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K Y B E R N E T I K A — V O L U M E 14 (1978), N U M B E R 1 

On the Optimum Sequential Test 
of Two Hypotheses 
for Statistically Dependent Observations 

M i COCHLAR, IVAN VRANA 

The paper deals with a derivation of the Bayes optimum sequential test of two hypotheses. 
A structure of the optimum sequential test for the case of independent but generally differently 
distributed observations is derived by the method of Chow and Robins [2]. This result is used 
for derivation of the Bayes optimum sequential test of two hypotheses for statistically dependent 
observations. Obtained results are applied to the case of detection of the known signal in Gaussian 
coloured noise. 

1. INTRODUCTION 

Here we shall formulate a problem of Bayes optimum sequential test of two single 
opposite hypotheses H0 , H<. This problem was already solved in many works, 
e.g. in [1], [2], for statistically independent and identically distributed observations 
which are scalar random variables. The following definition of problem will be 
generalisation of the mentioned well known formulation to the case of vector ob­
servations which are generally statistically dependent and have different distributions. 

We shall use these notations: x, = (xn, ..., xiM) is the i-th vector of observations 
which has M real components xu, j = 1, . . . , M, for i = 1,2,.. . and for the given 
fixed M > 0. By the probability density function 'w(x;) of a random vector x, we 
shall understand the probability density function 'wM of its components, i.e. 

'w(x;) = ''wM(x,t, ...,xm). 

Further 

X„ = {x;K = xlf . . . ,x„ 

is the sequence of the first n vectors of the observation x ; for i = 1,2, ..., n,n > 0. 
By the probability density function f„(%„) of the sequence 3£n we shall understand 



a joint probability density function LM of all nM components x,7, i.e. 

{„(%„) = f n M ( x u , ..., xiM, .. ., xnU ..., xnM) . 

Hypotheses H0 and H, are defined by a conditional probability density functions. 
If Hfc is the true hypothesis then 9C„ has the conditional probability density function 
f„(,f'„ | k) for all n = 1, 2, . . . and k = 0, 1, 

Let n be a priori probability that H0 is true, 0 < n < J. Then unconditional 
probability density function f„(.f„) of the sequence '!„ is given by the relation 

(1) fn(i£n) = n fn(3£n | 0) + (1 - JI) {„(%;, | J ) , n = 1, 2 

The loss owing to accepting H t , when H 0 is true, we shall denote by a > 0, and vice 
versa the loss due to accepting H0 when H t is true, we shall denote by b > 0. The 
cost of making one observation x ; is unity. 

Analogically as in [2] we shall describe the sequential test by (<5, N). In this de­
scription N determines a generally random moment of a test termination and <5 is 
a terminal decision. For a given sequential test (3, N) the global risk r(<5, N) is de­
scribed by the relation 

r(«5, N) = n[aa0 + E0(N)] + (l - n) [bat, + E..(N)] , 

where a0 is a probability of accepting Hj when H0 is true and a* is a probability 

of accepting H0 when Hj is true; E t(N) is an average length of a test when H t is true. 

The a posteriori probability n„ of validity H0 for given 9C„ is 

(r>\ (or \ n f"(^"» I °) t o 
(2) TT„ = n„(iHn) = — , { -, n = 1, 2, . . ., 

f«0r») 
(3) 7t0 = 71 . 

Analogically like in [2] we can easy show that for all moments of test termination 
N there exists such a rule of terminal decision 8* that it holds for arbitrary 8 

(4) r(<5, N) g; r(<5*, N) 

and this rule 5* is given by relations 

accept Hj i/ N = n fln£/ TI„(£„) . a g, [ l - 7i„(,f „)] . fc , 
(5) 

accept H0 / / N = n anc/ nn(&„) . a > [ l — 7r„(J„)] . fc . 

As it follows from (4), the problem of finding the Bayes optimum sequential test 
which minimizes the risk r(<5, N), is equivalent to determining such a termination 
moment N* for which r(<5*, N*) is minimum, if such N* exists. 



According to works [2] and [3] and relation (5) it is valid 

(6) r(«5*,N) = £ f [h(- B ( .0) + n] f„(.f „) d.€„ , 

»=» JiN=n! 

where 

h(f) = min [a/, b(\ - f)] ; 0 = ( g 1 , 

d^"„ = d x u . . . d x m . . . dx„( . . . dx„M , 

{N = n) is the set of all possible sequences of observations if„ for which 
it holds N =n. 

Using the above discussion we shall define the concept of stopping rule and the 
concept of Bayes optimum stopping rule. 

