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O P T I M U M D A M P I N G DESIGN 
FOR AN A B S T R A C T WAVE EQUATION 

F A R I B A F A H R O O AND K A Z U F U M I I T O 

In this paper we address the question of "optimal" damping design in an abstract 
setting and precisely define and analyze various design criteria which are of importance in 
applications. We formulate two abstract optimization problems and discuss the necessary 
optimality conditions for the problems. We will further illustrate our results in application 
to a one-dimensional damped wave equation, and will present numerical results for different 
damping designs for this example. 

1. INTRODUCTION 

In recent years stabilization of flexible structures through active or passive feed­
back techniques has received much attention. In this regard, analysis of damping to 
achieve stabilization of these systems is highly important . In mathematical litera­
ture where P D E models of flexible structures are used, damping terms are introduced 
either in the equations (distributed damping), or in the boundary conditions (bound­
ary damping) . In formulation of these models, one is faced with the daunting task 
of proper mathematical definition of the damping operator in order to achieve the 
"appropriate" notion of stability for the motion of the system. For infinite time hori­
zon Linear Quadratic Regulator problems applied to distributed parameter systems, 
uniform exponential stability or stabilizability of the system is essential. In [11] and 
[3] the authors have demonstrated the viability of feedback stabilization of the wave 
equation through dissipative boundary conditions. In some recent research effort 
(see [4], [5], [6]), the authors have considered a variable coefficient viscous damping 
term in the wave equation and have proposed a set of sufficient conditions on the 
damping term in order to achieve uniform exponential decay of energy. 

Motivated by these efforts, our goal in this work is to go one step beyond and 
consider 'opt imum" designs for the damping operator to not only achieve exponential 
stability but moreover obtain better and faster rates of decay for the energy of 
the system. This effort can be of special value in applications where the damping 
mechanism is not given or modeled a priori, and the issue of choosing the best design 
in order to obtain a desired specific response from the system is a pertinent one. From 
another point of view, the problem of optimum damping design is closely related to 
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the design of active controls, where such design parameters such as location, mass, 
or number of these controls are to be decided in an optimal way. 

Our goal in this study is to formulate an abstract and general framework for 
study of these different design problems applied to an abstract second order wave 
equation and consider important issues such as possible choices of the cost criteria 
for performing the optimization task, and well-posedness of the mathematical model 
and the optimization problem. In order to illustrate the theoretical issues, one could 
consider two specific, simple flexible structures such as the following one-dimensional 
wave equation with viscous damping on the interval (—1,1), 

_^_)__!g_l + a W _! |_) -o , -i<_<i, .>o, 

with u(-l,t) = u(l,t) = 0, 

du 
and initial conditions u(0) = u0, "sr(0) = « i , 

and the one dimensional Euler-Bernoulli beam with damping 

d2 , , d2 ( d2 , , ., , d2 

dtiyit>x) + wWy{t>x) + d{x)^y{t>x))=°> 0<x<h *> 0 ' 

with boundary conditions at x = 0 , 1 , and initial conditions at t = 0. 

In this work, we will concentrate on the one dimensional wave equation and will 
pursue the possible extension of the theory to the beam or the two-dimensional 
example of a plate in future work. In the ensuing sections, first we present the 
general framework of the abstract second order damped wave equation, and then 
discuss the possible design criteria for finding the opt imum damping design. For 
the optimization problem we will present results regarding existence of a minimizer, 
necessary optimality conditions and the sensitivity equations for both the abstract 
formulation and the more specific example of the wave equation. In the last section, 
we will illustrate our theoretical results by numerical examples of different damping 
designs for the wave equation. 

2. MATHEMATICAL MODEL 

The equations of motion of many examples of flexible structures such as the one 
dimensional wave equation or the Euler-Bernoulli beam as presented in the previous 
section can be formulated as the following second order abstract wave equation 

Mu + Daii + A0u = 0 (1) 

in a Hilbert space H where AQ is an elliptic operator and M and Da represent the 
mass and damping operators, respectively. To cast the problem in the weak form 
we will follow the theoretical framework as outlined in [2], and assume a Hilbert 
space V C H tha t is densely and continuously embedded in H. Define a bounded, 
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symmetric sesquilinear form <T\(u, u) : V X V —* C which is continuous and coercive 
on V. This sesquilinear form defines a densely defined operator, the stiffness operator 
A0, in H where 

(Ti(u,u) = (A0u,u)H 

for u £ dom (A0), and u £ V. Similarly, we can define the following bounded sym­
metric sesquilinear forms on H, p(u,u) = (MU,U)H and /j,a(u,u) = (Dau,u)H- In 
order to insure uniform exponential stability of the system, we take the operator Da 

to consist of two parts: 
Da = D0 + Da. 

