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ADAPTIVE MAXIMUM-LIKELIHOOD-LIKE 
ESTIMATION IN LINEAR MODELS 
Par t 2. Asymptotic normality 

JAN ÁMOS VÍŠEK 

An adaptive estimator of regression model coefficients based on maximization of kernel estimate of 
likelihood was proposed and its consistency proved in the Part 1. Asymptotic normality is shown in the 
Part 2. An asymptotic representation of the estimate implies also its asymptotic efficiency. . 

1. INTRODUCTION 

This paper is a continuation of the paper "Adaptive maximum-lkelihood-like estimation 

in linear models. Part 1. Consistency". The reasons and discussions about the adaptive 

estimation may be found there and also in [8] and [9]. The notation of the present paper 

is the same as in the Part 1 and numeration of Theorems and Lemmas continues. 

The proof of consistency of the maximum-likelihood-like adaptive estimator has shown 

that the basic technique is simple application of classical tools of stochastic approxima

tion. This technique overcomes difficulty caused by the fact that residuals in regression 

model are (weakly) dependent. The same technique is used here. That is why some 

proofs were omitted. On the other hand at some places we have left also details to 

facilitate reading where some hesitations could occur. 

The conditions under which all results will be given are the same as in Part 1. Since 

the conditions are rather complicated to write down we will not recall them now and we 

refer to Chapter 3 (Assumptions of Part 1 (i.e. to Conditions A, B, C and D)). We shall 

recall them just before the Theorem 2. Nevertheless to prove asymptotic normality we 

will need one additional condition. 

Condition E . Let Fisher information 1(g) exist and be finite. Moreover let for any 
j = l , . ; . , n , i ss l , . . . , n , tell and s e K 

P (e. - E{ii\ef =t}< -s\e3- =t)^P (e,- - E{e,|ei == t) > s\e3 == t). 
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R e m a r k 7. The requirement to use as a preliminary estimator /?" such estimator 
which implies "symmetry" of distribution of e; may seem - at a first glance - rather 
restrictive. But under assumption what e,'s are symmetrically distributed only estima
tor J3n which prefers in some way positive values of residuals before the negative ones 
(or vice versa; for instance, estimators based on asymmetric trimming) may yield e; 
"asymmetrically" distributed. 

2. PRELIMINARIES 

L e m m a 5 (Csorgo, Revesz [2].) If g(y) has bounded derivative on an interval 
—oo < A < B < +oo then for any e > 0 we have 

sup \Bgn(y,Y,0°)-9(y)\ = O(cn). 
A+c<y<B-c 

Further we have 

sup var c-1w(c~l(y-z))=c~'1. 
A+c<y<B-e A+t<z<B-c 

(Clearly we mean - c o + e = - c o , +oo — e = +oo.) 

P r o o f . See [2], Lemma 6.1.1. ° 

L e m m a 6 (Csorgo, Revesz [2].) Let for any y € H 

^ Hrn^ d?w (c-1 (y - z)) [G(z) log log G ' 1 (*)] -

= Mm c-lw {c-\y - z)) [(1 - G(z))loglog(l - G(z))-1]* = 0 

then 
lim sup \gn(y,Y,0°) - g(y)\ = 0 a.e. g. 

n~"x y6TC 

P r o o f . See [2], Theorem 6.2.L D 

L e m m a 7. We have 

-LJ2J[w"(cnl(y - «)) - ^"(c;Hy - <*))] bn(y)dy = o,(i). 

For any e > 0 we have 

{ L^f E / K ( c n ' ( y - «,)) - E u / ' ^ ' f o - «<))] M l M > £ J 

P r o o f . For any £ > 0 we have 
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_ є2n2(% b^ E | 5 [Jw"^^y - e.))6-(y)<-y ~ J ^"«\y - e.))*-(y)«-y]} 

< i4/M,)dy// [ ^ f f f ]2^(c-(y-,))6„(^)d^ 

" e2n<* • D 

Since in what follows we shall prepare only technical steps for proving Theorems 2 we 
shall assume that Conditions A, B, C, D and E hold not stating it explicitly. 

Lemma 8. We also have 

/[ 
d2Egn(z,Y,fí0)} 

-j- L\ bn(y)dy = o(l). 

