P, Q)



(or H(Q, P)) is figuring in the exponent of convergence analogically as D(P, Q)in (1). 315
For a deeper insight into these questions we refer to [13, 11] (cf. also the following
formula (36)).

Let P and Q be arbitrary fixed probability measures and denote by 2 or 2 the
set of all probability measures R on (X, Z') such that

(29) H(R, P) = H(R, Q)
(25) H(R, P) < H(R, 0)

respectively. The definition we beared in mind above is as follows:

(26) D(P, @) = min [inf H(R, P), inf H(R, Q)] .

The next our aim will be to prove and precise (26)*.

Let 2, 2 or 2, = 2 denote the subclasses of all R such that H(R, P) < + 0
or H(R, Q) < + oo respectively and let # stands for the set of all measures R domin-
ated by i and concentrated on C(P, Q), i.e. R(C(P, 0)) = 1.

\
Lemma 1. 2,u 2, = &, i.e.if Re 2 U 2 — R, then H(R, P) = H(R, Q) = + 0.

Proof. Let R € # — # and let us distinguish two alternate cases: R € p, R(C) =1
and R < i, R(X — C) > 0, where, here and in the sequel, C denotes C(P, Q).
If R € p, then also R € P so that, by the definition of the generalized Shannon’s
entropy, H(R, P) = +o. If R(X — C) > 0, then either R &« P or R & Q. The
first case we have just investigated above and if R « Q, then H(R, Q) = + 0.
This together with the condition (24) for R € # implies H(R, P) = + 0, Q.E.D.

Lemma 2. [f Re &, then Re 2, or 2, iff
27 j rlogddu=0 or =<0
c P
and Re Py n 2, iff
jr[oggdy =0,
c p

where r = dR/dp.

Proof. If Re Z, = &, then r = dR/du exists by Lemma 1. It follows from the
definition of C that the integral in (27) or (28) exists. The remainder is clear.

* During a preparation of this manuscript for printing, A. Rényi has published analogical
definition of D in the printed version [2] of his lecture.
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Lemma 3. For every Re ® and a € [0, ]]

(29) H(R, P) 2 (1 ~ «) f rlog ? du ~ log Hy(P, Q)
c b
with equality iff
_ H(P, Q) Pt e C
(30) "=No out of C.

Proof. S. Kullback proved in Chap. 3 of his book [12] that for every extended
real-valued measurable statistic T defined on (X, &), for every real T and non-negative
B, and for every R < u the following inequality holds

H(R, P) z rJ‘ *Tdp + log B+ 1 — ﬁjl exp («T) du
X X

if only the corresponding integrals exist and that the equality takes place iff r =
= exp (t7T). Putting 7 = a — 1,

_ / logE onC,

T—~\ q

~o outof C,

and B = (H,(P, Q))™! we obtain {29). The rest of the proof is now clear.

On the basis given by these lemmas, (26) can be casily proved. Let us consider
firstly the case where H'(P, @), H'(Q, P) > 0. Here P(E n C), O(C — E) > 0 and,
since P, Q are absolutely continuous on C n &, P(C — E), Q(E n C) > 0, where
E = {log plg = 0} e Z. Tt is easy to see that these facts enable us to argue that
Py N 2y % 0. Further, the definition of 2,, 2, yields

(31) inf H(R, P) = inf H(R, P), inf H(R, Q) = inf H(R, Q).
P Po E) EN
However, we shall prove more, namely,

(32) inf H(R, P) = inf H(R, P) = inf H(R, Q) = inf H(R, Q).
20 Pondo Pondo 20

Theorem 9. If H'(P, Q), H'(Q, P) > 0, then 2, n 2, * 0, (32) holds and

D(P, Q) = inf H(R, P) = H(R, P),
Pon2o

where Re Py 2 is uniquely [u] defined by (30) for a € (0, 1) given by (18).

Proof. Let « in Lemma 3 be defined by (18) and let R € #, N 2, be arbitrary.
Then, by Lemmas 3, 2 and Theorem 5, H(R, P) = D(P, Q) with equality iff (30)
holds. Q.E.D.



Theorem 10. If H'(P, Q)< 0 and P, Q are not mutually singular, then 2, + 0 317
and
D(P, Q) = inf H(R, P) = H(R, P) < inf H(R, Q),
20 2

where R € P, is defined uniquely [p] by (30) for « = 1.

