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K Y B E R N E T I K A - V O L U M E 24 (1988), N U M B E R 3 

ON OPTIMUM EXPERIMENTAL DESIGN 
FOR RIDGE ESTIMATES 

EMIL HORVATH 

In the paper a method minimizing the summary variance of a ridge estimate for an unknown 
vector parameter of a linear regression model is suggested. The minimization is performed 
under the condition that the norm of the bias divided by the norm of the unknown vector para
meter is bounded from above. From the corresponding extremal problem a new optimality 
criterion in the regression experiment is deduced. In particular, this criterion follows the known 
^-optimality criterion for least-squares estimates. 

1. INTRODUCTION 

A. The Standard Linear Regression Model and Ridge Estimates 

Let yJ = (>'j, ..., yN) be the vector of observed real random variables satisfying 
the standard linear regression model 

(!) E.V = FP, Dy = / , 

in which E is the regression N x m matrix, rank F = m, and /? is the m-dimensional 
unknown parameter. 

The least-squares estimate P* = (ETE)~! FJy of p belongs to the class [P*(h): 
he H = <0, + co)} of ridge estimates of the form 

(2) P*(h)s(FrF+hI)-iFTy. 

These estimates were introduced by Hoerl and Kennard [ l ] . The basic matrix 
characteristics of P*(h) are 

D p*(h) = E [^*(^) - E p*(h)] [p*(h) - E p*(h)Y • 

bias /?*(/;) = E p*(h) - (3 ; 

W p*(h) = E [p*(h) -p][p*(h) -PY 
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and they can be written as 

(3) D p*(h) =(M + hi)-1 M(M + hi)-1 ; 

(4) bias p*(h) = -h(M + hi)'1 p ; 

(5) W p*(h) = (M + hi)"1 (M + h2ppr) (M + hi)-1 , 

where M = FrF is the information matrix. 
Let t(M, h) denote the summary variance, b(M, h, P) the square of the bias and 

w(M, h, P) the quadratic loss function of the ridge estimate. That means 

t(M, h) s Tr D p*(h) ; 

b(M,h,p) = |)biasj3*(/V)||2 ; 

w(M, h, p) = Tr W p*(h). 

For these basic numerical characteristics of the ridge estimate the following 
equalities hold: 

(6) t(M, h) = Tr M(M + hi)'2 ; 

(7) b(M, h, p) = h2 pr(M + hl)~2 P ; 

(8) w(M, h, p) = t(M, h) + b(M, h, P). 

Relations (3) —(8) are very well known; see, e.g., any paper in the references. 
The main argument in favour of using the ridge estimate is that for any p e W" 

there exists some h = h(p) > 0 such that w(M, h, P) < w(M, 0, P), i.e. according 
to the value of the quadratic loss function "w", the ridge estimate is better than the 
least-squares estimate (cf. [3], [4]). (A considerable improvement can be expected 
when the minimum eigenvalue of the matrix M is sufficiently small; cf. [3].) 

The most applied method of choice of the optimum " h " is also based on the 
function w(M, h, p) of the variable "h"; in particular the optimum " h " is given by 

h* = arg min w(M, h, p). 

However, there are many other methods of choice of the appropriate "h" (the 
most important of them are presented in [5]). In all of them the regression matrix F 
in model (l) is fixed. Usually, this cannot be assumed, and the experimenter has 
possibility to prepare the experiment (measurements) in different ways, and each 
of them leads in general to another regression matrix. Consequently, it makes sense 
to design the linear regression experiment for ridge estimates optimally. This means 
we have to find simultaneously the adequate regression matrix and the adequate 
ridge parameter. 

Remark 1. A similar approach is applied in [2], but for the case of a fixed ft > 0. 
Taking the limit h | 0, one general optimality criterion for ridge estimates is com
pared with the classical optimality criteria. 
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B. Notations 

Consider the linear regression model 

(9) Ey(x)=fT(x)p 

with uncorrelated measurements (observations) y(x), xeX, in which 
(a) X is a compact set; 
(b) fT(x) = (fi(x), ...,fm(x)), where / , , . . . , / , „ are real, continuous and linearly 

independent functions defined on X; 
(c) P is the m-dimensional unknown parameter. 