P r o o f may be carried out nearly along the same lines as the proof of Lemma 6 of 

[10]. 
The absolute value of the integral in the assertion of lemma is bounded from above 

by 

^ | E | / / w"^(y - r))g(r)bn(y)drdy| 

and in fact the first part of proof of Lemma 6 in [10] is devoted to proving that 

— Iff" w"(t)g(y - tcn)dtdy\ „ ^ 0 
nCl \J J-a„ I 

and it is nothing else than the fact that 

- ^ J J w"(c~\y - r))g(r)bn(y)drdy n^o 0 

which is equivalent to the assertion of the Lemma. • 

Lemma 9. We have 

'dgl(z,Y,P°) d&gn(z,Y,p°) n dz dz 
bl(y)dy = ov(\). 

For the proof see [1], Lemma 3 or [10], Lemma 3. 
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L e m m a 10 (Beran [1].) 

_3 f [Jw'(cZ\y-z))g(z)dz]2

 л 

Ьm cn

л I . Г Г T T J dУ = t(ÿ)-

J J w(c-Чy - z))g(z)dz 
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For the proof see [1] - lemma is not isolated there - or [10], Lemma 9. • 

We are going to prove one of lemmas which are basic for establishing asymptotic 

normality. Although the proof of lemma is rather long we have decided to give it in 

details because it illustrates technique of (simple but unfortunately tedious chain of) 

approximations. Results of the approximations enable us, however, to substitute kernel 

estimates (of density and its derivatives) by corresponding integrals. On the other hand 

since the proofs of the rest of lemmas are very similar, using precisely this technique, 

they will be omitted. 

L e m m a 11. For any k, I = 1,. . . ,p we have 

[E:=I ™ " ( C ^ - M 

and 

- 1 - 2 1 T , _ _ _ _ = ! _ _ \Cn VCJ - e * _ _ t /_ N 
n c- g x> k^[z:,M^(e 3-ě r)) b^' 

- c ; 1 j fw"(c-\y - z))g(z)bn(y)dzdy^ = op(l) 

•-<,ž'^[{fe^^i}'^'-
c - i j[Jw'(c-\y-z))g(z)dz] 

-ЬП(УЊ = Op(l). Jw(c^(y-z))g(z)dz 

P r o o f . At first we shall show that the following difference is small in probability. 

" E : = I _______(_i - __o £.-*•t__(__2(_j - *))" j 
E ľ = i Ч c í Ҷ e i - ér)) E r * j w( c »Ҷ e i - êr)) 

E ľ = , ^ " ( e ; Ҷ Є j - ë 1 ) ) { E r ^ ш ( c ; Ҷ e J - ê r ) ) - _ : ľ = г ^ ( c r : Ҷ e , - è r ) ) } 

П 1C„2_T_ XjfcXj/ 
i=i 

= n - 4 a _ C * - * * * _ _ ^ ш(с-Т(е,._ег)) E ^ - ( с - Ч е , - Щ 

E__i _______> - e,)) {E?=i ______<_ ~ ___ ~ ____, _______e_ - e'.))} 
E r = i и>(е_»(е; - ёг)) E W « ( « ť t e - e«)) 

Ьn(Є j). (22) 

Let us consider the first member of the right-hand-side. Since __"=i \w"(c

n

l{e3 ~ e>) 

[E"=i u , ( c n 1 ( e i - er))]~X < K3 it is sufficient to show that 

Ì Ц c - Ҷ e . - ,)) 
к - i . j n т _ _2____ ___-__;_ 

*3" '" g**'".E^-te.Ҷч-í,)) 
(23) 
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is small in probability. supu>(z) < K\ and also sup >*i,...,n \xjkXji\ < K%, hence the last 

expression is not greater than 

n~ V * 3 • Kx • K\ T --= - i - — . 
jzliY.r*iW(Cnl(ti-Zr)) 

Finally, using Assertion 2 (Part 1) we find an upper bound for (23) in the form 

n-3c~2K3 . K t - K i y y - - — - - . (24) 

Now for any e > 0 

f ( B " V E E - n r 7 >!.}?- (25) 

< 2e~ln~lc~2 f w~x{c-l{z - t))g{z)g{t)dzdt 

which converges to zero for n —• oo due to Condition B. Let us denote by 

sn = L e n : n-3c~2yy-—-i ->£-\ 

and fix a <4 > 0. Then find n0 so that for any n > n0 P{Bn) < A. For w{c~1{ej — eT)) 
write 

w{c^{ej - er)) = t i ^ O i - e.)) + c ; V(&v») • Xj{0° - p) 

where 
6'nr ~ V min{e, - e r , ej - g r}, c^1 max{ej - e r, e, - er}] . 

