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K Y B E R N E T I K A — V O L U M E P (1973), N U M B E R 4 

Algebraic Theory of Discrete Optimal Control 
for Single-Variable Systems III 
Closed-Loop Control 

VLADIMIR KUCERA 

This part completes Part I: Preliminaries [3] and Part II: Open-Loop Control [4] to form 
a comprehensive and unified treatment of the algebraic theory of discrete optimal control for 
single-input single-output systems. 

The object to be discussed here is the closed-loop optimal control theory. To recall, given 
a system s we are to find such a controller r feeded by the error signal e that the output y of the 
system follows a given reference signal w in a prescribed manner. This configuration, shown in 
Fig. 1, is of feedback type, i.e., it counteracts possible disturbances in the control loop. 

First the pole assignment problem is mentioned. Then we consider the time optimal controls 
and the least squares control in the absence of disturbances. At the end the effect of disturbances, 
closed-loop stability and related topics are discussed. 

One of the most interesting features of the closed-loop synthesis technique presented is that 
the optimal controller is synthesized directly without predetermining the closed-loop transfer 
function as is usual in the literature [1], [2], [6], [7] to garantee stability. 

Fig. 1. 

The theorems, equations, examples, etc. are numbered separately in each part of the tripaper. 
The usual system of references is used within this paper whereas cross-references are followed 
by a slash and the respective part number. The notation introduced in Part I and Part II is con
sistently adhered to throughout. 

INTRODUCTION 

By precascading the system to be controlled with a controller and closing the feed
back loop we form another system. An interesting point is that this closed-loop 



system may not be canonical [3] even if the original components are. In fact, we shall 
see later that the optimum system synthesis always calls for certain procedures that 
produce a non-canonical closed-loop system. As a result, the transfer function does 
not fully describe such a system any more and we have to take into account the 
system response to initial conditions. 
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Fig. 2. 

Given the system shown in Fig. 2, where 

låb 
s = — , r = 

s 

the polynomials being arbitrary elements of g[ f ] but d > 0, (a, r,b) = 1, (b, Q = 1, 
(r, fs) = 1. Then 

idb 
У = — « + - , 

a a 

s h 
u = - e Л— , 

where g, he $[£] are arbitrary polynomials of degree one less than dimensions of s 
and r respectively. They characterize the effect of x0 and z0, the initial states of the 
s and r respectively. 

The effect of the initial states upon the error e and the control «is then obtained as 

C 
ar + ídbs 

as 

ar + fbs 

ar + ťbs 

a 

h -

h -

ar + Cdbs' 

s 

ar + ţdbs ar + ?Ьs 

Now if (a, s) 4= 1 and/or (b, r) 4= 1, these factors disappear in the transfer functions 
relating e and u to w. However, they do remain in the response of e or « to both 
initial states. Thus the annihilating polynomial of the closed-loop system is no less 
than 

c = ar + C"bs . 



Since it cannot be obtained from the input-output properties, a care must be exercised 293 
in stability investigations. 

POLE ASSIGNMENT PROBLEM 

One of the most powerful synthesis techniques is that of pole assignment. Given 
the configuration shown in Fig. 1, where 

a 

the polynomials being arbitrary elements of g[£] but d > 0, (a, £b) = 1, (b, £) = 1. 
Find a controller 

s 

r = -
r 

so as to achieve a desired annihilating polynomial c e g[£], (c, £) = 1, of the closed-
loop system. 

Theorem 1. The pole assignment problem has always a solution for any c. 
The solution is not unique and all solutions are given by 

s = y , 

r = x , 

where x and y is any solution of the Diophantine equation 

(1) ax + C"by = c 

for which (x, y) = 1. 

Even the controller of minimal dimension, further specified by 8x = min, is not 

unique in general. 

Proof. In the Introduction the polynomial ar + (dbs was shown to be the anni
hilating polynomial of the closed-loop system provided (r, s) = 1. Otherwise the 
annihilating polynomial would become 

ar + Cdbs 

(r,s) 

Thus (l) follows and the existence of a solution is implied by (a, Cdb) = 1 . • 

Example 1. Consider g = 3t, 

i - C 



294 and assign to the closed-loop system the annihilating polynomial 

c - 1 . 