In addition without restrictions on generality assume that D y(x) = I (cf. [2]). 
The model (9) — called the standard linear regression model of experiment — is 

sufficiently comprising in the sense that it covers a wide range of situations for 
designing an experiment (compare with [2]). In this model we use the following 
notations: 
N . . . a fixed natural number; N ^ m 
r\ ... = (x1, ..., xN), x , , . . . , xNeX; the exact design of the regression experiment 

of size "JV" 
y(rj) . .. TV-dimensional vector with components J'(x,), ..., y(xN) 
F(r\) . . . the regression N x m matrix with the rows/T(x,), i = 1, ...,N 
M(rj) ... the information m x m matrix equal to FT(rj) F(r\) 
%N . . . the set of all exact designs of size "JV" 
mN . . . = { M ( . , ) : p % } 
3J{+ . . . the set of all nonsingular matrices belonging to SMN 

<P+ ... ={, ?e^:M07)eai?+} 
£, . . . the discrete probability measure on X supported by a finite set; the asymp

totical design of the experiment 
M(Z) . . . = £ f ( x ) / T ( x K ( x ) 

xeX 

S . . . the set of all asymptotical designs 
m ... s{M(£):£eS} 
9Jl+ . . . the set of all nonsingular matrices from 35? 
RmXm .. • the set of all positive semidefinite m x m matrices 
Rm'xm • • • the set of all positive definite m x m matrices 

The set ^ + is nonempty ([2], [6]). Consequently, for rj e «p+ and he H we can 
define the ridge estimate fi*(r\, h) by 

(10) P*(t,, h) = [M(rj) + M]-1 FT(r,) y(rj) 

(compare with (2)). 
It is evident that the equalities (3)-(8) will be used also in the case of M = M(rj) e 

e 35?+, i.e. for the ridge estimate (10) with the same interpretation. 
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2. THE Arf-OPTIMALITY CRITERION 

Natural attempts to consider an optimality criterion as a function of the matrix 

W/J*(>/, h) = [M(rj) + hl]~l [M(f]) + h2ppT] [M(n) + hi]'1 

(compare with (5)) meet with the following two difficulties: 
(a) such a function will depend on the unknown vector /?; 
(b) we cannot use asymptotic designs for such criteria function. 
Therefore we shall use another approach and consider the function 

Wd(A) = Tr A |"A + —^— X (A) l\ ~ 2 if A e Rm'+m 

= +OD if A4Rm-+J 

where d e <0, 1) and X(A) is the minimal eigenvalue of the matrix A. 
The statistical justification of this function will be given in Proposition 1. In 

Proposition 3 it will be shown further that there is a matrix M* e dJlN such that 
Wd(M*) = fd(M) for all M from WtlN. This matrix will be called ^-optimal in WHN 

and the exact design ^* such that M* = M(i]*) will be called Ad-optimal in %N. 
Evidently, in the case of d = 0 we obtain the usual A-optimality criterion for least-

squares estimates. 
Let in the model (9) m = 1. It is easy to verify that for each d e <0, 1) the Ad-

optimum exact design i]* e tyN is concentrated at points x*, ..., xN, each of them 
is the argument of the minimum of the function f~2(x), xeX. Therefore, for m = 1 
the Arf-optimality criterion does not present anything new. 

Further, we shall assume that the dimension of the model (9) is at least equal to 2. 

A. Justification and First Properties of the Ad-optimaIity Criterion 

For d e <0, 1) denote by rd_N the set 

rd.jv = (O f h) e 9Jt+ x H: b(M, h, ft) S d2f\t for all p e U'"} 

and consider the minimization problem 

(11) INF (d, N) = inf {t(M, h): (M, h) e rd>N] . 

The interpretation of (11) is based on the fact that (M(r\), h) s T,jJV iff 
Ibias P*(n, h)\\j\\P\\ = d for any nonzero P e Un. 

Proposition 1. INF (d, N) = inf {fd(M): M e Wl+}. 