Due to the assumption about the order of consistency of /9n we may find nt € N and 
L € ~l such that for any n > ni 

p{ns\\f}°-~n\>L)<A. 

Denote by Cn = {w e ft : ns\\f30 - 0n\\ > i } and 

En=LeSl: n"VEEu'"1(c«1(ei-eO)>4-

Find n2 € N, n2 > nj such that for any n > n^ n-sc~lK<i • Ks • D • L • p < \ and 
n~sc~1L • Ks • p < v (remember that D and v were introduced in Condition B). Let us 
recall that we have 

|e,- - e% - ej + er| = |er - e\| = \xJ{/30 - H . 
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Let us consider any _> e C„. Then ns\\/3° — J3n\\ < L and therefore 

crT
1|er-er| = cr:

1 |^r
T(/30-r)|< l,, 

and hence 

\tjTn-cn-
l(ej-er)\<v. 

It implies (see Condition B) that 

I «,&-„) 
<D. 

Hc-^-e.)) 

Hence it holds for any _> (E Cn 

<K2-D-w(cZ\e,-tr)). 

It again implies that for w G Cn and n > n2 

w(c;1(e> - er)) > w(c-l(ej - er)) [l - n^c'1 • p • K2 • Ks • D • L] 

>\<cl\ei-er)). 

Now for any « G _„ fl CJ we have 

J=l r#i i-1 r-Si 

which means that <_£_?„. But it gives 

P(En) = P(En n Cn) + P(En n C„) < P(Cn) + P(Bn) < 2 A 

It proves that the first member of the right-hand-side of (22) is small in probability. For 
the second one we obtain instead of (23) an expression 

_, . , f M^te-Si)) 

which is not greater than (compare (24)) 

n-V*3 • /-, • Klj^fl [»"\<?(<i - e.))] 
i=l r^j 

and hence the second member of (22) is also small in probability. 
Now let us show that also 

-1 -2 V ^ 
П Cn 2_j Xjk Xjt 

_____ W"(<ZЧЄІ - ę'Л) _____ __ЧgҶgj - __) 

ĽrtM&te - ~т)) Y.rФІ wteЧъ - O ) 
bn(e3) (26) 
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is small in probability. Similarly as above we obtain that (26) is equal to 

_, _2f^ / S W ^(^n1 __ - e _ ) S W W\cnl 0_ ~ _) - ___>_ (ej - e.))] 
n cn 2 , *i* - * | ^ u ; ( c _ 1 ( e . _ g r ) ) E ^ u ; ( c _ 1 ( c . _ e t ) ) 

S W ^ ' ( ^ f a - e,)) D w M c ^ e j - e.) - «,(_;'(_,• - _,))] 

£n_i -fe-Me. ~ -V)) S ^ «K^(ei - «*)) __ 

For the first member we obtain an upper bound in the form 

" "<•*£ __^?K-T_ <28) 

< „ - ^ P i i . - ^ i i g g ^ g ^ 
where again £,•,„ _ [c"1 min{ej — e,, ej — _,•}, c"1 max{ey — e., ey — _,•}]. Now fix e > 
0, __ > 0 and find ni € AT and L > 0 so that for any n > ni we have 

P \ns\\pn - $°\\ > l } <__ 

and denote by Cn _= j _. G fi : ns\\fin - /_?°|| > L >. Moreover find n2 £ N, n2 > ni such 

that for any n > n2 we have 

n - * c ; 1 A ' 5 - p - I < i / . 

