
Kybernetika

Otakar Kříž
Dines: A possibility of direct decision making within the frame of ines

Kybernetika, Vol. 25 (1989), No. Suppl, 45--51

Persistent URL: http://dml.cz/dmlcz/125417

Terms of use:
© Institute of Information Theory and Automation AS CR, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125417
http://project.dml.cz


DINES: A POSSIBILITY OF DIRECT DECISION MAKING 
WITHIN THE FRAME OF INES 

OTAKAR KRllZ 

The idea to construct expert systems with the strictly probabilistic background, as suggested 
by Perez [6] proved to be both promising and fruitful. It found its implementation in the form 
of INtensional Expert System — INES (Perez, Jirousek [7]). Certain modification of INES 
inference mechanism is presented in this paper. The new experimental system DINES is intended 
as an efficient sparring partner for the original INES to study further ways for enhancement 
of its discernment power. 

1. BASIC FEATURES OF INES SYSTEM 

The original idea of the system INES belongs to Perez who, inspired by his previous 
work [5], suggested in [6] a model of an expert system strictly based on probabilistic 
principles. We shall not enumerate advantages of intensional systems over rule-based 
ES but some important features of INES should be briefly mentioned. All uncertainty 
is completely expressed by an unknown theoretical distribution Pn^2...^n(d, xux2,... 
...,xn). r\ is a random variable taking values from a set of different diagnoses, £; 

correspond to symptoms (when medical terminology is used). ES INES tries to find 
such approximation P of this actual distribution that, beside being consistent with 
all knowledge at our disposal, minimizes decision losses. This approach has not 
only good theoretical foundations but it enables also to look for the appropriate 
approximation without knowing the actual distribution. Another interesting feature 
of INES is that it accepts knowledge in a form of statistical data. It is possible to 
elicit information from experts in a rule-like way where "weights" have the strict 
interpretation of conditional probability (see [4]), but the most natural way of 
feeding knowledge into INES is a set of oligodimensional distributions. Their statis
tical estimates are easy to obtain from a training data set with a sufficient number 
of variables and of course with reliable diagnosis. The term "oligodimensionality" 
reflects the fact that due to a trade-off between discernment power, robustness and 
computational complexity the "input" distributions — supposed marginals of the 
actual distribution — describe relations between 2, 3, 4 or exceptionally 5 random 
variables. Each variable in its turn takes values from a set of several elements only. 
This explanation should justify the abbreviation "oligodistribution" in the sequel. 
In INES, the decision itself is based not directly on the actual distribution but on its 
restrictions. The success of the whole approach was strongly dependent on efficient 
and fast algorithms to achieve the restriction within seconds. The task was accom
plished for different classes of approximating distributions [7] and since then the 
discernment power of INES has been tested on several occasions [2]. Though the 
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original idea to test continually the theoretically guaranteed merits of INES in a direct 
confrontation with an extensional system failed, because of some technical difficulties, 
the necessity to "measure" the power of INES by comparing it with an efficient 
sparring partner over the same knowledge base remained. The DINES system 
(D-stands for degenerated or direct) is the answer to the demand. "Direct" intimates 
that by using conditional oligodistributions right from the start we formally bypass 
generating the joint distribution and the subsequent restrictions. "Degenerated" 
reflects the fact, that due to heuristics used, certain assumptions of the original 
INES are simplified. 

The system INES consists of three distinct parts (program modules): MODIFIER, 
INTEGRATOR, APPLICATOR. The module MODIFIER accepts knowledge 
in all admissible forms (see [4]) and creates as its output a set of consistent oligo
distributions. This set is passed over to the module INTEGRATOR, that generates 
structures necessary to construct the approximating joint distribution. These two 
modules, that are in fact building the problem knowledge base, are supposed to 
work off-line for hours of CPU time. The situation is different with the module 
APPLICATOR, that has to respond within seconds and to supply conditional 
probabilities of diagnoses for given evidence (symptoms). 

To be able to formulate our description in a more precise way let us introduce 
several conventions. The components of an rc-dimensional vector r are denoted 
(r), for / = 1,2, , n = dim (r). Further let a pair (/, < ) stand for an ordered 
set where I cz N is a set of positive integers and < is the symbol for its complete 
ordering (not necessarily the natural one). Let nt((l, <)) denote the ith element 
from I according to ordering < . (JT£ is thus the usual projector taking the fth com
ponent from elements of a linear space). For a fixed n let there exist a nonempty 
finite subset Tof a vector space R": T4= 0, |T| < + oo, Tc R". It is possible to define 
a mapping A 

A: &(({\,2, . . . ,«}, <)) x T-* R u R2 u R3 ... u R" 

((I, <), r )^( ( r )« l ( ( I ,<) )» ( r )« 2 ( ( I ,<) )» •••>(r)*|/ |((J,<)))' 

where 0>(M) is the potential set of a set M. Let us now consider a system of ordered 
sets {(Ij, <)}J=i. With the aid of the mapping A we can construct a set of the corre
sponding functions {A((Ip <), •))7-i = {a/ ' )}?--- I n s Pi r e d by the following 
example we shall Call the functions ay. T-> R u R2 . . . u R" apertures (or windows). 