The first operator, L>o, can be either of the form fAo, Kelvin-Voigt damping, or of 
1/2 • ft. 

the form jAQ , the structural damping. Operator Da is the damping operator that 
is to be designed. 

In order to write equation (1) in the first order weak form, we define the following 
product spaces, 7i = V x H with product norm |[||w and V = V x V, and a 
sesquilinear a : V —•> C in the following way: 

a((u, u), (<f>, </>)) = - ( « , (f>)v + (T\(u, i) + na(u, 4>). 

Define w = (u, u), x = (0, </>) € V, and write equation (1) in the weak form as 

(w(t),x)-H-T-<r(w(t),X) = 0. 

The above weak form gives rise to the following first order state equation in 7t 

w(t) = Aaw(t) 

where 

A - \ ° I 

Aa " [ -Af-Mo -M_ 1^a 
with its domain defined as 

dom (Aa) = {(</>, V) e W : i> £ V and A0(f> + Dat/> G H}-

By Lumer-Phillips theorem, one can show that Aa generates a C0 semigroup, 
Sa(t), in the state space H = V x H i f L M s a bounded self-adjoint, and non-
negative operator on K. If in addition, Da satisfies the following condition, (H 
semi-coercivity) 

(Da(f), <j))H > b\<j>\H for some b > 0, 

then one can show that Sa(t) is also uniformly exponentially stable, i.e., 

Il8a(-)||w < Me-"* for some M > l,w > 0, V^ > 0. 

It can be shown that the two possible choices for D0 do satisfy the semi-coercivity 
condition, which means in the presence of additional internal damping, Da, exponen­
tial stability of the system is guaranteed. If D0 = 0 , then the design goal is to model 
Da which is dependent on the design parameter(s) a £ (Qad = the Design Space) 
in such a way so that the norm of the semigroup solution of the equation above 
decays to zero in a desired manner. 
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3. DESIGN CRITERIA 

To formulate a performance index that is based on the dynamical behavior of the 
solutions one can consider the following three possibilities. 

The first one is based on minimizing ||«Sa(r)||w> given r > 0. While this criterion 
is useful in many applications where the performance measure is based on a decay 
factor for a desired time interval, mathematical characterization of this problem does 
not yield an easily implementable performance index. 

A second frequently used criterion in the engineering literature is maximization 
of decay rates of solutions, i.e., 

min sup Re cr(>ta) 
a€Sad 

where c(«4a) is the spectrum of the operator ,4a . While this criterion is widely used 
in the finite dimensional models, its use for the infinite dimensional wave equation 
presents us with several problems: The first problem is related to characterization 
of cr(.4a), which is difficult to do in many cases, specially in higher dimensional 
problems. But even in cases where cr(Aa) is easily defined, we still need to have the 
spectrum determined growth condition satisfied, (see [13]): 

info; = {\\Sa(t)\\ < Me"' u £ R} = sup Re a(Aa). 

It has been shown (see [2]) that if the damping operator /ia is uniformly coercive then 
Sa(t) is an analytic semigroup and cr(Aa) is sectorial and the spectrum determined 
growth condition is satisfied. But in general the vertical asymptote of cr(.4a) is 
difficult to examine. Even in cases where the first two problems are circumvented, 
maximization of the slowest decay rate which the criterion amounts to does not 
result in overall reduction of the energy in a finite amount of time. 