Proof. For M e 9Jl+ and h e H the following series of equivalences hold: 

b(M, h,p)< d2pJp for all ft e Um 

h2 s u p f(M + MY2 + P < d2 ( t h e s u p j s o y e r g g Ĵ A 
^ / PTP X ' 

h2[h + 1(M)]-2 < d2 

h < ^— X(M). 
~ 1 -d 



Hence rdtN = {(M, h): M e sJJi+, h £ (d/1 - d) A(M)}. Since the function t(M, h) 
of the variable "h" is strictly decreasing at every fixed nonsingular information 
matrix M ([3], [6]), it holds: 

INF (d, N) = inf it \M, -^— A(M)1: M e 9Jf +1 

= M{¥d(M):MeWlZ}. • 

Proposition 2. Let d,, d2, d3, ... be the sequence of numbers from <0, 1) tending 
to some d e <0, 1) and let M,, M2 , M3, ... be the sequence of matrices from SOtjJ 
tending to the matrix M. Then 

(a) M e 93^; 
(b) lim VjM.) = {Fd(M). 

Proof. Evidently MeWHN, since sJJlw is a compact set ([2], [6]). Assertion (b) 
will be proved in two steps. In both the implication ([2]) M„ -» M => k(Mn) -* k(M) 
will be used. 

(1) If M is nonsingular, then the convergence ^ (M, , ) to Tj^M) follows from the 
continuity of the matrix addition, multiplication and inversion, and from the con
tinuity of the function "Tr". 

(2) If M is singular, then k~1(Mn) -> +oo. Since 

!PjAf.)>(l -d,,)2r\Mn), 
it holds: 

l im' / ' jM,,) = +oo = Wd(M). • 

Propositions. There is a matrix M* e M'N such that ¥ d(M*d) = M {H> d(M): 
Mem*}. 

Proof. Evidently SJJĴ  is a nonempty set. From this and from the property of the 
infimum it follows that 

(12) inf {Wd(M):MeM^} = lim Vd(M„) < + oo 

for a sequence M1 ; M2, M3, ... of matrices from SMN . 
Since d)lN is compact there exists a strictly increasing sequence t(i), t(2), t(3), ... 

of natural numbers such that the sequence M,(1), M t (2), M,(3), ... tends to a matrix 
M* e mN. 

Let the matrix M* be singular. Then according to Proposition 2 !f j[M,(B)] -* + oo; 
but this is in contradiction to the relation (12). Thus M* e 9)lN and from Proposition 2 
it follows that 

lim fd[M,(B)] = Wd(M*) . • 

Remark 2. Since Proposition 2 remains true when substituting SMN i—> sJJl, Pro
position 3 is valid after this substitution as well. 
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B. Further Basic Propositions 

In this section we shall prove two basic propositions connected with minimization 
of the function Wd(M). 

Proposition 4. The function gN: d e <0, 1) t-> min ^ ( M ) has the following pro
perties: MeW" 

(a) is strictly decreasing on the interval <0, 1) from the value gN(0) = 
= min {Tr M _ 1 : M e SBt̂ } to the limit value zero; 

(b) is continuous. 

Proof. It is easy to verify that Wdl(M) > ^^(M) for every 0 < d{ < d2 < 1 and 
MeSMjJ. Consequently, using the notation 

(13) M* = arg min Wd(M) 
MeWN + 

we have: 

gN(di) = vit(K) > v*t(K) £ gN(di). 
Let now M° e $)lN be an arbitrary matrix and let dx, d2, d3, ... be an arbitrary 

sequence of numbers from <0, 1) tending to 1. Since 0 < gN(dn) < ¥dn(M°) for all 
positive integers "n" and lim fdn(M°) = 0, we have also lim gN(dn) = 0. 

Thus the first part of the proposition is proved. 
For the proof of the second part, let de(0, 1). If dud2,d3, ... is a sequence 

of numbers from <0, 1) strictly increasing to "<f", then, according to the first now 
proved part of this proposition, the inequality gN(d) < gN(dn) holds for all natural 
numbers "n". 