(Remember that v stays in Condition B and keep its role in mind.) Then we have again 
for any u> € Cn and n> n2 

|&«» - ^ ( e . - 5.)| < c^1 ley - e,- - _,- + e,| 

= c;1|ey-ef|--_;1|x>T(^-y80)| 

< ĉ 1 • A5 • p W - f\\ = n ~ V • Ks • p • n*||/r - /?°|| < * 

and hence 

So expression (28) is for n > n2 and w £ C J bounded by 

<r3^-i_..p.|i/S---/3oii--). 

Therefore finding n3 € Af, n3 > n2 so that for any n>n3 

n-sc~3Kl •KiDpL<e, 
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we have for any n > n3 and w € Cn (remember that for w _ Cn and n > n2 (and hence 
also for n > n3) we have ||/3" - /?°|| < i n " 5 ) 

П ' c ~ 2 Y^ЖjfcЖ^ 
i=i 

E W W'{c-n\c3 - é,Q) - - . " (^ (e , - _,-))] I 

E r ^ M ^ H e i - e . ) ) 

and it implies that for any n > 713 and for any u € fl for which 

_! _2 ̂  £ i t i K f e ' ( e , - e,)) - t-"(c^(ei - e,))] 
n cn > XjkXjt — ^ -.—- rr 
\ fe E r * j M c ; ; H e i - e - ) ) 

we \iave w _ Cn. But it means that 

P ^ 1 > Xjfclj< < IWì- ( S ^ K ( e ; H e , - ě,)) - r»"(.c-\ei - e,))] 
\ E r ^ M ^ M e i - ě . ) ) 

> є > < __. 

The second member of (27) may be treated along the similar lines as the first one. 
The next step will be to show that also 

Snkt = n cn 2_j xjk x3l 
3=1 

E , ^ V ( e r ^ ) ) 

S . w ^ Ҝ Ҷ e j - e Q ) 
-»(*.)-E ^ M e - H e . - e . ) ) 

E ^ V ^ ,„L-i(V r(f 6 "( e j ) e i=z 1 , . . . ,e i _i=z i _i ,e i + i=z i + j , . . . ,e n = zn 

2-r?jW\Cn \eJ—er)) 
is small in probability. Let us fix again some £ > 0. Then using Chebyshev's inequality 
one obtains 

P ( | S - _ - | > e ) < ^ E _ ^ = l £ > 

where 

£1 = E n - V ^ x 2 ^ E W ^ te . 1 ( e , - - eQ) 
Er^McňHej-e,.)) Ь - ( Є І ) -

£"2 = 2En_ 2c-4 ^ Y^ xik XH xskxst 
3=1 »3 

( _ k ^ ? » i (e.) 

Єi = Z i , . . . , Є i _ i = Z i _ i , Є i + i = Z i + i , . . . , e n = zn 

E ^ ^ k - Ҷ e . - e , - ) ) 
Ь-(e,-)-

S r ^ ^ k H e i - e . ) ) 

ei =zi, . . . , e i_J=z i_i, e i+i = z i + i , . . . , e n =z n 

S' '_.«'(cí l(e.-e.)) 
Ь»(e.)-
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ГE^^"(c;Ҷe,-e()) I ì ] 
. v ^ Г~-Ï7 7 Ь » ( Є Í ) e i = г i , . . . , e , _ i = г , _ i , e , + , = г , + i , . . . , e n = г n > , 

^ Ej j . t-(c;Ҷe,-e.)) 'I Jj 

£3 = 2En 2cn
4^2Ylxjkxjexskx3e 

.=1 »>. 

- ÍEw^n-Hej -e , ) ) 
^ ^ • - ( c - H e - e . ) ) 6 4 6 -

Ew^^TMe.-e,)) 
. E r , . , ^ 1 (»."--)) 

Ь»(e.)-

Єi = - 1 , . . . , Є j _ i = . J _ 1 , Є j + i = г _ î + 1 , . . . , e n = г r 

E^.^KҶe.-et)) 
6„(e,)-

E«"* w(c_1(es -e.)) 

and finally 

£4 = 2En~2cn
4^]Pa::iiXj,-:,it-._ 

_ -fEw^(c»- :(eJ-e,)) 

E...tó"(c;Ҷe,-Єł)) 
• * •  

E».'w(c-Ҷe, -e„)) 

E - W ^ W Í Є І - Є O ) 

Ьn(Є-) 

Ь»(e.) 
E r ^ ^ n H e j - e . ) ) 

ei = Zi, • • •, e j _ ! = Zj_._, e J + 1 = z J + 1 , . . . , e n = z n 

ч E ^ ^ ( c ; Ҷ e . - e Q ) M e < ) 

E-^.^íc^He.-e.)) 