The third criterion which is based on minimizing the total energy of the system 
over a long time interval is more easily characterized and realized in actual physical 
systems than the other two criteria. This criterion for our problem can be defined 
as 

/•OO 

min / ||ft1/2Sa(0u|&d*, 
a£Qad Jo 

where 7Z is a coercive, self-adjoint operator on 7i. Minimization of the total energy is 
realized by the characterization of the Datko Lemma [7], [12] which basically states 
that if .4a is exponentially stable on 7i then the minimum of the total energy is 
given in terms of the solution to a Lyapunov equation. In other words the following 
are equivalent: 

- ,4a is exponentially stable on 7i. 

- r
0°° 118a (0"ll2 dt is finite for a11 u e n-

- There exists a bounded nonnegative, and self-adjoint operator 
IIa (= £(dom (.4a),dom (Aa)) such that it satisfies the following Lyapunov 
equation 

(A*ana + IlaAa +K)u = 0 (2) 

for all u £ dom (Aa). 
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Then we have 
/•OO 

/ \\n^2sa(t)u\\2

ndt = (uau,u)n. 
I0 

In order to develop a criterion that is independent of the state vector u, we consider 
the following performance measures that are based on minimizing the total energy 

and 

min | | n 0 | | = sup (Uau,u)n, 
aeQad („i-! 

min tr II a Q = E(Ilau, u). 
aeQad 

(3) 

(4) 

For criterion (4), we assume that the initial data u is a random vector with normal 
distribution of zero mean and covariance Q, a nuclear operator, and E denotes the 
expectation over the initial condition. In general II a is not compact in H, therefore 
it is not always possible to define the trace norm of I I a . In this sense, the second 
criterion is the weighted trace norm of II a with respect to Q, which in engineering 
applications is chosen to be the subspace spanned by the dominant eigenfunctions for 
the nominal plant. If II a is compact, then the first criterion amounts to minimizing 
the L°° norm of I I a , and the second criterion is equivalent to minimizing L1 norm 
ofna. 

Our goal is to solve the optimization problems based on (3) and (4) subject to 
some constraints on the parameter a. In the following section we consider a specific 
example and will present the optimization problems in the context of the example. 

4. A ONE DIMENSIONAL DAMPED WARE EQUATION 

In this section we consider the following one dimensional wave equation on the 
interval (—1,1) 

Щt — a(x)ut with u(—l,t) = u(l,t) = 0. (5) 

The underlying Hilbert space for the abstract formulation is H = HQ(—1,1) X 
L2(—1,1), with the inner-product 

W\ 

w2 

VI 

V2 
= / к«v 

н J-i 

+ W2V2)dx. 

The first order form of equation (5) is given by 

y = Aay, where 

A - [ ° I 1 - [ u 

A a ~ [ d 2

x -a(x) J ' y ~ [ u t 

For this problem we are interested in finding the optimal spatial distribution of 
damping subject to some constraints on the distribution as well as on the total 
amount of damping material available. One can consider the following two possible 
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formulations where in both cases f(a) denotes the desired performance index for 
optimal design. The non-parametric formulation can be stated as 

minimize f(a) over a(x) E BV(—1,1), (6) 

where BV(—l, 1) denotes the space of functions of bounded variations on (—1,1), 
and a(x) satisfies the additional constraints 

< a(x) > 0, a(x) dx = aiot = Total Mass, \a\sv __ 7 \ • (7) 

For the parametrized optimization problem, we consider the following finite di­
mensional parameterization. If one models a(x) as a piecewise constant function 
over ns number of subintervals 

ns 
a(x) - 2a*X[-.-«.-_](-5) 

»=1 

- 1 = XQ < ~ i < • • • < xns = 1 

where ai represents the amount of damping distribution over the z'th subinterval 
(„i_i,_i) , then the goal is to find the optimal values for a{ > 0 subject to the 
constraint 

/ a(x) dx = atot = Total Mass. 

In both of these formulations, we take the expressions used in Section 3 for f(a): 

f(a) = ||II_|| = sup(IIa_,_)ft, or 
| _ |= l 

/(a) = t rn a g = £,(naM,_). 
In this paper we concentrate on the parametric formulation, and will present results 
regarding the non-parametric formulation which involves nonsmooth optimization 
techniques in a forthcoming paper, [9]. 

5. NECESSARY OPTIMALITY CONDITIONS 

In order to show that the optimization problems discussed in the previous section 
are well-posed, we need to show for each criterion the existence of an optimal param­
eter and discuss the necessary optimality conditions that characterize the optimal 
solutions. 