The equation 

(1 - C) x + £y = 1 

gives 

x = 1 + Ct , 

y = l-(l-C)t, 

t e 91 [f] arbitrary. Hence any 

p _ _ _ _ _ _ 

l + ct 

solves the problem. Among all controllers, 

r - 1 

is the only one which is of minimal dimension. 

Example 2. Consider the system 

~ 2 - 0-5C 
,... _ - 20 

over the field 9t. Find such a controller that 

c = 2 - 1-5C - 2-5C2 + 2C3 . 

By Theorem 1, solve 

(2 - 0-5C) x + C(l - 2C) y = 2 - 1-5C - 2-5C2 + 2C3 

to get 

x = 1 - c + (C - 2C2) t, 

y = l ~ £ - { 2 - 0-5C) t. 

Thus 

, . _ 1 - C - (2 - 0-5QЃ 

1 - C + (C - 2C2) t ' 

where t 6 91 [fl arbitrary but such that (*, >•) = 1. 

For instance t — 0 is prohibited. Otherwise (x, y) — 1 — f and 

r = 1 

would yield the annihilating polynomial 2 + 0.5C — 2£2 instead of that required. 



The minimal controller is not unique, either, and all such controllers are of the form 

r _ 1 - C - (2 - 0-5C) t 

l - c + (C - 2C2) t 

where I 6 S E , T + 0 . 

In particular, feedback stabilization falls within this scope. All we need is to choose 
a stable c. If, on the other hand, an optimality criterion is specified, we are to find 
the appropriate c using the methods to follow. 

We can attack the closed-loop optimal control problems in such a way as to strictly 
minimize the optimality criterion whatever the resulting annihilating polynomial c 
may be. This yields results equivalent to the open-loop control. What makes the 
closed-loop solution attractive, however, is the possibility of counteracting disturban
ces by synthesizing a stable or otherwise presprecified c. 

CLOSED-LOOP OUTPUT TIME OPTIMAL CONTROL 

In view of the preceding discussion the problem can be posed as follows. Given 
the configuration of Fig. 1, where 

?b q 
s = — , w = - , 

a p 

the polynomials being arbitrary elements of g[£] but d > 0, (a, Z,b) = 1, (b, £) = 1, 
(p, Cq) = 1. Fing such a controller 

that the control u is stable, the error e is zero in a minimum time km-m, and the anni
hilating polynomial c is stable. 

The solution is contained in 

Theorem 2. The closed-loop output time optimal control problem has a solution 
if and only if p~ \ a. The solution is unique and is given by 

s = a+y , 

r = p0b
+x 

where x and j> is such solution of the Diophantine equation 

a~px + Cfb-y = q + 

that dx = min. 



296 Moreover 

and 

Finally, 

e = a0q x, 

a = Шl 

Pob+ ' 

fc„,i„ = 1 + Sa0 + Sq~ + S% . 

c = ^ V 
(r.B) 

Proof. On inspecting Fig. 1 we get 

1 ar q 
e = — — w = 

1 + sr ar + ~dbs p 
Using (14/1), 

ar + Cdbs p0 

The error being zero in a finite time, it calls for a polynomial e. Therefore p0 | r and in 
order to reduce the expression for e as much as possible while preserving u and ar + 
+ £dbs stable, we write 

s = ao y, 

r = p0b
+x . 

Then 

(2) 
a0qx 

a0 px + Cdb y 

and the utmost reduction yields 

(3) aoPx + £db-y = q + 

since the denominator in (2) must be stable. 

It follows that 

e = a0q~x . 

But e is to be zero in a minimum time a hence we have to extract that solution £ 
of (3) for which Sx = min. Then 

kmin = 1 + Sa0 + Sq~ + Sx . 



We infer from Fig. 1 that 297 

a0q~$ 
u = re = 

Pob + 

The control is stable if and only if p0 is stable, that is, if p \a. This implies 

(a0p, t,db~) = 1 and, in turn, the existence of a solution to (3). 