íE% ">"(<£'(«.-*)) 
~ ^EU^c-He.-e.))6"^ 

Єi = Z Ь . . . , Є,_i = Z,_ ! , Є, + 1 = Z , + 1 , . . . , Єn = Z n 

e i = г ь . . . , e , _ i = z , _ i , e , + i = z , + 1 , . . . , e n = z, •)] 
Since 

E,wK(c»"1(e.-e.))l 
<tf3, 

E w ^ H e . - e , ) ) 
£\ m a y be b o u n d e d by n~lc~A • K\ • K%. £2 m a y be rewr i t ten into t h e form ( remember 

that E{z!z2} = E{ZlE[Z2\Z1}}) 

£,, , . ,_(<„(.- .) 
2Е < п 2сп

4 _Р ]Р х,к хц.хзкхи 
I 7=1 ->. 

" Е \ Е ; ^ ( с „ М е . - е „ ) ) М 

E ^ ^ c - ^ c - e . ) ) 

ei-zu...,e,_! = z,_!,e,+1 = z,+1,...,en = zrí > 

Л__a_________-__),, , 

c Í E ^ ^ W ( e i - e Q ) , I 11 

" E\TS^_7S^M«v:^CTM^)h'"^ «i-»--»_«i.^»--»H-i ^ " ^ / J 
i , . . . ,en = z n } } . Єi = z ь .Єj-l = Z j _ Ь Є j + i = Z j + i , 
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:_,*.«>"(«-i(e.--,)) 
The modification is possible due to fact that the expression yr-- (-\( _e ^bn(es) as 

well as its conditional mean value depends only on random variables which are "fixed" 

by the set in condition, namely {ei = z\,..., e,_\ = Zj-t,-j+i = f>+i, • • •, e„ = zn}. But 

E 

- E 

Є l 

/í__l________________)_A r 1 

E,w'- , ,(c_1(e,-e<)) 

__-*«(_;»(-.--_.)) 
Ьn(Єj) = _ ! , . . . , Єj_i = _j_i, Є J + i = Zj + i , . . . , Є„ = Zn > 

= _ ! , . . . , Єj_i = _j_i, Єj+i = ZJ+I, ..., en = z„ > = 0 . 

Hence £2 -= 0. The expression £3 may be bounded by (remember again Assertion 2) 

' \_Z%.w"(c-\es - e,)) - _Z^ " " V ( e . - e,))| 

i=i »>i I 
n-2cn-%4-2A'3_ГV2E 

_z:%нcnчes-ev)) 

+ 
\_Zt*s ^"(cñЧes - __Ђ [Sg; «gŢҶe» ~ e<)) - E g rçVţ^ - e.))] | 

£.,<. ui(c-Ҷe. - e() 5_ü5Í< Цc-Ҷe, - e„)) 

< 2n-4c;4A-4 • 2A-3
2 • /-, £ J_ E - ^ ( ^ ' ( ^ " e')) 

j=l *>j t?s 

and this expression may be treated in the same way as (24). The expression £4 may be 

bounded in a similar way as £"3. 

Since 

'_Z^^"(cn\e3-et)) 
l<zZм^(ej-eř))Ьn{Єj] 

Ľw«rteЧv-«))t 

Єl—Zi,..., Єj_i = _j_i, Єj+i = Zj+i - } 

we have proved that 

\E_____*__?te--i)) 

Єi=-i,...,Єj_i=гj_i,...,eJ+i=гy+i,...,e„=-„ 

E ^ J ^ V ( Ž / - Є . ) ) 

•#:W(C„ҶУ - Єr)) 
bn(y)g(y)dy 

r , - ^ - 2 V ^ - Z - ' = i w __- __L__L_2_JA r g \ 
" *• S^^ÍE^Mc-íei-e-.))^-

1 E, 
B« 

""'VE**-*.* 

-«*(-)• 

Using once again Condition B we may prove - along the similar lines as at the start of 
this proof - that 

'E*„«>"V(„-e,-)) 

E r 7 t j U , ( C ň 1 ( 2 / - e r ) ) 
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S,=i^W(»-e,)) 

i.e. that also 

bn(y)g(y)dy \ = o p (l), 

n-l,-ľP» „ --"=1 ш l Ľ n l e i ~ Єi i ,„ ş 

" " S*J"'ІL-M ţ-Ł))W-
(29) 

-'ЭДg^мH-*'"-/ 
Now let us prove that 

6»(»)dy = oj,(l). 