We consider the following general constrained optimization problem 

Minimize f(a) over a E Qad, (8) 

where Qad, the admissible design space, is assumed to be a weakly sequentially 
compact set in X, a normed space for the design parameters with norm || • \\x, and 
/ is a convex functional. To prove existence of a minimizer, we will refer to the 
following well-known result, (see [8]): 
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Theorem 5.1. Let / : X —• R1 be a weakly sequentially lower semicontinuous 
functional on M, a weakly compact subset of the normed linear space X, i.e., for 
every UQ £ M, and for any sequence {u^^-^ in M such that un converges weakly 
to «o 

f(u0) < liminfn^oo/(ttn), 

then 3 it* £ M such that 
/(u*) = min / («) . 

5 .1 . The first criterion 

For criterion (3) 

min f(a) = ||IIa | | = sup (n a u, t . ) w , over a € Qad, 
aeQad | 0 | = l 

we need to establish weakly lower semicontinuity of f(a) which by the following 
theorem is contingent upon pointwise continuity of IIa in a sense that will be made 
precise below. 

Theorem 5.2. The functional f(a) = ||IIa | | is weakly sequentially lower semi-
continuous if for any sequence an converging weakly to a £ Qad in X} the following 
convergence condition holds: 

(Hariu, u) —• (Iiau, u) for each u £ H. 

P r o o f . From definition of the operator norm, for any given e > 0 we have 

| | i l a J | - e < (n a n x £ , xe), for xe £ H with \\xe\\n - 1. 

Similarly, we have 

||IIa | | - c < (IIa;r£, x£), for x£ £ H with ||x£ | |^ = 1. 

Note that in these inequalities xe depends on an in general. From the above we 
obtain the following 

||IIa | | < e+ (Ilaxe,xe) - (Uanxe,xe) + (Ilanxe,xe} 

< e + ( (n a -n a jx £ , a? £ ) + | | n a j | . 

The second term on the right hand side of the inequality goes to zero as an converges 
weakly to a in Qad by the assumption of the theorem. Therefore, we have 

| | n a | |<e + liminf||naJ| 

which for arbitrary e gives us the weakly lower semicontinuity of | |na | | . • 

The pointwise convergence of operator IIa with respect to a can be verified for a 
general class of problems, and the results will be presented in [9]. But here, we can 
prove Lipschitz continuity of IIa with respect to parameter a: 
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Theorem 5.3. Suppose dom (,4a) and dom (Aa) are independent of a 6 Qad, a 
compact set, and <5.4a = Aa — Aa satisfies 

\\(Aa - Aa) x\\ < K\\a - a\\x \\x\\n, for all x G dom (Aa), and a, a G Qad- (9) 

Then we have 
\\^a-n&\\Cin,n)<M\\a-a\\x (10) 

where the constant M > 0, and IIa is the solution of the Lyapunov equation 

.4ana + n a x + ̂  = o. 

P r o o f . Consider IIa and IIa which are solutions of the following Lyapunov equa­
tions: 

(A aII a + n a . 4 a +11) x = 0, for all x G dom (Aa), 

(A*aUa + UaAa +11) x = 0, for all x 6 dom (Aa). 

By subtracting one equation from the other and adding and subtracting AaIIa and 
n a A a , we obtain the following equation: 

[A\(ua - Ua) + (na - na) Aa + (At - At) na + n a (A - Aa)} x = o (n) 

for all x G dom (Aa) = dom (Aa). The equation above is a well-defined Lyapunov 
equation since ,4a is exponentially stable. Therefore, we have the following integral 
representation for the operator IIa — IIa: 

/ •OO 

(Ua-Ua)x= / Sa(t)[(Aa-Al)Ila+lla(Aa-Aa)]Sa(t) 
JO 

át 

where Sa(t) is the Co semigroup generated by ,4a and satisfies the following expo­
nential stability condition: 

\\Sa(t)\\ < Mie" w ^ for some Mi > 1 , Ul > 0, Vi > 0. 