Inasmuch as r and s are required to be relatively prime, we obtain 

ar + t*bs _ a+b+q + 

(r,s) (r,s) 
which is indeed stable. • 

Remark 1. In case s originated from a continuous system by the process of sampling 
the error need not vanish in between sampling points. However, it is stable. 

Remark 2. If we drop the requirement that c be stable, we obtain 

where 

and dx = min. 

Then 

and 

r = p0b
+x 

px + ľfb-y = q 

e =x, 

Pob+ 

km,„ = l+dx. 

Comparing the results with Theorem l/ll we see that the solutions are identical. Thus 
the kmin is as small as for the open-loop control, but 

_ _ _ _ _ [ 

is not generally stable. 

Example 3. Let g = 3? and 

я = Ç ( l - 2 - 5 Ç + ÇҶ w__l__ 

1 - 5C + 4C2 1 - C 



298 Obtain the closed-loop output time optimal control. We have 

fl0 = 1 - 4C, PQ = 1 , 

b+ = 1 - 0 - 5 C , b~ = 1 - 2 f . 

The Diophantine equation to be solved reads 

(1 - 5C + 4C2) x + C(l - 2C) y = 1 . 

We arrange the computations into the table below, see (9/1): 

1 - 5C + 4C2 C - 2C2 1 - 3C | 

- 2 - | + |C 9 - 27C 

1 - 2 igL _ i^c 9 - 45C 

0 1 - i + |C 9C - 18C 

Using (5/1) and (6/1), the general solution becomes 

x = 1 - 6C + ( 9 C - 18C 2 ) t , 

y m 11 - 12C - (9 - 45C + 36C2) t. 

The condition dx = min gives 

x = 1 - 6C, 

j> = l l - 1 2 C . 

Therefore the optimal controller is 

11 - 12C 

Further we compute 

( 1 - 0 - 5 0 ( 1 - 6 0 

e = 1 - IOC + 24C2 

B _ ( 1 - 4 0 ( 1 1 - 1 2 0 

1 - 0-5C 

!<min = 3 . 

The annihilating polynomial of the closed-loop system becomes 

c = 1 - 0-5C . 

Example 4. Consider g = 9., 

, 2 - C + C2 

S = C , H> = 
2 - C 

and find the closed-loop output time optimal control. 



Since 299 
a = 1 , b~ = 1 , 

p0 = 2 - C , q + = 2 - C + C2, 
we obtain 

(2 - C) x + 0' = 2 - C + C2 -

The solution satisfying 8x = min reads 

St = 1, 

and hence 

Therefore 

5> = c , 

s = C , 

r = 2 - C -

c 
2 - C 

e = 1 , / c m i n = 1 , 

2 - C 
Since (/% s) = 1, 

c = 2 - C + C2 • 

Note that s may be divisible by, i.e., the optimal control strategy may require a delay! 

CLOSED-LOOP STATE TIME OPTIMAL CONTROL 

This is a modification of the preceding problem. We are to zero e in a minimum 
time by application of a finite control. This is equivalent to reaching equilibrium state 
in a finite time. 

More formally, given the configuration shown in Fig. 1, where 

?b q 
s = — , w = - , 

a p 

the polynomials being arbitrary elements of $[C] but d > 0, (a, t,b) = U {b, C) = !> 
(JP> C<?) = 1; find such a controller 

s 
r = — 

r 

that the u is zero in a finite time, the e is zero in a minimum time fcmin>
 a n d t n e c 

is stable. 



300 Then we claim the following 

Theorem 3. The closed-loop state time optimal control problem has a solution 
if and only if p j a. The solution is unique and is given as 

s=a + 9, 

r = x , 

where x and j> is such solution of the Diophantine equation 

a0px + fby = q + 

that e& — min. 

Moreover 
e = a0q~x , 

« = a0q~y, 

fcmin = 1 + da0 + eq~ + ex 

and 

{r,s) 

Proof. On inspecting Fig. 1 we obtain 

ar + C bs p ar + ?bs p0 

To make e polynomial we first have to require p0 = 1 or p j a by (14/1). Further 
we set 

s = a + y , 

r = x , 

to reduce the expression for e as much as possible, 

( 4) e = ___ , 
a0 px + Cby 

and to keep the ar + £dbs stable. 
Since the denominator in (4) must be stable, the best we can do to minimize the 

degree of e while preserving a polynomial «is to set 

a0px + rfby = q+ . 