Let 5 > 0 be fixed, but arbitrary. According to Proposition 2, there is n(d) such 
that for all positive integers "«", n > n(8), there holds: Td(M*) + 8 > Tdn(M*). 
Thus 

0 < gN(dn) - gN(d) < Vdn(M*) - Vd(M*) < 5 

for all n 2: n(3). This is equivalent to the continuity of gN from the left. 
The continuity from the right will be proved as follows: 
Let de <0, 1) and let du d2, d3, ... be a strictly decreasing sequence of numbers 

from (0, l) tending to "d". Since 

gN(d„) < gN(d„+1) < gN(d) 
for all "n", we obtain: 

(14) lim gN(dn) S gN(d) . 

Set M* = M*n. Since M*e9Jl^, there exist a strictly increasing sequence 
q(l), q(2), q(i), ... of natural numbers and a matrix M* from 931̂  such that M*(n) -» 
-» M*. Suppose that M* is singular. Then, according to Proposition 2, 
lim gN[dll(n)~] = + oo. But this is a contradiction since 

lim gN[dm] = lim gN(dn) 
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and the last limit is, according to (14), bounded from above. Thus M* e SK+ and 

lim gN(d„) = lim^rjWI - Km ^ . [ M * , , ] = frf(M*) ^ a„(d), 

which together with (14) give the required continuity from the right. • 

Remark 3. For the function A: de <0, 1) i—> min {Vd(M): M e SM} we can formulate 
a proposition analogous to Proposition 4. 

Propositions. Let d e <0, l) and let dL, d2,d3, ... be a sequence of numbers 
from <0, 1) converging to "d". Let further 

(15) M*di,Ml,Ml,... 

be the sequence of matrices given by the relation (13). There holds: if M* is a cluster 
point of the sequence (15), then M* e 9JJ+ and Td(M*) = gN(d). 

Proof. Let M* be a cluster point of the sequence (15) (at least one such point 
exists). Let M* , M*q(2), M*g(3),... be a subsequence of the sequence (15), con
verging to M*. Fn the following series of equalities, the first is a consequence of 
the continuity of gN (Proposition 4), the second follows from the definition of gN, 
the third holds trivially and the fourth is evident from Proposition 2: 

gN(d) = lim gN(dn) = lim < f \ « B ) = lim V'dq(n,[M*g(J = <Fd(M*). rj 

Remark 4. For de <0, 1) denote the argument of the minimum of the function 
yd on 9JJ by the symbol M*(d). Let du d2, d3, ... be a sequence of numbers from 
<0, 1) tending to "d". Evidently, on i).)i the following analogy of Proposition 5 is 
valid: 

Every cluster point M* of the sequence M*(dt), M*(d2), M*(d3),... belongs 
to the set 90l+ and g(d) = Td(M*). 

Since the function Tr M~l is strictly convex on 9Jl+ (cf. [2], Proposition IV.3.), 
in the special case of d = 0 the matrix M* is determined unambiguously (compare 
with Proposition 1V.32. in [2]). 

C. Comparison with the A-optimality Criterion 

Introduce the following notations: 

P o ^ - . ^ / T r f A f * ) - 1 ; 

b*(d,/?)sfo[M*,^ «) , /?!; 

(We recall that d e <0, 1) and M* is defined by the relation (13); hence it is an Ad-
optimum matrix.) 
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Proposition 6. For all 0 < d <, 2[1 + m (p0(P)] ' we have: 

vv*(d,/?)<Tr(M*)-1 . 

Proof. Since b*(d, P) g d2/?T/? for all /? e Um, we have: 

(16) w*(d, 0) = ^ ( M * ) + b*(d, p) ^ f / M * ) + d2pJp. 