Proof. If P and Q are not singular, then P(C) > 0 and r defined by (30) for « = 1
is a probability density function. By Lemma 2, R € £ given by r belongs to £ (and,
consequently, to 2,) iff H'(P, Q) < 0. The equalities in Th. 10 now follow from
Lemma 3 (for « = 1) and from (19). As to the inequality, let us notice that, replacing
P and Q in Lemma 3, we may write '

H(R, Q) = J- rlog Zdu + D(P, Q)
c q

for every Re %, where D(P, Q) is defined by (19) again. But (27) and Lemma 2
imply that the integral is non-negative for any R € 2, i.e. the inequality is true.
Th. 9 and Th. 10 imply the following

Corollary. The relation (26) holds. If D(P, Q) < + oo, then the minimum in (26)
is attained on R e % defined by (30) for appropriately defined o € [0, 1].

Since P € 2, Q € 2, (26) implies the following inequality:
(33) D(P, @) = min [H(P, 0), H(Q, P)] .
3. TOTAL VARIATION
In [1] an estimate of D(P, Q) in terms of a more simple functional V(P, Q) was

given. V(P, Q) was denoting the total variation of P and @ (cf. (h) in [1]). The total
variation is defined by

(G4 V(P Q) ='[ lp ~ ql du = 2 sup [P(E) ~ Q(E)] = 2[P(F) — Q(F)],
X Fe:
where F = {p = q} € Z. The estimate was of the following form*

The right hand inequality follows directly from the following formula (36) and from
the inequality
L—3V(P, QY2 (1 —4V(P, Q) n=12,...,

* My thanks are due to Prof. O. Kraft for calling my attention to the fact that this estimate
occurs also in Ch. Kraft, Univ. California Publ. Statist. 2 (1955), 125—142 (added in proof).
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(cf. (37)) which is the proof of Th. 1 in [1] based on. The left hand inequality may
be proved by a method indicated in [14] (cf. the proof of the inequality (15) in [14];
in this proof it is indifferent whether the measures P, Q are discrete or not), but here
another idea will be used.

Let Z" be the sub-g-algebra of 4 consisting of two elements F, X — F e Z, where F
is defined as in (34) and let P’, Q" be reductions of P, Q on %’. Then, by Th. 7,
D(P', @) £ D(P, Q), where

D(P', @) = —log inf = Y (U, V) for U= 0Q(F), V=V(P,Q),
ae(0,1)

and where

WU, V) = C—/ + y)uu‘”’ + (1 - ?— U>1(1 - Uy,

Thus it remains to prove that

2
sup inf ¥ (U,V) S /(1 - V:) for every Ve(0,2),

Ue[0,1-V/2] ae(0,1)

2
sup ‘l’l/z(U, V) < ,\/(] - ,‘.,F> .
Uel0,1-V/2] 4

But, however, ¥,,,(U, V) is strictly concave function of U on the interval [0, 1 — V/2]
with maximum on U, = §(1 — V/2), for any Ve (0,2) so that the desired result

follows from this identity:
Vl
bullio V) = «/(l B 7)

The main idea of [1, 2] was based on the fact that a relation between the variation
V(P", Q") and the quantity H(6) — I(6, &y, ..., &,) (cf. (3) and the assumption fol-
lowing it) exists. This relation is represented by a both-sides estimate which is “best
possible”, i.e. for any value V of V(P", Q"), Ve [0, 2], one can find two nonnegative
numbers L,(V), U,(V) such that

L)< H() — 16, ¢,, ... &) SULV), n=12,...

or

provided that (3) and other related assumptions hold and, moreover, both the bounds
considered here are attainable, for anyn = 1, 2, ...

We do not aim to discuss this relation explicitely here; it will be important for
us only that on the base of such an estimate one can argue that (1) holds iff

(36) 2 — V(P", Q") ~ exp (—n D(P, Q)



for D = D(P, Q), where
(37) P"=PxP..x Pntimes), 0"= 0 x Q x ... x Q(ntimes).
But, as it was shown in Th. 1 of [1], one can very easily show that (36) always holds
for some D(P, Q).

Unfortunately, these considerations do not yield that D(P, Q) figuring here satisfies
(16) for every P, Q. However, this statement together with (36) has been proved
firstly by H. Chernoff [3]. For the sake of completeness we next reproduce the proof

of Chernoff in a slightly modified way using the definition (26) instead of (16) (cf. also
Sanov [15]). '

Let us suppose, firstly, that P = (py, pa, ..., P}y @ = (415 42, ..., 4;) are two
discrete distributions, i.e. that
Pie=il0=1]=p;. Pl¢=il0=2]=gq;, i=12 .5,
(cf. (2)), where

1t follows from (34) that

L= w(PL @)= Y min[p(s ) aliss e i)] =

Jiedzseees, Js
= 2P0 - J) + Tl 0J)
where

. . nt 5o . . n! 5o
Ui =——Tlrl". 4l i) =~ [ 4f
- i=1

i [
i=1 i=1

and -

Av={ivdz s i 2 0.8 = n I ol < Tl af}
By = {Jijorends i 20001 = n,_Hlp’;* > 14l -
i= i= i=