This Diophantine equation has indeed a solution since p j a implies 

(aoP, ~*b) = 1 . 



It follows that 301 

e = a'q'x 

and 

kmia = 1 + da0 + dq~ + dx. 

Further, 

H = re = a o 0 " ) 5 

and the annihilating polynomial c is given as 

_ar + ?bs _ flpV 
(r, s) (r, s) 

since r and s are required to be relatively prime. • 

Remark 3. Similarly to the open-loop control, the control time may exceed the 

follow-up time and hence the system need not reach equilibrium within kmln time 

units. See Example 6. 

Remark 4. There is a common fallacy in the literature that 

ar 
(5) * - , 

ar + C"bs 

the overall transfer function relating e to w, must be a polynomial in order for e 

to vanish in a finite time. It is easily seen and also illustrated in Example 6 that 

a polynomial k is not the optimizing choice for the output or state time optimal 

control whenever q+ =f= 1. 

Remark 5. Had we strictly minimized kmin without any restrictions on c, we would 

have obtained 

s = a0$, 

r = * 

where 

and d% = min. 

Then 

and 

px + Cby = q 

e = x , 

и = a0ў , 

!n = l+ дx. 



The results are identical to those in Theorem 2/II and 

c = _ a _ _ 

M 
is not stable in general. Therefore, the closed-loop control can do no better than the 
open-loop control except for stabilizing the annihilating polynomial c. 

Example 5. Obtain the closed-loop state time optimal control for the system 

j Cjl - 2-5C + C2) H ._ 1 
1 - 5C + 4C2 ' 1 - C 

over the field 31. 

The respective equation to be solved becomes 

(6) (1 - 5C + 4C2)x + c(i - 2-5C + C2) y = i 

and its solution 

x = }(7 - 55C + 26C2), 
p = ^(90 - 104C) 

has the property that dx — min. 

Thus we see that 

90 - 104C 
' ~ 7 - 55C + 26C2 

and 

e = i ( 7 - 83C + 246C2 - 104C3) , 

u = i ( 9 0 - 464C + 416C 2 ) , femin = 4 

by invoking Theorem 3. Also 

c = 1 . 

However, imposing no restrictions on c, we have 

(l - C) x + C(l - 2-5C + C2) y = 1 

instead of (6). The solution modifies to 

x = 1 + 3C - 2C2 , 
S> = -2 

and hence 

- 2 + 8C 
1 + 3C - 2C2 * • 

e = 1 + 3C - 2C2 , /cmin = 3 , 

« = - 2 + 8C, 

c = 1 - 4£ 

conformably with Example 3/II. As expected the c is not stable. 



Example 6. Let g = 9t and consider 3 0 3 

2C 1 - 0-5Ç 
w = 

(i - 02 - - c 

The task is to find the closed-loop state time optimal control. 

By Theorem 3, we are to solve the equation 

(1 - C)2 x + 2£y = 1 - 0-5C 

under the condition that 8x = min. The solution reads 

x = 1 , 

j> = 0-75 - 0-5C . 

The optimal controller results as 

»• = 0-75 - 0-5C 

and 

e = 1 - C, u = 0-75 - 1-25C + 0-5C2 

kmin = 2, c = 1 - 0-5C . 

Notice that the equilibrium state is not attained within kmin time units and also that the k in 
(5) is not a polynomial, 

(i - 02 
k = 

1 - 0-5Ç 

CLOSED-LOOP LEAST SQUARES CONTROL 

This problem involves minimization of a quadratic functional. In fact, the basic 
idea of this section mimics that in the pioneering work [5]. However, our setting is 
different and much more general. 

The problem can be formally defined as follows. Given the configuration shown 
in Fig. 1, where 

?b q 
s = — , w = - , 

a p 

the polynomial being arbitrary elements of g[£] but d > 0, (a, £b) = 1. (b, £) = 1, 
(p, (a) = 1. Synthesize such a controller 

_ S 

r 



304 that the u is stable, the cost functional 

<p = hi 
k = 0 

is minimized, where e = e0 + z& + e2C
2 + .. . , and the c is stable. 