If now Uj 2; .. . 2: u,„ are eigenvalues of the matrix M* and "rf" is chosen as in 
the assumption of this proposition, then 

VJM*0) + d2fp = f. vk L + - - L - vm) 2 + d2 cp0(P) £ v-' < 
t= i \ 1 — a / t= i 

< CZ "r1 + (- - -0* ^ 1 + ̂ 2 9>o(£) ̂  = 
k = 1 

= iV"1 + [-1 + (1 - d)2 + md2 <p0(p)\ v;,1 < ^(M*)"1 , 
/ t=i 

because - 1 + (l - a1)2 + md2 <p0(j3) < 0. D 

Then the ridge estimate P*(r\*, h*) with h* = (d/l - d) l\M(r\*)~] and 0 < d < 
<. 2[1 + m <p0(/?)]~' is. according to the loss function "w", better than an arbitrary 
least-squares estimate from the class {P*(t], 0): r\ e S J^} . 

Tf m <p0(P) g 1, i.e. if m/ST/S g Tr (M*)'1 (which is valid when X(M*) is sufficiently 
small), then it follows from Proposition 6 that w*(d, p) < TrfM*)"1 for all 0 < 
< d < 1. 

In the following proposition we will attempt the "percentual" reply. Hence we 
introduce these new notations: 

c = d(l - d)-1 ; Ts<l,+oo); 

t 1 

+ 

- + 
/ m - 1 

a,„(rf) = sup eш>íi(í) • 

Proposition 7. The following inequality 

( á ' l a й + ^.( 
Tr (M* 

is true for every d e <0, 1). 

Proof. Using (16), we have 

^ > Tr(M*0)-1-Jr(M*)-1+ W ) 

Let now M e SR^ be an arbitrary matrix and let »j jg ... ^ »,„ be its eigenvalues. 
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Put tk = vkjvm, fc = 1, .... m - 1. We have 

(18) 

tl tш-1 

+ ... + — — -—; + Ч>d(M) _ (r, + c ) 2 ( t_-_+c) 2 0 + - ) 1 

T r M " 1 1 1 
- + ... + + 1 
ti ',„-i 

Therefore 

(19) sup -t&p- =g AM = sup <.„(.•„...,._-..), 
*.__._- + Tr M I„E_ 

where Qd(tu ..., '„,_.) is the function of variables r,, ..., r„,_, (f, e T ..., . m _, e T) 

defined by the right-hand side of (18). Evidently 

"__1{t,(',( + c r 2 + [ ( m - i ) ( i + ^)2]-1} 
Qd(tt,..., /__,) = ^ — — . 

IK:1 + 0 " - ! ) - 1 ] 
fc = 1 

Since 

tk(tk + c)~2 + [(m - Q(l + c ) 2 ] - ' < a {d < . 

r - ' + O u - l)-> - '"V ' " 

for all tk e Tand every "fc", I — k _ m — I, is valid, then 

t^t, + c)-2 + [(m - 1)(1 + c ) 2 ] " 1 5; _m(_) [ r " 1 + (m - l ) - ] ] 

for all tk e Tand every "fc", 1 ^ fc :g m — 1, is valid, too. Hence 

"_iW* + ^ 2 + [(m - 0(1 + c)2]"1} -I ^ S f ' + ('" " I)"1] • 
fc = 1 ;< = 1 

Thus gd(ti> ..., _,,-,) __ -_(«*) for all r, e T, ..., r„,_, e T and consequently 

(20) Am(d) ^ am(d) . 

On the other hand, for arbitrary t e T we have: gd(t, ...,t) - _,„_(')• From this 

it follows that 

(21) Am(d)^ sup Qd(t,...,t) = am(d). 
teT 

Comparing (20) and (21) we obtain the equality Am(d) = am(d), wherefrom, by 

means of (17) and (19), we shall easily conclude the proof. • 

Remark 5. In the interval <0,1), the function am(d) is strictly decreasing from the 

value 1 to the limit value 0. The numbers am(d) can be calculated by minimizing 

the function QmJ(t) on T([6]). 
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D. Computation of Ad-optimum Asymptotical Design 

According to the currently accepted terminology, we shall call an Ad-optimum 
asymptotical design (in the following only Ad-OAD) the asymptotical design which 
leads to the matrix M*(d) minimizing the function Wd on SOI (see Remark 4). The 
problems of the computation of Ad-OAD will be discussed here only briefly. Further 
details, especially the proofs of the following statements, can be found in [6]. 