Let us now denote by # U 2 the set of all discrete probability distributions R =
= (ry, 73, ..., 1), where 2, 2 are defined by (24), (25), and let. #' = 2 U 2 be the
set of all R such that for every r; there exists an integer k such that r; = k/n. Let
usput P =2 nR,2 =2nR. Clarly,

PPy, o) + qirs, omr) S 1 — LV(P', Q) <
< card (4, U B,) [p(nFy, ..., n7) + q(nry, .., nrg)],
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where R = (F(, 73,...,7)€#', R = (ry, 75, ..., 7)€ 2" are choosen according to
p(nfy, ..., nF) = max p(ary, ..., nry),
Re?’

q(nry, ..., nr) = max g(nry, ..., nr),
Re2’

and R =(F.7,,....F)ed, R= (71, 72, e z) €2 — & are arbitrary. Since
card (4, v B,) < n® and since, according to the formula of Stirling,

p(nry, ..., nr) = exp (—n H(R, P) + o(n)),
q(nry, ..., nr) = exp (—n H(R, Q) + o(n)),
we can write
(39) L — 3V(P", 0"y < exp (—n D(P, Q) + o(n))
(cf. the inclusions 2" = 2, 2’ = 2 and (26)). If R = (ry, 75, ..., r)€ Z U 2 is such
that
(40) D(P, Q) = min (H(R, P), H(R, Q))
then, in view of that one can always choose R € 2", R € 2' — #" such that [Fe = rl <
Sin, fri—r S 1fn, i=1,2,..,5, e
H(R, P) £ H(R, P) + o(n),
H(R, 0) < H(R, Q) + o(n),
the following inequality can be written
1 —3V(P", @") 2 exp (—n H(R, P) + o(n)) + exp (—n H(R, Q) + o(n)).
Thus, by (40),
1 —3v(P", Q") = exp (~n D(P, Q) + ofn)).

This together with (39) implies that (36) holds for D(P, Q) defined by (26) (and,
consequently, by (16)) provided that P, Q are discrete distributions with a finite
number of atoms.

To prove that (36) holds for D(P, Q) given by (16) (or (26)) for every P, Q let
us denote by D*(P, Q) the quantity figuring in the exponent of (36) in order to
distinguish it from that given by (16) and denote, further, by P,, Q, restrictions
of P, Q on a sub-v-algebra %'y = & generated by a decomposition of X consisting
of s sets from . Since, evidently, V(P%, Q%) < V(P", Q") for every n = 1,2,...,
on the base of (36) and on the base of the result we have proved above one can argue
that

(41) D(P,, Q,) < D*(P, Q).




As it is proved in [8], for every P, Q there exists a sequence %, = &', < ... of
sub-g-algebras such that the o-algebra 2’ < % generated by

U,
s=1
is sufficient with respect to P and Q, so that, by Th. 7 and 8,

lim, D(P,, ) = D(P, Q)
and, by (51),

(@2) D(P, Q) = D*(P, Q).

To prove that the strict inequality cannot appear here we shal need the following
fact, which follows from what we have already proved for discrete distributions
and from results of Sec. 2: If P, Q are two discrete distributions, then

(43) P'(F,) ~ exp (—n D(P, Q))

it H(Q, P) > 0 (cf. (36)) and

(44) 1—3V(P, Q") = P'(F,) + Q"(X"— F,)
(cf. (34)), where

(45) Fo={ [ plx) < 11 a(x) e 2.

Finally, we shall use the fact that I — £{V(P", Q") ~ exp (—n D(P, Q)) holds
for D(P, Q) evaluated by (16) if we replace P, @ by arbitrary totally finite discrete
measures (s, Py, -, Ps) (41> 92, ---» q5). Indeed, in what preceeds the norming
conditions P(X) = Q(X) = 1 never have been used.

Put p; = P(E})), q; = p;exp(—¢i) for E; = {gexpe(i — 1) < p < qexpei} for
every i =0, +1, +2,... and ¢ > 0. It is easy to see that ¢* < p*expag(l — i)
for xeE;, i =0, +1,... so that

+aw
Hi_(P,Q) <expex Y pyexp(—uoei) forevery ae[0,1].

Thus, for appropriately chosen & and r we can write (cf. (16))

__i piexp (—ayei) > exp (= D(P, Q) — 9),

where § > 0 is an arbitrary number given in advance and a, € [0, 1] is minimizing
the sum

Y piexp(—oei} on «ef0,1],
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(46) D(P, ) = D(P. Q) + 9,

where P, § are totally finite (discrete) measures defined on by the following Radon-
Nikodym densities (with respect to the dominating measure f):

p(@:i q‘.(x)=—lﬁ— for xeE,i=0,=%1,..., xr,

ME) ' (E:)
and
px) =1, g(x)=0 otherwise.