Theorem 4. The closed-loop least squares control problem has a solution if and 
only if p- \a and a0l>-q-j(x, y) is stable. The solution is unique and is given by 

s = ao y, 

r = p0b
+x, 

where x and j) is such solution of the Diophantine equation 

a~px + Cdb'y = a0b'q* 

that dx = min. 

Moreover, 

e = a0q~x 

and 

Finally, 

ã0q b 

ao<ł~ 
p0ã0q-b* 

чЖғ 
e _ «'ь'ť 

(r,s) 

P r o o f . Analogously t o the p r o o f of T h e o r e m 3/II we have 

q> = <<?<?> 

if a n d only if e is stable. 

W e will m a n i p u l a t e the expression for cp in such a way as t o m a k e t h e minimizing 

choice of r obvious . Rewrite 

(7) 9^((^SSLXr^ML 
a n d 

ar q q Cdbs 

ar + Cdbs p p ar + Cdbs p 
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(8) b-g0q- g _ a0b-q* _ a0b*q*s 

W Cb-a.q- Cdb~a;p (ar + ?bs) a0 p 

and consider the decomposition 

30b-q* x y 
Cb-aoP C"b- a0p 

of the first term in (8), so that x and y are coupled via the Diophantine equation 

(9) a0px + (,db-y = a0b~-q* . 

Collecting the terms gives us 

(10) 

where 

(11) 

on making use of (9) and (14/1). 

Substitution of (10) into (7) results in 

ã0b q X 
-e =-—— + a, 

Cb-aõq 
X 

-e =-—— + a, 

a0P 

ã0 b*q*s 

a0P (ar + Cdbs) a, ÏP 

ayr + • (ídb~y - ã0 Б-q*)b+s _ aoУГ -- p0b
+xs 

(ar + Cđbs), P (ar + ťbs) Po 

+ aa + 2 
b-J \b • 

Further we refine the above by setting 

(12) x = x + r'b't, dx < dCdb~ . 

Then the same reasoning as in the proof of Theorem 3/II justifies that 

<(£»•• <(£»•• 
Therefore 

(13) cp = U±Y (±\\ + <aa> + 2 Cat) + <«> . 



The first term in (13) cannot be further reduced. To minimize <p, we can do no 
better than to set a = 0, t = 0. Thus by virtue of (11) and (12) 

s = a+y, 

r = p0b
+x, 

where x and J) is such solution of (9) that dx = min. 
It follows from (9) and (14/1) that 

ar q _ a0pb + qx a0q~x 

ar + Cdbs p a0pb+(a0 px + £db y) a0 q~b~ ' 

which is stable if and only if b \(x, b ) is stable. 

Also 
a0q~y 

u = re = 
p0a0q b* 

which is stable if and only if b~\(y, b~) is stable and p0 is stable, that is, p~ | a. 
This last condition implies that (a0 p, £db~) = 1 and hence (9) has a solution. 

Finally, since r and s are required to be relatively prime, the annihilating poly
nomial c is given as 

_ ar + (dbs _ a*b*q* 

M " M 
on employing (9). Note that c is stable, as required, if and only if a0h~q~\(x, y) is 
stable. • 

Remark 6. For a minimum-phase system (i.e. b stable) the closed-loop output 
time optimal control and the least squares control are not the same in contradistinction 
to the open-loop control. Compare Example 5/II and Example 8 to follow. They may 
equal, however, in some cases. 

Remark 1. As before, not restricting c to the class of stable polynomials would 
yield results identical to the open-loop case (Theorem 3/II). We just need to write 

9 =
 XV^F; [W 

instead of (7) and follow the proof of Theorem 4 to obtain 

s = a J , 

r = p0b
+x, 

where 
px + C'b'y = S~q 



a n d Sx = min. As expected, 

aob*q 

M c = 

Example 7. Let 8 = 3 ^ a n d consider the running example 

C(l - 2-5C + C2) 1 
s = — -1, w — 1 - 5C + 4C2 1 - C 

The closed-loop least squares control is obtained by solving the equation 

(1 - C)(l - 4C)x + C(l - 2C)y = (C - 2)(C - 4) 

for such X and y that dx = min. 