Now, we have 

M2 

((Ua - Ua) x, x) < T^-IKA: - At) IIa + Ua(Aa - Aa)\\ \\x\\2. (12) 

From boundedness of ||IIa | |, and condition (9) we conclude that 

||ila -Hall < C\\(A*a - A\) na + n a (A - Aa)|| < M\\a - a\\x. (13) 

D 

We can immediately obtain the following continuity result. 
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Corollary 5.4. Suppose dom (.4a) and dom (Aa) are independent of a G Qad, a 
compact set, and 6Aa = Aa — Aa satisfies 

H^AalUc^.w) —*• 0 as a —• a strongly in Qad, (14) 

then 
| |n a - Ra\\c(H,H) - • 0 a s a ^ a strongly in Qad. 

For the specific example of the one dimensional wave equation we have: 

Example 5.1. For the wave equation (5), the operator IIa is Lipschitz continuous 
with respect to parameter a in the following sense: 

l | n „ - n a | | < C | a - a | o o (15) 

where 

\-Aa •Aa) 
0 

(a — a)v 
(16) 

Note: In this example, X = L°°(-l, 1). 

The following theorem characterizes the equation that the Frechet derivative, E, 
of the mapping a £ X —* IIa G L-(H) of IIa satisfies: 

Theorem 5.5. The sensitivity operator £ satisfies 

A\Y,(h) + E(/i) A& + 6A*aUa + UaSAa = 0, (17) 

where ^^4a = Aa — Aa satisfies 

PA0 |U(« rw) —» 0 as a —> a strongly in Qad, (18) 

and h(x) = a(x) - a(x) G Qad-

P r o o f . We need to show that X) is indeed the Frechet derivative of ITa, i.e., 

|jna - n a - T.{h)\\c{H) 
—— > 0 as \\h\\x -> 0 m Qad. 
\\h\\x 

By subtracting equation (17) from (11), we obtain: 

A\L\ + AAa + 6Ai(na - n-) + (na - na)SAa = o, 

where A = IIa — IIa — £(/i). By arguments similar to the ones in Theorem 5.3, we 
have the following bound on ||A||: 

| |A||<c||Ma||| |na-na | | . 

From conditions on operators Aa and IIa, the right hand side of the inequality goes 
to zero as a converges strongly to a in Qad- D 

Again we can immediately obtain the following result for the specific case of the 
wave equation: 
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Example 5.2. For the wave equation, (5), the sensitivity operator E satisfies 

A*aE(h) + E(/i) Aa + 8A*aH& + naSAa = 0. (19) 

where 6Aa = Aa — Aa satisfies 

\J\-a A-o,) 
0 

hv 
, and h(x) = a(x) - ä(x) Є L°°. (20) 

P r o o f . The arguments are basically the same as the ones in Theorem 5.5, and 
we have the following estimate on the norm of A 

| |A|| < C\\ 6Aa\\ p . - Ha|| < M\a - a\l = M\h\l. D 

5.2. The second criterion 

For the second criterion 
min f(a) = min tr na<5 
a€Q a a€Qad 

we take Q to be a nuclear operator such that it is a compact self-adjoint operator 
on the Hilbert space Ji, whose eigenvalues are summable. In fact, in most practical 
applications Q can be taken to be a self-adjoint finite rank operator. Having defined 
Q more specifically, we can now proceed to show that f(a) = tr IiaQ is indeed 
continuous with respect to the parameter a. Therefore, by compactness of Qad, we 
can show the existence of a minimizer for the criterion. 

Theorem 5.6. For the criterion f(a) = tr n a Q , where Q is a nuclear operator, 
if for any weakly convergent sequence an converging to a £ Qad, the operator n a 

satisfies 
(Iianu, u) —> {Hau, u) for each uEfi (21) 

then we have the following 

/(<-n ) - * / ( « ) as an —• a weakly in Qad-

P r o o f . From definition of Q and the trace class to which the bounded linear op­
erator n a Q belongs, for fa, a complete orthonormal set of eigenfunctions of operator 
Q, we have 

f(an)=tillanQ = Y^{Q<f>i,TlaM = ]V(A.&,13an&) 
i i 

where XiQ = Q<f>i- Now by taking the limit as an —• a, from (21) we have 

/ K ) = X)(A,-&, TVaM —> ]V(A.</>., n a 0i) = f(a). • 
i i 

Now we can prove the following result for the differentiability of the cost function 
/ ( a ) = t r n a Q . 
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Theorem 5 .7 . Suppose there exists 6Aa 6 £(7i,7i) such that 