1t follows from the definition of E; that p/q < p,/q; on E, (if these ratios exist),
i=0, +1,.., so that F, c F, for

Fy={I17x) = [1a(x)} e 2"
and for F, defined by (45) and, consequently,
47) P'(F,) = P'(F,) < P"(F,).

In the case we have considered H'(J, P) > 0, so that, according to what was said
in a remark above,

P"(F,) ~ exp (—n D(P, Q)
(cf. (43)), ie.

(48) - :Tlog PY(F) = D(P. 0) < D(P, Q) + &

(cf. (46)). On the other hand, taking into account (44) and (36), we can write

-1 log P"(F,) 2 D*(P, Q).
n

This together with (47) and (48) yields the inequality
D*(P, Q) £ D(P,Q) + 6.

Since § may be chosen arbitrarily small, the desired equality between D*(P, Q)
and D(P, Q) is proved.
We remark that A. Rényi, using a more accurate relation

2 V(P Q) = (ﬁ exp [~n D(P, Q)])



following from a more general result of R. R. Bahadur and R. Ranga Rao [16], 323
stated in [2] the following sharpening of (1):

10,808 = HO) = 05, e [=n 0(P, 0)]).

(Received December 18, 1969.)
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VYTAH

O mnozZstvi informace obsazené v posloupnosti nezavislych
pozorovani

IGOR VAIDA

Necht § zna¢i ndhodnou veli¢inu nabyvajici hodnot 1,2, ... a ¢ jinou ndhodnou
veli¢inu s méfitelnym vybErovym prostorem (X, ). Necht déle &y, &,, ... jsou po-
stupné realizace veliiny &, o kterych budeme predpokiddat, Ze jsou navzijem ne-
z4vislé pro kazdou hodnotu 8. Necht nakonec I(6, &4, ..., £,) je mnoZstvi Shannonovy
informace o veli&ing 6 obsaZené v (&, &3, ..., £,).

Je znamo, ze I(0, &5, ..., &) € Lo, H(8)], kde H(6) je entropie veli€iny 6, a Ze infor-
mace nabyva hodnot 0 resp. H(f) pravé kdyz 0 a (&4, &, ..., £,) jsou nezavislé resp.
deterministicky zavislé. Je tedy informace jakoZto mira statistické zavislosti mezi 0
a (&, &z ..., &,) diileZitou &selnou charakteristikou statistického problému, ktery
spoliva ve stanoveni neznimé hodnoty parametru 6 pouze na zdkladé znalosti
hodnoty nahodného vyberu (¢, &, ..., &)

Pomérng velmi snadno (viz v&ta 1 v [1]) lze dokéazat, Ze existuje parametr
D [0, + 0] z&visly toliko na podminéné distribuci P, pro ktery plati vztah (1).
Explicitni analyticky vyraz pro D byl nezavisle nalezen a soudasn& publikovan
v referdtech A. Rényiho [2] a autora [1]. Jak bylo moZné intuitivnd olekévat,
D je totozné s tzv. Chernoffovou mezi [3], pisluSnou Bayesovu testu ke stanoveni
spravné hypotézy 0 = i, i = 1,2, ... na zaklad& (¢, &, ..., &,).

PredloZend prace shrnuje vlastnosti parametru D odvozené v pracich [1, 2, 3]
a dale je prohlubuje. Ve vétich 5 az 7 a 9 a 10 jsou v pondkud zobecnéné podobé
shrnuty a dokézény ty vlastnosti parametru D, které v [1] byly vysloveny bez dikazu.
Véty 1 aZ 4 stanovi vlastnosti modifikované o-entropie a modifikované relativni
Shannonovy entropie (nazgvané té% diskrimina¢ni informace). Obé modifikované
entropie jsou ve vét§in€ piipadd totoZné s nemodifikovanymi, avSak v jistych rovnéz
velmi vyznamnych pfipadech se tyto pojmy li§i. Jejich zavedeni umoZiinje nejen
formalni zjednoduSeni uvah, ale poskytuje téZ moZnost presn&ji popsat a jemngji
klasifikovat statistické problémy uvaZovaného typu. Nakonec, ve vét& 8 je stanovena
jista konvergenéni vlastnost funkcionalu D, kterd neplyne pfimo z konvergenénich
vlastnosti a-entropii. '

Ing. Igor Vajda, CSc., Ustav teorie informace a automatizace CSAV, VySehradskd 49, Praha 2.
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