Since n _ 1 S i = i aT;J**.»< < Ks it i s sufficient to show that 

(30) 

" 1 l U i ^ - ^ H y - e . ) — S u,(c-1ď - e ' ) ) - в(У) bn(y)ày = op(l). (31) 

Let us consider at first 

\à:TГrшM^Чy-er))-g(y)\ 
sup •M»). vew -^Z.ir tW(ci-(y-_e,)) 

Now we shall use the Condition C. Let us fix some e > 0 and A > 0 and find n0 6 N 

such that dno < min{e2, A} and dno < ^d^. Further denote for any n > n0 

Se,a,n = j w € 0 , 8ug| f t , (»,Y , /9°)-ji(y) | < M . 

Then for any w G se,.i,n and n > n0 we have (notice that supremum in what follows is 

taken in fact over (—§an, | a n ) and hence g(y) > d£) 

\gn(y,Y,f3°)-g(y)\ 
sup 

= sup 

7Á 9n(V,Y,P 

\gn(y,Y,n-g(y)\ 

Ш 

y^g(y)+gn(y,Y,ß°)-g(y) 

d i - t 2 «й 

ь»(») 

(remember that {dn}n°=i is decreasing to zero). But since P (S^A<n) < dn we have for 

any n > n0 

pf^j9n(y,YJ°)-9(y)\l 

кЛ gn(y,Y,ß°) 
bn(y)>єj <A. 
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No returning to (30), we see that it may be bounded by 

\^i:U^c-\y-er))-g{y)\ 

vev. 

$2 u ' " ( cn 1(2/-e , ' ) ) åy 

K(y) 

• - / ' 

ne» J 
Hence it is sufficient to show that 

^ l\Z^(c-n\y-e,))\åy = Op(l). 

We may write this expression in a form 

_L / lE,.^'W(y-e,))|. £ , _ 

where we have used the inequality l2±^ < max { ̂ , ^ } valid for c > 0, d > 0. The last 

expression may be than bounded by 

K- {/ \~ ÉM^tø-«))-*(*) dy + 1 

which is surely Op(l). Making use of Lemma 7 and taking into account that 

Ew"(c;\y - ei))6n(j/) - Jw"(c-\y - x)) K(y) g{z) åz 

we conclude the proof of the first assertion of this lemma. 
Taking into account Lemma 8 we see that the first assertion of this Lemma may be 

alternatively given in the form 

The second assertion of this lemma may be proved by similar technique, using at the 
end of the proof Lemma 9 and 10 instead of Lemma 7 and 8. C3 

L e m m a 12. We have for any k — 1 , . . . ,p 

r S r - i i f l W t e - c O ) Jw'(c-\ej-z))g{z)dz 
" fe ^ L E ^ M c - H e . - e , ) ) Jw(c-^ej-z))9(z)dz\K^)-°Ål)-

As the proof of this lemma uses the same technique as the previous one but is much 
longer it will be omitted. Notice that the proof of the previous lemma employed the 
Condition B in a weaker form - without supremum over 6 € (—a, a). The proof of the 
present lemma makes use of Condition B in a full strength. 
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Lemma 13. The asymptotic distribution of 

I 3=1 

Sw'(cZ\ej-z))g(z)dz 

^ m c - H . - o ) ^ ^ , (32) 

isA t (o ,g- / ( 5 ) ) . 