The solution is seen to be 

x = 8 - 37C , 

y = 71 - 74C . 

It follows that 

and further 

71 - 74C 

(1 - 0-5C) (8 - 37C) 

( 1 - 4 0 ( 8 - 3 7 0 
(C - 4) (C - 2) ' 

u _ ( i - 4 Q ( 7 1 - 7 4 Q 

( C - 4 ) ( l - 0 - 5 C ) ( C - 2 ) 

Using the algorithm (11/II) we get 

377,621 
Vmin — 315 

The polynomial c follows as 

C — -0-5(C -- 4 ) ( C - 2 ) 2 . 

Example 8. Consideг again 

s = - c 1 - 2C 
w = 

l - C l - C 

over the field 5R. We seek for the closed-loop least squares control. Bearing in mind that b is 
stable, we set up the equation 

(l - 0 x + Cy =- C - 2 . 



308 The solution 

Jc= - 2 , 

j > = - l 

meets the requirement 8x = min. 

Thus the optimal controller becomes 

and 

Example 9. Let 

2 + 4C 1 - 2 Ç 
e = - , « = 

2 - C 2 - C 
c = C - 2 , ęmin = 4 . 

2 + 2C 
w = 

2-C2 

be given over 2ft. We are to find the closed-loop least squares control. 

The Diophantine equation 

(2 - C2) x + C2 v = 2 + 2C 

yields 

and hence 

x= 1 + C, 

Í = 1 + C-

s = 1 + C, 

r = (2-c 2 )(l + C) 

-!_-, „ = 1±1 
2 - C2 2 - C2 

e = 1 + C , <Z>m,n = 2 . 

Since (r, *) = 1 + C, the annihilating polynomial c becomes 

2 + 2C 

1 + C 
= 2. 

This example is intended to illustrate that itistheaQS'cj -/^, y), not a~b~q~,th&t is essential 
for stability. Otherwise speaking, nothing can be concluded about the optimal system stability 
until the Diophantine equation is solved for x and y. 



THE EFFECT OF DISTURBANCES AND RELATED TOPICS 

The most important condition imposed on control systems is that of stability. 
Specifically, we require both u and e to be stable, that is, we require external stability. 
However, this is not enough as the closed-loop system is not canonical. We have to 
ensure internal stability so that the system may remain stable even if disturbances 
occur. This is materialized by synthesizing the closed-loop system so as to make its 
annihilating polynomial c stable. At the same time all remaining degrees of freedom 
are exploited to minimize an optimality criterion, as it has been done above. Alter
natively, we may choose c so as to obtain a particular performance, e.g., to make the 
disturbances vanish in a finite time. 

Consider a nonzero initial state x0 of the system * and a nonzero initial state z0 

of the controller r as typical disturbances (Fig. 2). 

Then 

?b , g 
y = — « + - , 

a a 

s h 
u = - e H— , 

r r 

where g, h e g[£] are arbitrary polynomials of degree one less than dimensions of s 
and r respectively. They characterize respectively x0, the system output due to x0, 
and z0, the controller output due to z0. 

The effect of g and k upon the error e is then obtained as 

IIA\
 ar ^b r 

(14) e = — H> - — h g , 
c c c 

where 
c = ar + £dbs . 

Thus the disturbances are stabilized or otherwise influenced through c. 
Let us try to eliminate disturbances in a finite time. If an infinite but stable control 

is allowed, the problem is solved when the constraint 

c = b + 

is imposed on the closed-loop output time-optimal control. If a finite control is 
required, we have to set 

c = 1 

in the closed-loop state time-optimal control problem. This results from (14) and 
from the form of r in Theorems 2 and 3. 

Quite analogically, we can demand 

c = b* 



310 to obtain a sort of least squares control the physical interpretation of which is left 
to the reader. 

As expected, these strict constraints necessitate the following modifications in 
Theorem 2 

ap0x + C'b'y = 1 , dx = min , 

s = y, r = p0b
+x, 

c = b+ , 

e = a0qx - tfb'h - p0xg , 

u = ML + JLh„±g. 
Pob

+ b+ b+ 

Similarly in Theorem 3 

(15) ax + C"by' = 1 , dx = min , 

s = y, r = x , 

c = 1 , 

e = a0qx - C'bh - xg , 

u = a0qy + ah - yg . 

