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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 4 

An Axiomatic Characterization of Generalized 
Directed-divergence 

PL. KANAPPAN, P. N. RATHIE 

A characterization theorem for the generalized directed-divergence defined in (1.1) is proved 
by assuming a set of five postulates (2.1)—(2.5). 

1. INTRODUCTION 

Let P = (Pl,...,pn), Q = (ql,...,qn), R = ( r l f . . . , r„), Pi, qh r ^ O , J > f _ 

= _• 9> = S r ; = r b e t n r e e firute d i s c rete probability distributions. Then we define 
i = l i = l 

the generalized directed-divergence by the expression, (refer [1]), 

(1.1) In(p1,...,Pn;ql,...,qn;rl,...,rn) = ] [ > . log («, | r.) . 
i = l 

Here the convention 0 log 0 = 0 is followed and logarithms will be to the base 2. 
Also whenever qt or rt is zero then the corresponding pt is also zero and log (qt \ rt) 
is to be taken as (log qt — log r,). 

For n = 2, (1.1) takes the following form: 

(1.2) h(p, l-p;q,l-q;r,l-r) = 

= p log (qjr) + (1 _ p) log {(1 - q)j(l - r)} , 

for P, q,reK, where K = ]0, 1[ x ]0, 1[ x ]0, 1[ u {(0, v, z)} u {(1, / , z')}, with 
v, z e [0, 1) and v', z' 6 (0, 1]. 

For P = Q, (1.1) reduces to the ordinary measure of directed-divergence ([5], [7]) as 
given below: 

(1-3) In(Pu .-., Pn; - ! , . . . . r„) = £ptlo$(ptlrt) . 



An axiomatic characterization of (1.3) was given earlier in [2] and that its theorem 331 
lacks mathematical rigour was pointed out by us in [6]. 

In this paper, we will prove a characterization theorem for the generalized directed-
divergence defined in (1.1) by assuming a set of five postulates. 

A more general measure, called the generalized directed-divergence of type /?, 
was discussed and characterized through axioms by us in [4]. The characterization 
theorem in [4] was proved entirely on different lines than those of the present paper. 

2. POSTULATES 

In this section we give a set of five postulates which will be used in the next section 
to establish a characterization theorem for the generalized directed-divergence. 

Postulate 1 (Recursivity). 

(2A) I„(Pi,--;P„;qi,...,q„;ru...,rn) = 

= In- l(Pl + Pi, Pi,--;Pn,qi + «2, <73, • • ; ^ rl + r2, r3 »• • •» rn) + 

+ (PI + P2)I2[PII(PI + p2),P2l(pi + Pi); «i/(«i + «2), «2/(«i + qi); 

ri/(r. + r2), r2j(ri + r2)] , 

for p1 + p2, q1 + q2, r , + r2 > 0. 

Postulate 2 (Symmetry). 

(2.2) I3(pu p2, p3; qu q2, q3; ru r2, r3) = I3(pa, pb, pc; qa, qb, qc; ra, rb, rc) 

where {a, b, c} is an arbitrary permutation of {l, 2, 3}. 

Postulate 3 (Derivative). Let 

(2-3) f(p, q, r) = I2(p, 1 - Pi q,l - q; r,l - r) , 

for all (p, q,r)eK where K is as given in (1.2). Also le t /have continuous first partial 
derivatives with respect to all the three variables p, q, r e (0, 1). 

Postulate 4 (Nullity). 

(2.4) f(p,P,p) = 0 for p 6 ( 0 , 1 ) . 

Postulate 5 (Normalization). 

(2-5) / ( M , i ) - » i and /($, h i) = 0 . 



3. CHARACTERIZATION THEOREM 

In this section we will prove the following theorem: 

Theorem. The only function I„ satisfying the postulates 1 to 5 is the generalized 
directed-divergence given by (1.1). 

Proof. The proof of the theorem depends on the following lemmas. 

Lemma 1. I2 is symmetric. 

Proof. The postulate 1 for n = 3, pt + p2, q_ + q2, r_ + r2 > 0, give 

(3A) - h(Pi> P2> P3> qi> q2>l3,r_, r2, r3) = 

= I2(PI + p2, Ps; «i + q2, q3; r_ + r2, r3) + 

+ (PI + p2) h PIKPI + p2), PIKPI + p2); 

;]• 
q2 

qi + q2 <?i + q2 '\ + r2 r_ + r2_ 

and 

(3.2) I3(p2, p_, p3; q2, q_, q3; r2, r_, r3) = 

= h(p2 + Pi> p3; q2 + Qi, q3; r2 + r_, r3) + 

+ (P2 + PI) I2 \P2I(P2 + Pi), PI}(P2 + Pi); - ^ - , ~ ^ ~ ; - ^ - . ~ ^ — 1 

L 4 i + « 2 «i + q2 r_ + r2 r_ + r2_\ 

Thus postulate 2, (3.1) and (3.2) prove lemma 1, which is equivalent to 

(3.3) f(p,q,r)=f(l-p,l-q,l-r), 

for (p, q, r) e K. 
In particular, (3.3) gives 

(3.4) 7(0, 0,0) = 7 ( 1 , 1,1). 