\\Aa+h -Aa -6Aa\\c{H,n) n „ , , , n • n 

7-rr • 0 as \\h\\x -> 0, in Qad 

\\h\\x 

and dom (Aa) and dom (Aa*) are independent of a 6 Qad, a compact set , Then 

f'(a) (h) = tr (((6Aa)*Tla + Ua(6Aa))A), (22) 

where 6Aa = A'ah, and the Lagrange multiplier A to the constraint 

A*aUa + UaAa + n = 0 

satisfies the adjoint equation 

AaA + AA*a + Q = 0. (23) 

P r o o f . By differentiability of lTa from Theorem 5.5, we have 

f'(a)(h) = trZQ, 

where £ satisfies: 

(A*&E(h) + E(h) Aa + 6A*alla + \la6Aa) x = 0, for all x 6 dom (Aa). 

From definition of operators of trace class, for </>;, an arbitrary complete orthonormal 
system of H, we can write 

f'(a)(h) = trZQ = J2(X<f>i,Q<f>i). 
i 

From (23), we have 

J2(Z<f>i>Q<f>i) = -Y^(^<f>i,AaA<f,i+AA*M 
i i 

= -]V(Aa£& + £Aa&,A&) 
t 

= S(((^A:)na + Ua(6Aa))^i, Afo) 
i 

= tr (((6Aa)*ILa+ILa(6Aa))A). 

Note: For the wave equation (5), all the above results are valid by taking into account 
that convergence of the parameters in Qad is in the sense of the L°° norm. 
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6. FINITE DIMENSIONAL APPROXIMATIONS 

In this section, we carry out numerical approximations for solving the parametric 
optimization problem as suggested in Section (4) for the following one dimensional 
wave equation: 

utt = uxx - a(x) ut with u(-l,t) = u(l,t) = 0, 

where the damping term a(x) is modeled as a piecewise constant function over ns 

number of subintervals 
ns 

a(x) = ] V OiX[»i-*«_i] (x) 
i=i 

— l = X0<Xi<...< xns = 1 

with ai representing the amount of damping distribution over the zth subinterval. 

For performing the numerical approximations, we employ the Legendre-Tau meth­
od which is a variation of the well-known Galerkin technique. In this method the ap­
proximate solution is expanded in terms of the Legendre polynomials, Ln(x), which 
are orthogonal with respect to the L2(—1,1) norm. These basis elements do not 
individually satisfy the boundary conditions as in Galerkin method. The boundary 
conditions are imposed on the approximate solution by use of a non-orthogonal pro­
jection operator. For more details on implementations of the Legendre-tau method 
to the wave equation, see [1], [10]. 

For a second order wave equation we seek an approximate solution in the form 

n 

un(t,x) = J2^j(t)Lj(x). 
3=0 

The vector £(t) = (£o,£i, • • • ,61-2) satisfies 

Mn'i(t) + Dni(t) + Kn£(t) = 0 (24) 

and £n_i and ,£n are determined as linear combinations of £o,£i, • • • ,£n—2 by ap­
plying the boundary conditions on the solution un. The mass matrix Mn, damping 
matrix Dn, and the stiffness matrix Kn are given by 

2 
(Mn)ij = (L f ,L j )E 2 ( - iA ) - 0 . rSij, 

zi -J- 1 
ns »Ж f c 

(DП)ІJ = J^ "kLiLjdt 

fc=1Лfc_i 

(KП)ІJ = ((Hn)тMnHn)itj. 