Theorem 4 will be altered to yield 

ap0x + Cdb"y = b~ , dx = min, 

s = y , r = p0b
 + x , 

c = 6* , 

c = a0qx C'6- p0x 

6- B~ b~ 

u=w9 + ± h - ± g . 
Pob* b* b* 

Example 10. Let g = W. and 

C2 1 
H> = ( l - C ) ( í - 2 ) ' i _ 

We are to obtain the closed-loop state time-optimal control while 

(i) stabilizing disturbances, i.e., c stable. 

Theorem 3 yields the equation 

(1 - f) x + C2y = 1 



which gives 

*-» l + c, 

; « i . 
Then 

r = ^ , c = C - 2 
1 + c 

and by (14) 

1 + C - (i + 0 - -Ц- * -
C - 2 C - 2 

(ii) eliminating disturbances in a finite time, i.e., c = 1. 
Now the equation 

is to be solved by (15). 
It is seen that 

hence 

(1 - C) (C - 2) x + C2^ = i 

* = -0-5 -0-75C, 

y = 1-75 - 0-75C ; 

1-75 - 0-75C 
r = —, c = l 

-0-5 - 0-75C 
and 

(16) e = (1 + C - 0-75C2) - C2/* - (0-5 + 0-75C) 3 • 

Thus a faster response to w has been traded for a polynomial error in the presence of distur
bances. 

Remark 8. It is commonly believed that prespecifying c = 1 in the state time-
optimal control problem always leads to kmm = n, the dimension of the system s, 
whenever w = 1/(1 - Q. This is false, however, as (16) indicates. 

CONCLUSIONS 

This paper has completed the discussion of the algebraic theory of discrete optimal 
control for single-variable systems. In Part I (Preliminaries) essential mathematical 
concepts have been established. Part II (Open-Loop Control) has been devoted to the 
basic open-loop control problems and some computational aspects whereas this part 
has been concerned with the closed-loop controls. 

One might think of closing the loop by simply feeding back the error of the open-
loop control to get the closed-loop system. However, this is not acceptable. The 
resulting controller need not exist (e.g. s = £, w = C yields r = 0, s = 1 for any 
criterion) or need not be causal (e.g. s = £2, w = C + C2 yields r = f, s = 1 for any 



312 criterion). To make the matters worse, the closed-loop system created in this way 
will not be stable whenever a<7ao + !• Thus special synthesis procedures have been 
developed to produce the appropriate closed-loop system directly. 

The reader will have noticed that the closed-loop control problems considered here 
are not completely general in that they are a priori endowed with the structure of 
Fig. 1. However, this configuration is reasonably general and well-established. 

An interesting observation is that the closed-loop control is always inferior to the 
corresponding open-loop control in minimizing the optimality criterion. This is 
a penalty for making the annihilating polynomial c stable. 

Each problem has been stated with great care because seemingly identical problems 
can have different solutions. For example, compare minimization of all optimality 
criteria under three types of constraints, viz. c unrestricted, c stable, and a fixed c 
prespecified. 

All the problems included are, in fact, classical. The setting and the method of 
attack is new, however. It provides a deep and inconventional insight into the pro
blems of discrete optimal control. With this machinery at hand it is possible to treat 
stable as well as unstable systems, continuum-state systems as well as finite automata, 
closed-loop as well as open-loop controls, etc. within a unified framework of the 
general theory. We have arrived at many extensions of classical results, to mention 
the control of unstable systems, the pole assignment problem, new existence and 
unicity condictions, etc. As a by-product some clasical fallacies have been elucidated. 

The synthesis technique proposed in this paper is not only conceptually simple, 
unified and transparent, but it also yields effective and uniform computational algo
rithms. Last but not least, the author believes that the closed-loop stability problem 
is posed and rigorously solved for the first time here. 

The theory as developed in the tripaper applies to single-variable systems only. 
A natural generalization to multivariable systems will be considered in a future paper. 

(Received June 6, 1972.) 
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