Definition 1. Let a sequence of J^-measurable random vectors x, , x2 , . . . on the 
probability space (Q, SF, P) with elements a be given. Each vector x„ has M > 0 
real components. Probability density functions of sequences SCn = x. , x2 , . . . , x „ 
exist and they are given by relation (1) for all n > 0. Let 3Ft c $F2 c . . . be a non-
decreasing sequence of sub-c-algebras of SF such that J*„ is the minimum a-algebra 
induced by $£„. By the stopping rule (on the sequence ,f „) we shall understand each 
integer random variable t, defined on (Q, 3F, P) which can have only positive values 
and for which the event {t(co) = n] e 3F„ for each n = 1, 2, . . . . 

Definition 2. Let a random sequence {y„}f be given for elements of which y„ 
it is valid 

(7) y„ = -h(nn(%„)) - n , n = \,2, ... . 

Let ^ be the set of all stopping rules t for which E(yt) exists. By the Bayes optimum 
stopping rule on the sequence 9C„ we shall understand a stopping rule t*, for which 
it holds 

(8) E ( » ) = sup E(yt) . 
te'C 

Note 1. Problem of finding the Bayes optimum stopping rule is trivial for the case 
a _: 1 or b Js 1, because in this case it holds 

h(0 < i , 

v0 = -h(7t) > v„, for n = \,2, ... 

and thus E(.v0) > E(yt) for any t e <£. This case corresponds to making decision 
without any observation and we shall not deal, with it further since it is of no interest 
from the point of view of practical application. 



Theorem 1. If n„(3Cn) is defined for all n = 1, 2, . . . , then for a > 1 and b > 1 
the Bayes optimum stopping rule t* exists. 

Proof . The sufficient conditions of existence t* are given by Theorem 2 in [2]. 
We shall verify satisfaction of these conditions in our case. Analogically as in [2], 
let us put 

y„ ± y n - y ' n ^ y l - y°n° , 

where 
y'n = y°„ = -h(Kn(£tt)), 

Since both y'n and y°„ are functions only of 9Cn and further y"n and y°° are not random, 

J~„-measurability of all these components is evident. 

Denote (x)+ = max [x, 0]; (x)~ = max [ — x, 0]. Evidently (y'„) +. = 0, thus 

E[sup (y'„)+] = 0 < oo . 

The sequence y"„ is evidently increasing and it holds 

lim y"n = co . 

Further it is valid that 

0 <. (y°n)- - h(n„(V„)) <. ' 
a + h 

and the sequence {(y°)~} is uniformly integrable for all n, see also [4]. 
We can see that all assumptions of Theorem 2 in [2] are satisfied and thus the 

Bayes optimum stopping rule t* exists. 
In the next section of this paper we shall generalize Wald's result [ l ] to the case 

of independent but generally non-identically distributed observations. In the third 
section we shall utilize this generalization for derivation of Bayes optimum stopping 
rule when observations are statistically dependent. In the fourth section we shall 
apply these general results to the practically important problem of the optimum 
sequential detection in coloured Gaussian noise. 

2. OPTIMUM SEQUENTIAL TEST FOR INDEPENDENT AND 
GENERALLY DISTRIBUTED OBSERVATIONS 

We shall find the Bayes optimum stopping rule t* for the case when the conditional 
joint probability density function f„(S"„ | k) is given by the relation 

(9) f„(<r„ | k) = f j 'w(x ; | k), I k - 0 , 1 ; - . - 1 , 2 



Further we shall denote by A„($"n) the likelihood ratio defined by 

(1.0) l„(,f „) = i„(3Cn | l)/f„(5r„ | 0) , n = 1, 2, . . . . 

Under these conditions we shall prove a theorem. 

Theorem 2. Let a, b > 1 and let (9) hold. Then the Bayes optimum stopping rule 
t* is given by the relation 

(11) t* = min {n : X„(3Cn) $ (A,„ B„)} , 
n>0 

where {A„}f, {B„}f are some sequences of real numbers. 

Proof. We shall use a method described in Sec. 6 of [2]. According the Theorem 2' 
of [2] it holds for t* 

(12) t* = min {n : y„ = ft, = lim ft?} 
n > 0 N->a> 

if lim P„ exists. Here ft? is given by 

(13) fu = max [>•„, E ( ^ + . | #"„)], /?£+. = - co , « = 1, 2, . . . , N . 