In the expression for Kn, Hn is the matrix representation of the first order differential 
operator with respect to the Legendre polynomials which also imposes the Dirichlet 
boundary conditions at the two ends on the approximate solution. 
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The first order form of (24) for 77 = [£, £]T is 

77 = .4n77 

where 

An = 0 П - І X П - 1 LI-ІXП-I 

-M~nKn -M~nDn 

In the above, M~n denotes the inverse of the mass matrix Mn. For approximat­
ing the total energy we take n in (2) to be the identity, and we write its matrix 
representation as 

Kn On_ixn-l 
0 n _ i x n _ i Mn Пn 

Assuming (An,nn) is detectable, then the total energy in the finite dimensional 
space is given by 

pOO 

En(u) = / r,THnr,dt = 77Tnn77o 77(0) = 770 
Jo 

where I P is the matrix representation of the finite-dimensional approximation to II 
and is equal to n~nIln where I l n satisfies the following Lyapunov equation 

( ^ n ) T n n + n \ 4 n + 7 Z n = 0. 

The finite dimensional approximation of the first performance index (3) can be 
written as 

min maxeig ( 7 ^ n n n ) . (25) 
a€Qad 

To calculate the approximate performance index (4), we consider operator Q to be 
the projection onto a space spanned by the m dominant undamped eigenfunctions of 
the equation. If <$mn denotes the matrix representation of the orthogonal projection 
that projects the finite-dimensional solution space to the m-dimensional space of 
range of Q, then the matrix representation of the finite-dimensional performance 
index becomes: 

min tr ( ( * m - f t » 0 ~ H * m » f r * L ) ) • (26) 

7. NUMERICAL RESULTS 

To perform numerical experiments for various damping designs, we took the num­
ber of Legendre polynomials in our approximations to be 20, and the number of 
subdivisions for distribution of the damping material to be 40. Also, to calculate 
the second performance criterion, we took m, the number of undamped dominant 
modes to be 7. We first experimented with a few damping designs and calculated 
the value of performance indices (25) and (26) in each case. The following figures 
demonstrate the distribution of az's over the (—1,1) interval for these examples: 
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Fig. 1. Uniform distribution. 
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Fig. 2. Center distribution. 
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F ig. 3. Corner distribution. 
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F ig . 4. First optimal distribution with minmaxeig (II n ) = 1.2959. 
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Fig. 5. Second optimal distribution with min tr = 12.3611. 

The following table compares the different designs and the corresponding values 
of the two performance indices. 

Table 1. Comparison of different designs. 

Damping designs Min(max(eig)) Min (tr) 
Uniform Distribution 1.4354 14.3064 
Center Distribution 499.1038 15.3697 
Corner Distribution 3.2690 18.6927 
Optimal Distribution 1 1.2959 14.6744 
Optimal Distribution 2 9.3611 12.6311 

From this table, one can see that different performance criteria yield different 
optimal damping designs, and a design that performs well with respect to one cri­
terion, may perform poorly with respect to the others, (compare the results for the 
center and corner distributions). But overall, the uniform damping design seems to 
perform quite well with respect to either criterion. The results also indicate that 
much is to be gained by performing the optimization. From these results one can 
observe that the key point in optimizing damping designs is to carefully choose the 
performance criterion tha t is most suited to the problem in hand. Practical and 
theoretical considerations should both be taken into account in choosing the proper 
criterion. For example, depending on the amount of information on the physical 
modeling of the initial state vector or the number of dominant vibrational modes 
tha t need to be suppressed one may choose the criterion that fits the requirements 
of the problem. 

One last important observation in these numerical experiments is the issue of con­
vergence of the optimal design with respect to the number of mesh points. In order to 



Optimum Damping Design for an Abstract Wave Equation 573 

investigate dependence of these designs on ns the number of damping subintervals, 
we carried out the optimization for both criterion for ns = 80. 
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F i g . 6 . Pirst optimal dis tr ibution with t m n m a x e i g ( I l n ) = 1.2922, ns = 80. 
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7. Second optimal dis tr ibution with min tr = 
0.8 1 

12.5661, ns = 80. 

Comparing these graphs to the ones obtained for ns = 40, we see that the damping 
designs do not converge for increasing number of damping subintervals. Therefore, 
we need to pursue another formulation for the optimization where this convergence 
can be obtained. Consideration of BV-regularization or the nonparametric formula­
tion as stated in Section 4 is one avenue for resolution of this problem. The numerical 
results we have presented here are only preliminary efforts in optimizing damping 
designs and our future efforts will address numerous issues concerning the numerical 
and theoretical optimization of these designs and their extensions to the beam and 
plate equations. 

(Received February 14, 1996.) 
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