Since for a > 0 and A e R„°;x
+„, the equality >Fd(aA) = a"1 H>d(A) holds, and <Pd 

attains on sDl minimum (Remark 2), the transition from the exact to the asymptotical 
designs is justified (for the same reasons as in the special case of d = 0). 

In opposite to the function lP0, the function fd for d + 0 is rather complicated. 
Therefore, a direct computation of the Ad-OAD is possible only in very simple re
gression models of the experiment. 

Example. Consider the regression model (9) in the form: 

Evidently 

where 

, , /ax if - 2 < x _ 0 
>'W - \bx i f 0 < x < 1 

Ey(x) = [fl(x),f2(x)]Q, 

f ( \ _ / x if - 2 _ x _ 0 , , _ /O if - 2 < x < 0 
h(x) ~ \ 0 if 0 < x < 1 ; h[x) ~ \x if 0 _ x < 1 ' 

For the sake of simplicity of computations perform the designing on the finite set 
X° s { -2 ,1} . 

Every asymptotical design £, on X° leads for any "p", 0 < p < 1, to the matrix 

M(p) = (*p
 { °_ V We have: 

1 - p 1 1 

(1 - - + 4cp)2 (1 + cf Ap 
if 0 < p < \ 

VJM(p)-] = - f + — if i < p < 1. 
L W J \ [4P + c(1 - P)]2 (l + c ) 2 l - p 5 ^ P 

+ oo if p(l - p) = 0 

Denote p*(d) = arg min Td\M(pf\. After some elementary computations it is 
0<p< 1 

possible to verify that p*(d) e <5~' , 1) for all d e <0, l). It is also possible to verify 
that on the interval <5" l , 1) it holds: 

(1) For c •< Tl t n e r e is d2 ¥d[M(p)~\ldp2 > 0, which denotes the strictly convexity 
of Vd and the unambiguous determination of p*(d). 

(2) For c = \ the function WA is strictly convex at the point p = 2 and strictly 
concave in the right-hand neighbourhood of the point p = ~; consequently, its 
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course changes. But d{Fd\_M(p)']l8p is always positive. It follows from this that in this 

case p*(d) = | . 

In the following table we introduce for the same choice of "biased" values of " c " 

the adequate approximate values of p*(d) and Wd\_M(p*(d))~\. 

C p*(d) Ч>d[M(p*(d))] 

000 0-3333 2-250 000 011 
0-02 0-3321 2-176 961 919 

0-05 0-3301 2-074 314 135 

0-10 0-3258 1-919 526 063 

0-16 0-3191 1-756 518 467 
0-22 0-3101 1-613 843 345 
0-27 0-3002 1-507 696 314 

0-50 0-2000 1-111 111 111 

The choice of an iterative procedure suitable for the (approximate) determination 

of the Ad-0 AD is not simple. In fact, the function Wd on sJJt is in general not convex and 

neither must the function, in addition, have the gradient everywhere on sJJl + . We 

partly reduce these difficulties by means of the function Wdq defined on R°,x„, by 

-, (4\ = /Tr[A + 2c^(A)iyl if ^ c „ 
W^-\+00 i f A$R°m-?m' 

where "q" is a positive integer and xq(A) = [Tr A~q~\~i/q. 

This function 1'd q is strictly convex and differentiable on R°;x

+„,. 

Let Me s JJ i + . Set Wd(M) = Tr [M + 2c /.(M)l]~\ It holds: 

(22) 0 ^ Wd(M) - fd(M) ^ c2 H'd(M) . 

In addition we have: 

(23) lim xq(M) = ).(M) . 
q^co 

From (22) and (23) it follows that the function Wiq for a sufficiently large " a " 

and for a sufficiently small "d" (e.g. for d ^ ^, which corresponds to c2 ^ 0-04) 

is a good approximation to the function ">d on sJJi + . Therefore, the problem of the 

minimization of the function Wd on fttt+ can be replaced by the problem of the mini

mization of the function Wdq on sJJl+. For this new (approximate) problem, the 

optimum matrix (design) can be computed by means of Atwood's iterative procedure 

([2])-
(Received September 24, 1987.) 
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