Lemma 2. f defined by (2.3) satisfies the functional equation 

(3.5) f(x, y, z) + (l- x)f(~ , - * - > ~~) = 
\ 1 - M 1 - V 1 - Wj 

_/(„^ +(I-.)/(-!_._!-.---) 
\1 - x 1 - y 1 - z) 



for x, y, z, u, v,we [0, 1[ with x + u, y + v, z + w e ]0, 1] and that 

(3.6) f(x, y,z) = x log y + (l-x) log i — - , 
z 1 — z 

for (x, y, z) e K. 

Proof. The postulate 2 gives 

(3.7) I3(xu x2, x3; yu y2, y3; zu z2, z3) = 

= I3(x2, x3, xlf y2, y3, yu z2, z3, Zl) = I3(x3, xu x2; y3, yu y2; z3, z2, zt) . 

The equations (3.7), (2.3) (3.3) and the postulate 1 yield, 

(3-8) 

j(*i + x2, y± + y2, zt + z2) + (Xl + xjffx^x, + x 2 ) , _ — — , — ^ — ) = 
\ j i + y2 zi + z2) 

= f(xi, yu z 0 + (1 - *_) / (_ / ( - - x,), - _ - , - _ - ) = 
V 1 - x2 1 - zj 

= f(x2, y2, z2) + (1 - x2) / fx./(l - x2), _ _ - , _ - - ) , 
\ 1 - y2 1 - z2j 

for Xj, x2, yu y2, zu z2 e [0, 1), xt + x2, y\ + y2, zt + z2 e(0, l] and with the 
convention of section 1. 

From the second and third equation pairs in (3.8), we see that / satisfies the func
tional equation (3.5). 

Let / i denote the partial derivative of / with respect to the first variable. Then 
differentiating partially the first and third equation pairs in (3.8) with respect to x1; 

we get 

(3.9) fix, + x2, yx + y2, z. + z2) + 

+ f\xil(*i + x2), — ^ — , ———] + {x2/(xj + x2)} = 
L yi + yi zi + z2\ 

= A Ufa + x2), _^_-, -£_-] = A Ui(i - x2), - _ _ , _ — - ] , 
L yi + y2 z, + z2j l l - y2 l - z2J 

for xu yu zt e (0, 1), x2) y2, z2 e [0, 1) and xt + x2, yi + y2, zt + z2e (0, 1]. 

Now differentiating partially with respect to x2 the first and second equation 
pairs in (3.8), we have 



(3.10) /-Ol + *2, Jtl + ?2. Zj + z2) + 

+f\Xii(xx + x2), ~y±~ ,—5—1 - Oi/Oi + x2)} = 
L -Vl + 3*2 Zl + Z d 

= /. k/Oi + x2), - - — , — - - I = A [x2/(i - x,), _ _ _ , _ _ _ ] , 
L Ji + ^2 zi + z d L 1 - J». 1 - z j 

for x2, y2, z2 e (0, 1), xx, yu z. e [0, 1), x, + x2, J?J + j / 2 , Zl + z2 e (0, 1]. 

Thus subtracting (3.10) from (3.9), we have 

(3-11) 

/i [~*i/0i + *-). - 5 - • - 5 - 1 + / i [We- - *0> r ^ - . -----1 -
L ^i + y2

 z i + z
2J L l - j'i l - z j 

L 1 - y- 1 - z2J 

for xj, x2, yu y2, zu z2 e (0, 1) wtih xx + x2, yx + y2, zx + z2 e (0, 1]. 

Substituting x^ = xuftl + x + xu), x2 = xftl + x + xu), yx = yvftl + y + yv), 
*i = >7(1 + y + yv), z i = zw/(l + z + zvv)> a n d z2 = z/(l + z + zw) in (3.11), 
the equation (3.11) takes the following form: 

(3.12) fx
 r

B/(l + «), - J L - , - J L - ] + / . [",/(! + x), - _ _ , - _ - ] = 
L i + i ; i + wj L i + y i + zj 

= ,+,,,,(! + , „ ) , ^ _ - ] , 
L l + c j ' 1 + wzj 

for x, y, z, u, J\ w e (0, co). 