Proof. Let us remember the fact that 

/«/(c-1(ej-*))g(-)d.- _ / /^(c- ' (y-^)) g (^)dz 

/«~(-^-.))*(-) . i . ^ - 7 / ^ ^ ( y - O M O d . ^ ^ ^ = °' 

/«/(c;; ' (y-z))g(-)dz /u; '(c-H-y-^)Mz)dz 

Moreover for any k = 1,..., p and any £, j = 1,..., n the summands 

J u / t e ' f o - ^ M s J d * / W ' ( c n - H e / - ^ ) ) g ( ^ 
^ / M c - ( e j - 0 M ^ ^ ) a n d ^ / M e - ( e , - l ) M ^ 6 " ^ 

are i. i. distributed r. v. and hence the variance - covariance matrix of (32) is equal to 
(for fc,r=l,...,p) 

J V r E\cnlS^'(c^(e1-z))g{z)dz ]2} 

( S w - E [ H ^ - t M ) * bM\ jkr-
Using the same steps as in proving (30) leads to the fact that this expression is - up to 
a member op(l) - equal to 

c" h"kIi-J I«<?<,-tMY* bMdy-
Taking into account that variances of random variables 

c-ifw'(c-\e3-z))g(z)dzlt 

ik fHc;l(*i-t))g(t)dt bn{ej) 

are uniformly in j = 1,2,. . . , n and k = 1,2, ,p bounded by 

K c~XSS^'(c-n\e,-z))g(z)dz 

/Mc-»(ei-0M.)df 
(which exists due to existence of the Fisher information and due to some other technical 
assumptions as dn/cn f oo) and applying Lemma 10 one concludes the proof. D 
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Remark 8. Let us mention that the proof shows that an endeavour to avoid the 
assumption of symmetry of g(y) would lead to some assumption about the rate of con
vergence of the tails of g(y) to zero with respect to increase of the interval generated by 
bn(y). See the assumption iii) of the paragraph 2 of [10]. In such case however it would 
be necessary at least to modify all points at proofs which utilizes Condition E. It may 
lead to a number of considerable technical problems. 

Earlier than we give the main result of the Part 2 we sum up all assumptions we have 
made up to now: 

Condition A . Let the kernel w(y) be three times differentiate, positive everywhere 
and symmetric. Suppose that there are constants K\, K2, K$ and K\ such that 

sup w(y) < K\, sup l^jf l < K2, 
yen yen 

suP™l<tf3 and suP™l</<4. 
yen w veft 

»{y) 

>"(y)\ 
4vT^"3 ""* len~w{y) 

Preliminary estimator /?" is assumed to be such that for some 6 > | we have 

nspn-A=Op(l). 

Moreover let 

lim cn - 0, lim ncn = oo (33) 

and 
Xogw~)*K0(\). 

Further let g be symmetric, having continuous second derivative and for some M, 0 < 
M < oo we have 

sup \g'(y)\ < M. 
yen 

Finally let g(x) be decreasing for x > 0. 

Condition B . Let for any a € 11 

lim n'hn
2 / sup w'^c-^z + b-t))g(t)g(z)dtdz = 0. 

»^°° j |6|<a 

Moreover let us assume that there are v, D (v > 0, D > 0) such that for any Z\, z2 g "R, 

such that \z\ — z2\ < v we have w(z\)/w(z2) < D. 

Condition C . Let 
.. dn 
lim — = oo. 
n-oo C 
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Moreover let there be K5 < oo such that maxiev\j=i P \~ij\ < K$. We shall also assume 
that the density g is the element of G({dn}n

<L1). To simplify the next text we need to 
require that there is a sequence { - n } ^ , - n > 0, an / " oo such that 

(--»,-») C {yeTZ: g(y) ><&*} . 

Then define bn(y) = 1 for \y\ < \an and bn(y) = 0 elsewhere. In addition to the 
requirement (33) we will assume that 

lim nc„a~2 = oo. 
n—.oo 

Condition D . Let us assume that there is K6 such that 

P [ II argmax f_^(e . ( /? ) , Y/>)6n(e.)|| > K, ) »_-* 0. 
y P€K>> j=i / 

Condition E . Let Fisher information 1(g) exist and be finite. Moreover let for any 
j = l,...,n, i= 1,...,», ieftand s eft 

i°(e, - E{e,|e_ = *} < - s | e , = *) = P(e , = E{e.|e,- = <} > s|e_ = t). 