As it is valid 

= 7 T „ . " + 1 W ( X „ + 1 | Q )  

" + 1 n„ . "+ 1w(x„+ I I 0) + (1 - nn) . "
 + 1w(x„+1 | 1) ' 

the value of the random variable ft? is determined only by the value n„. Then we can 
define a new auxiliary random variable 

g (̂7r„) = -fffcXn) - n , n = 1, 2, . . ., N 

g«r+i(«j»+i) = °° • 

According to (13) 

(14) gN(t) = min [h(t), G;+1(0 + 1] , 0 = 1 = \ , 

where 

G-(o=r... r ^ -^" w ( x " i o ) v 
" U J-oo J - r o

g " V t . " w ( x „ | O ) + (l-0-"w(x„|l)j 
. [t. "w(x„ I 0) + (1 - t) "w(x„ I 1)] dx„, 

dx„ = dx„. . . . dx„M . 



6 2 We can easy show by induction backward that it holds 

(15) g"(0 = g" + 1 ( t) for n = 1, 2, . . .,N + 1 . 

From (15) and from the fact that g*(t) 2: 0 the existence of the limit 

(16) g„(/) = lim g„"(f), -. = 1,2, . . . , 
N-*oo 

follows. By the Lebesgue theorem of the dominated convergence 

g„(|) = min [h(/) , G „ + 1 ( / ) + 1 ] , 

where 

G„(0 ^ 
/. "w(x„ | 0) 

Kt . "w(x„ I 0) + (1 - / ) . "w(x„ | I) 

. [/ . "w(x„ I 0) + (1 - /) . "w(x„ | 1)] dx„. 

Substituting into (12) we obtain 

(17) /* = min [n : g„(n„) = h(/r„)] . 

Similarly as in [2] it is possible to show that both g„(/) and G„(/) are concave functions 

of /. Further 

g„(0) = G„(0) = g„(l) = G„(l) = 0 

is valid. Modifying the method of [2] we shall discuss condition g„(7i„) = h(7t„) 

from (17). Denote 

«,„(/) = « / - G „ + , . ( / ) - 1, 

a2„(/) = b(i - 0 - G„ + 1(/) - 1 . 

Then it holds 

«i„(0) = « 2 „ ( l ) = - K 0 , 

a i „ ( l ) = a - 1 > 0 , 

a2„(0) = b - 1 > 0 . 

Since G„(z) is concave, G„(0) = G„(l) = 0 and at is linear, there exists one and only 

one number n'„ = n'n(a, b) such that 

(18) Ч„(t) 

< 0 for f < л„ , 

= 0 for / = я„ , n = 1, 2, . . 

> 0 for / > я„' , 



(19) «2n(t) 

and analogically there exists one and only one number n"n = n'n (a, b) such that 

> 0 for t < n'„ , 

= 0 for f = nn, n = 1,2, . . . . 

<0 for f > n"„ , 

It follows from (18) and (19) that (17) could be written in the form 

(20) f* = min[n : nn <£ (n'n, n"n)~\ . 
n > 0 

Using likelihood ratio A„(^„) it is possible to rewrite (20) in the form 

t* = min [n : ).n(Xn) £ (A„, £„)] , 
n>0 

where, for n = 1,2, . . . , A„ and B„ are given by relations 

7i 1 — n" 
A„ = . , 

B,, = - — • — -" 
1 — 7t n'„ 

Theorem 2 is then proved. 

Note 2. Our result for generally distributed independent observations differs from 
the case when they are identically distributed [1] by the fact that instead of having 
one pair of tresholds n', n" we have two sequences of tresholds {n'n}, {n'„} or two 
sequences {A,,}, {B„} respectively. This is caused due to the fact that the function 
g„(f) in (16) generally depends on n. 

3. OPTIMUM SEQUENTIAL TEST FOR DEPENDENT 
OBSERVATIONS 

In this section we shall discuss the case when the conditional joint probability 
density functions f„(3"„ | k), k = 0, 1 can not be expressed as a product (9). 

We shall express the sequence of observations 2t~„ by a row-vector X„ with com­
ponents x,;-, i.e. 

(21) X„ =(>•,, , . . . , x 1 M , . . . , x , „ , ...,x„M). 

Let for all n = 1, 2, . . . the following relation on the probability space (Q, &, P) 
hold: 

(22) K = D„X„ 



where 

Xn = ( x l l > • • •> ^ l M ) • - •> *nl> • • • > XnAfJ • 

D„ is the M/i x Mn matrix with real components for which it holds 

~D„ d: 
(23) D„+1 = — 

where (for all n = 1,2, . . . ) d„, d"n, d"n are M x Mn, M x M, Mn x M matrices 
and matrices Dl and d"n are regular matrices and d'" is the zero matrix. 

We can express Xn in (22) as a sequence 3C'n of vectors x\, i.e. 

ar; = (x'1 ; . . . , x ' n ) , n = 1 , 2 , . . . , 

x'; = (xa, . . . , x - M ) , / = 1, . . . , n . 