Define 

(3+3) F(x,y,z)=fJxftl + x),-^~,-~--~\, for x, y, z e (0, co) , 

so that (3.12) reduces to 

(3.14) F(u, v, w) + F(x, y, z) = F(xu, yv, zw), for x, y, z, u,v,we (0, oo) . 

Since/x is continuous due to postulate 3, F is also continuous. By letting y = z = 
= v = w = 1, we get from (3.14), that 

E(u, 1, 1) = a log w , 



so that, this in (3.14) for y = z <= 1 gives 

F(u, v,w) + a log x = F(xu, v, w) = F(x, v,w) + a log u , 

and hence 

F(u, v,w) — a log u = E(x, v, w) — a log x = 

= a function of v and w alone = A(v, w) (say). 

This in (3.14) gives 

A(v, W) + A(y, z) = A(yv; zw) . 

Repeating the above argument, it is easy to see that A(v, w) = b log v + c log w , 
so that the continuous solution of (3.14) is given by 

(3.15) E(x, y, z) = a log x + b log y + c log z , 

for x, y, z 6 (0, oo), where a, b, c are arbitrary constants. 

Hence (3.15) with the help of (3.13) gives 

(3.17) f,(x, y, z) = a log {x/(l - x)} + b log {y/(l - y)} + c log {z/(l - -)} 

forx, y, z e (0 , 1). 

This on integration with respect to x gives f(x, y, z) = a[x log x + (1 — x) . 
. log (1 - x)] + bx log {y/(l - y)} + ex log {z\(\ - z)} + g(y, z), for x, y, z e 
e (0, 1), where a is a function of y and z only, that is, 

(3.17) j(x, y,z) = a S(x) + bx log —£— + ex log — — + a(y, z) , 

1 - y 1 - z 

for x, y, z e ]0, 1[, where S(x) is the Shannon function, 

(3.18) S(x) = - x log x - (I - x) log (1 - x) . 

For x = y, the postulates 1, 2, 3, 4 and 5 give due to [3] that, 

f(x, y, z) = x log - + (1 - x) log , 

whereas (3.17) gives, 

f(x, x, z) = - a S(x) + bx log + ex log — - — + g(x, z), 
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(3-19) j(x,y,z) = a [ - S ( x ) + S(y)] + 

+ y + b(x - y) l o g - - - - - + c(x - y) log ~^- + y log ^ + (1 - y) ?~~ 
1 - У 1 - z 1 - Z 

for x, y, z e ] 0 , l [ . 

For u = v = w = f, the equation (3.5), with (3.19) becomes 

(3.20) (a + b) [t logf + (1 - y - f) log(l - y - f) - (1 - y) log( l - y)] + 

+ c[t log f + (1 - y - t) log (1 - z - t) - (1 - y) log (1 - z)] + 

1 - y - f 
+ (1 - y) lOg 1 - ( í - y - t ) 

1 — z 1 - z - t 
= 0, 

provided x — y + 0, which can very well be chosen like that. 

For t = 1 — y, (3.20) gives with the convention OlogO = 0, that c = — 1. For 
y = 0 = z, (3.20) gives a + b = 0, provided 5(f) + 0, which can be had for proper t. 
Thus 

j(x, y, z) = a \-S(x) + S(y) - (x - y) log — - - _ ] + 
L 1 - J U 

+ x l o g - + (1 - x)log-
1 -

for x, y, z e ] 0 , 1[, that is, 

(3.21) j(x, y, z) = a log - + (1 - x) 
У —1 

+ x i o g ^ + (i - x ) : 
1 - z 

for x, y, z 6 ]0, 1[. 

By postulate 5, taking x = $, y = $, z = £ in (3.21), we get a = 0, so that jhas the 
form given by (3.6) for x, y, z e ]0, 1[. 

With little manipulation and the use of (3.5) and (3.21), it can be shown that, j 
indeed has the form (3.6) for (x, y, z) e K. 

The proof of Lemma 2 is now complete. 

P roo f of the Theorem. Applying successively the postulate 1, we have 

(3.22) In(Pl,-, Pn, q» • - , qn; r i . -.., r„) = tptf(Vi\Pi, q,lQt, rJR,) , 

i=2 
where Pt -» p x + . . . + p„ Qt = tji + . . . + qt, Rt = rt + . . . + r{ for i = 1, 2 , . ..,n 
withP„ = ft, = R„ = 1. 



Hence (3.22) a n d (3.6) give 

(3-23) I„(Pi,---, P„\ qu •••, q«; ru..., r„) = 

-MHt)+KHH)H)}]-

-ji^(^'.-.(*•)-,^--r*). 
which proves the theorem. 

(Received May 17, 1972.) 
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