Theorem 2 . Under Conditions A, B, C, D and E we have following asymptotic 
representation (k = 1 , . . . ,p) 

{.-•tf- - OT}, - »-«/-(,) • t - * 7 j ^ % ^ + M O -

Proof . From the definition of /?" it follows for any k = l,...,p 

„-*.-» f f J , ^ _ - _ - _ i - _ i i fg.)+ 

4 - ^ V V * , r J__k_J___£_____ 

_ [______________]21 6 fe-.v* a-J + 

+E(An-/?f)__^/(li/"-/3/o)-o 
«=1 /=1 

where /?£_ = Op(n~~) for any &, t, t = 1, . . .,p. Hence we may write for any k _ 1 , . . . « 

_ l . , o _.."_, w'(c~1(e: - e.)) 

" ^g'*te.gsNr^» (34) 
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= >/££(#-# 
t=\ 

_ Í E k _ í í W _ _ j _ z Í _ ) ) l 2 

\ZZ=Mc;Hei-Zi))j 

1 v % _ \'£i=±w"(cn1(ej - ě.)) 
E . L i M c - ^ e i - ě , ) ) 

^n(ěi) + E 5 ^ - / 3 ° 

where 5*t = oP(l) for any k, t, £ = 1 , . . . ,p. Due to fact that /?" is consistent and due 

to Lemma 11 and then Lemmas 8 and 10 we have 

1 .г^ 
E"=, « ( ^ ( e , - č,)) 

f E L i ^ K ^ e j - e - , ) ) ] 2 

- ( E L i ^ M e . - é , ) ) ) 6 " ^ 

+E^(Á"-/3°)"zr°°/^« 

in probability. Using Lemma 14 (from the Appendix) we see that to assume that 

V ^ | | & " - # | | ? - o p ( l ) (35) 

would imply that 

Vn:J20n-fi)-T?t^op(i) 
t=\ 

at least for one k € {1,2 , . . . ,p). But left hand side of (34) is bounded in probability and 
hence the assumption (35) leads to contradiction. But it directly implies the assertion 
of the Theorem. 

Corol lary 1. 

C (n-l0n ~ 0°)X'X) n-^, N(0,Q- I'\g)) . 

P r o o f . The proof follows directly from Theorem 2 and Lemma 13. • 

APPENDIX 

L e m m a 14. Let for any n € Af {-"it}"-;! *=1 be a matrix and let for any j , k =- 1 . . . , n 

illS, - E ^H Tik = gjk 

where Q = {qjkYj-i £,., is a regular matrix. Then for any {7M }^_, , 7^"' = [yln\ . . . -y(nA 

such that lim„-,co Il7'n^|| = 00 we have at least for one k £ { 1 , . . . ,p) 

lim — 
ri-00 n 

£ £ ^ 7 < (n) 
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P r o o f . Let £ > 0 and find n 0 so tha t for any n > n 0 we have 

- E Ti> Tik ~ q'k є 

< 2 -

Now let us assume t h a t t h e assertion of t h e Lemma is not true. T h e n there is a subse

quence {jv}/I< such t h a t 

£ 5 > T t t 7 M m\Kk\<*> 
j=\ i=\ 

for any k = 1 , . . . ,p. Hence starting from some ni > n 0 for any nt > n j we m a y wr i te 

l imsup — 
/-.<» «/ 

E l ^ + ̂ J ^ - A ' , 
>=i 

where |r/.,| < e. Then (denoting q^J - for a while - members of inversion m a t r i x Q~l) 

we have for any £ = 1 , . . . , q 

EtfE<W + * H W = Etf*-. 
k=\ }=\ k=\ 

T ^ + E ^ E ^ - E * - 1 * -
k=\ j=\ k=\ 

and finally 

^ - E t f ^ - E t f E n r ^ 
* = 1 < f c = l j = l 

for any r = 1 , . . . , p . And hence for r 0 such tha t 

v M I --= m a x 7;; M l 

we have 

l ^ l - ^ax,P
 ,A'*! • k^J^l+£ • k™™p I C I • h ^ l . 

i . e . 

I ^ ' l ( l - £ • p • m « | ^ i | J < p • m « |A'*| • fcnjaxf |,;»> | 

Since £ was a rb i t ra ry and 7 ' " —> oo this is a contradict ion. 
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