This sequence has the probability density function f'n(SC'n). The linear transform (22) 
must satisfy a condition that we can write the conditional probability density func­
tion in the form (9), i.e. 

(24) rn(9C'n | k) = H 'w'(x'i I k) > k =- 0, 1; n = 1, 2, . .. . 
; = l 

It follows from (22) and (23) that the sequence ?I'n is ^-measurable for each n 
and thus we can interpret it as a sequence of observations x, (;' = 1, 2, . . . , n). 
According to (24) this sequence further is created by independent and generally 
differently distributed observations. 

It further follows from (23) that matrix D„ is regular for each n and thus there 
exists its inverse C„, i.e. 

(25) cn = D;\ 

For the above described case we shall prove the following theorem. 

Theorem 3. Let the probability space (Q, ?F, P) and on it defined sequence of ob­
servations SCn satisfy conditions (22), (23) and (24). Then for a, b > 1 the Bayes 
optimum stopping rule t* is given by the equation 

(26) t* = min [n : ln(SCn) $ (An, £„)] , 

where 

X„(3Cn) = f„(SC„ | l)/fn(iT„ | 0) n = 1, 2, . . . 

is the likelihood ratio and {A„}f, {5„}J° are some sequences of real numbers. 



Proof. On the sequence {x^}" we shall define a sequence of random variables 6! 
{y'n}T by the relation 

(27) y'n(r„) = -h(n'n(rn)) - n , n = 1, 2, . . ., 

where 

< 2 8 > ^ • ^ • - ' • J • • -

According to [5] and relations (22), (25) it holds 

(29) fn(rn \k) = J„ f„(SC„ \k), k = 0, 1 ; » - 1, 2, . . . , 

where Jn is the absolute value of Jacobian of the linear regular transform (22), i.e. 

J„ = |det C„\ + 0 , n = 1,2, . . . . 

From (29) it follows 

(30) r„(rn) = j„f„(3r„), « = i , 2 , . . . . 

Substituting (29) and (30) into (28) we obtain 

(31) n'n(rr) = 7r„(,f„), n = 1,2, . . . 

and thus also 

(32) y'n(rn) = J>„(#"„), n = 1,2, . . . . 

According to the Theorem 2 of this work, there exists the Bayes optimum stopping 
rule T* on the sequence 9£'n for which it holds 

(33) T* = min [n : X'„(r„) £ (A„, B,,)] , 
n > 0 

where 

4 C ) = j;(^,', | I M C I 0) , n = 1, 2, ... 

and [A„}i, {B„}™ are sequences introduced in Theorem 2. Owing to (22) and (23), 
the stopping rule T* on the sequence '£"„ can be interpreted as the stopping rule on the 
sequence .f „ and thus according to Definition 2 and equation (32) it must hold 

(34) E(JV) < E0„) 

where t* is the Bayes optimum stopping rule on the sequence ?X„, existence of which 
is guaranted by Theorem 1. 

Due to the fact that (22) is a one-one transform, we can interpret the sequence .f „ 



to be derived from the given srquence .f '„. By the similar approach, as in the previous 
part of the proof, we can show that it must hold 

(35) E(yt.) ^ E(yt.) . 

From (34) and (35) then follows 

(36) E(yr.) = E(yt.) . 

From equations (32), (33) and (36) it follows that the stopping rule t* on the sequence 
5T„ can be given by the equation 

(37) t* = min [n : X'n(£'n) £ (A,„ B„)] . 
n > 0 

From the equation (29) we obtain 

)JSC\ JMA}) = k'ir\ „ = 1 2, .... 
K ' f„(^„|0) K ' 

Substituting into (37) we shall obtain the relation which we wanted to prove: 

t* = min [n : /„(.«„) $ (A„, B,,)] . 
n>0 

By this, Theorem 3 is proved. 

Note 3. Transformation (22) with properties (23), (24) exists e.g. in the case when 
the vector Xn in (21) has Gaussian joint probability density function with the same 
covariance matrix for both hypotheses H0 and H«. 

Theorem 3 shows that the optimum character of the sequential probability ratio 
test is also valid for the above described coloured case. It is further clear from the 
Note 3, that Theorem 3 gives us the possibility to solve the technically important 
case of sequential detection of signal in coloured Gaussian noise. 

4. OPTIMUM SEQUENTIAL DETECTION OF KNOWN SIGNAL 
IN COLOURED GAUSSIAN NOISE 

Let us assume that the observed vector x„ is given by the equation 

(38) Hj : x„ = n„ + ks„, k = 0, 1 ; n = 1,2, ... , 

where Hk denotes the valid hypothesis, 

s„ = (s„i, ..., snM) is a given vector of signal and 

n„ s («„,, . . . , nnM) is the Gaussian random vector. 



Let the vector 

(39) X„ = N„ + k . S„ = (xu, . ..,x1M, ..., x „ u . . . , xnM) 

be the Gaussian random vector with the mean k . S„ and with the covariance 
matrix R„ 

$n — ( S l l ) • • •> S11W> • • •> Snl> • • • ' 5niw) > 

N„ = ( j Jn , . . ., « 1 M , . . . , «„, , . . . , n„M), 

R„ = E[(X„ - k . S„)T . (X„ - k . S„)] , 

where R„ is Mn x Mn positive-definite symmetric matrix. 

Now we shall show that for the above described case, the transformation with 
properties (22), (23) and (24) always exists. For symmetric positive-definite matrices 
there always exists the expansion (see theorem Y 19.1 in [6]) 

(40) R„ = C„. C„T, n = 1,2, . . . , 

where C„ is Mn x Mn lower triangular regular matrix with real components. From 
equation for components of matrix C„ in accordance with Choleski method, we can 
easy show validity of relation (23) for the matrix C„. In accordance with (25), let us 
define matrix D„ = C"1 . Then D„ is also the Mn x Mn lower triangular regular 
matrix with real components and it is easy to check validity of equation (23) using 
expression of elements of an inverse matrix to the triangular matrix (see [6] p. 93). 

According to (22) let us now define 

(41) X,;T = D„X,T, ,, = 1 , 2 , . . . . 

We shall determine the covariance matrix R̂  of the vector X'„. From (41) it follows 
that the mean value of X'n is given by 

(42) E(X'n) = k . S„DT , n = 1,2, .... 

Then it holds 

(43) R'„ = E[(X^ - k . S„DT)T . (X'n - k . SnD
T)] = D„R„D„T , n = \,2, ... 

and substituting (40) we then obtain 

(44) R; = DnCnCTDT = £„, n = 1, 2, . . . , 

where £„ is Mn x Mn unit matrix. From (44) it follows that components of the 
vector X„ are uncorrected. Vector X„ is Gaussian and according to (41) vector X'„ 
must be also Gaussian. Due to (44), components of the vector X'„ are statistically 
independent. By this we have verified validity of equation (24). Thus all assumptions 
of Theorem 3 are satisfied. The obtained result can be formulated in the following 
theorem. 



Theorem 4. Let hypotheses H0 and H1 be defined by equation (38) and let vector 
X„ in (39) be Gaussian random vector with the mean k. S„, for k = 0, 1 and with 
a real positive-definite covariance matrix Rn. Then the Bayes optimum sequential 
test of hypothesis H0 versus Hj is given by relations 

(accept H0 if X„(3Cn) = A„, 

(45) accept H. if Xn(3C„)^B„, 

(make the next observation if Xn(9£n) e (A,„ B„) 

sequentially for n = 1, 2, . . . n'Z/ accepting one of hypotheses. 
Xn(<%„) is the likelihood ratio and A„, J3„ are thresholds from Theorem 3. 

P roo f is clear from the Theorem 3 and the rule of terminal decision o~* defined 
by relations (5). 

Note 4. From equations (42) and (44) it follows that single statistically independent 
observations x'; of the "whitened" vector Xn have unit covariance matrices, but 
generally they will differ by their means even in the case when st = s = const, vector 
for all i = 1, 2, . . . . Thus even in this case, due to the Theorem 2, we shall have two 
sequences of thresholds instead of a pair of thresholds. 

Theorem 4 principially solves the Bayes optimum sequential detection of the 
known signal in coloured Gaussian noise. The question of determining concrete 
values of thresholds A„, B„ remains the open problem. 

5. CONCLUSIONS 

Theorems 2, 3 and 4 determine a structure of the Bayes optimum sequential test 
of two single hypotheses for the case when observations need not be statistically 
independent or to have identical distributions. As to the thresholds An, Bn, these 
theorems unfortunately guarantee only their existence but don't give a constructive 
description how to determine their values. Besides the application of these theorems 
to the case when their assumptions are satisfied, one heuristic statement still follows 
from them: In general case when the sequential likelihood ratio test is the optimum 
one, we can achieve that this test will have two sequences of thresholds instead 
of a pair of thresholds. From this point of view, the Wald's result [1], when the 
optimum sequential likelihood ratio test has only a pair of thresholds, we can assume 
as a special case of the test having two sequences of thresholds. 

(Received July 13, 1977.) 
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