CL 

1 2 3 -. 5 6 7 

3.2 2 -10 1 2 6 -3 

/ 

Ш 1 1 
VI 5 > , 4Ĺ У 

3.2 1 6 

í={1,2,...,7} 
< is the natuгal 
oгdeгing of 1 

Іäa2 
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To indicate inversely the ordered set of variables that corresponds to any particular 
aperture aj we shall introduce the function "support of aperture" denoted with 
sign~ 

~:{A((IJt <) , - )}"- i - > * ( { ! , 2, , . . ,n]) 

aj(') = I((Ij, <),-)»(lj,<) 

For the above example at = (1, 4, 6) a2 = (4, 6). 
The main interpretation of the introduced notions is the following: For each 

respondent (or patient) r of a training set T aperture a (corresponding to a question 
or test) is a function that assembles a vector a(r) (answers to the question a about 
patient r). In the vector a(r) there will appear only values of those variables from 
the vector r e Tthat are described by the support a of the aperture a ordered conform 
to initial fixed ordering! Now, we may formally describe the function of the INTE
GRATOR and APPLICATOR modules. The task of the INTEGRATOR is to 
create an approximation Pn^2...^n of the all-explaining unknown joint distribution 
Ptfiii-in T n e approximation Pn^2...^n can be thought of as certain function / realised 
by the algorithm of INTEGRATOR and parametrized by all "input" oligodistribu-
tions Oj,j = 1, ..., m 

(1) PnMvinfa Xl>"'> Xn) = I(°l> °2> •••> °m) (d, * 1 , X2, . . . , X„) 

The APPLICATOR module performs the restruction Pn^2...^n -+ Pn^2...^n ( t n e 

upper indexing stands for the set of variables for which the restriction takes place). 
The restricted distribution is then evaluated for the values that the aperture a passes 
to the APPLICATOR for a fixed respondent r e T. We shall assume that final 
decision for all types of probabilistic expert systems is performed on the basis of 
a vector (Ea(Pdi]r), Ea(Pdl]r),..., Ea(Pdn]r)), where Ea(Pdi[r) is an estimation of condi
tional probability Pdi]r of a diagnosis dt for a respondent r if only values of variables 
from a are known. Ea(Pdi]r) is defined for INES 

Ea(Pai\r) = ^ ^ i=\,2,...\n\ 
Pa(a(r)) 

where Pn5 resp. Pa is a shorthand for Pn$iz2...$„(di, a(r)) resp. Pn
,$i$2...$n(a(r))- F ° r 

the denominator Ps(a(r)) = 0 we set the result identically to zero. Having in mind (l) 
we may now transcribe Ea(Pdf]r) for INES as 

FfP \ - 7 " ^ ? J ••>°nt)(di,a(r)) 
h(Oi,--;Om)(a(r)) 

2. MAIN IDEA OF THE DINES SYSTEM 

The main object of this paper is to suggest a new inference machine DINES where 
Pdt\r is estimated in a slightly different way 

Ea(Pat\r) - HEa,oXPallr),Ea>02(Pd{]r),...,Ea>0m(Pd(lr)) 

47 



where D is a certain global function (implemented by DINES) D: Um -> <0, 1> 
and the symbol Ea0j(Pd.\r) stands for estimation of probability Pdi[r that a person 
r e T cz U" suffers from a disease dt provided only values of variables from a are 
known and supposing that all our "knowledge base" consists of oligodistribution Oj 
only. Though retaining the symbol Oj, the original notion oligodistribution will be 
slightly changed in context of DINES. To Oj (originally /-dimensional matrix for 
/ = \dj\) k other objects of the same form and size, denoted by Oj\di, are added to 
create more complex structure 

°J = (°J> °j\dt> °j\d2> ~»°j\dk) fc = M • 

Attention should be paid to the fact that at variance with usual conventions each 
symbol Oj,di(x) denotes Pn\5j(dh x) i.e. conditional probability of diagnosis variable 
rj to take value dv if the symptom variables from 5j take the value x. The whole 
structure Oj has the same support 6j. Another difference is that 5j at DINES does 
not contain the "diagnosis" variable // even if it was included at the original INES 
input. The link to diagnosis is achieved here by conditioning! Roughly speaking D 
computes a certain "average" of assesments Eao(Pdi,r) of probability Pd{,r by indivi
dual conditional oligodistributions Oj\d.. 

One of the differences between the two approaches might be seen in the fact that 
INES performs at first the integration of knowledge from input oligodistributions 
and then restriction and evaluation, DINES restricts and evaluates (conditional 
distributions 0,-u,) and then "integrates" the resulting numbers via the function D. 

3. CONTRIBUTIONS TO DECISION BY INDIVIDUAL 
OLIGODISTRIBUTIONS 

Let us now define the way the numbers Ea>0 (Pdi\r), that appear as arguments 
in the function D, are constructed. It is in principle always based on the relation 
between the supports of the aperture a and the oligodistribution Oj. 

1. The simplest case arises when for a given aperture a there exists an oligo
distribution structure 

°J = (0J>0j\dl>°J\d2>-->°j\dn) 

such that the support of Oj equals the support of the aperture a: 

(2) 6j = a 

Ea0J(Pdi\r) is then just Oj\d.(a(r)) meaning a simple looking-up in the corresponding 
Oj\d. of the structure Oj with "address" a(r). (Components of patient vector r are 
supposed to be discretized and coded into integers so that a really maps to vectors 
of integers.) If (2) holds for more oligodistributions (acquired from different in
formational sources) we may comprime them as a convex combination and interprete 
the "weights" as apriori distribution over sources or as our subjective assesment 
of their credibility. 
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2. The second case corresponds to the situation that for a given aperture a we find 
such oligodistribution Oj that for their supports there holds following set inclusion 

a c 6j 

then the natural choice for Eao.(Pd.\r) is oaj\d.(a(r))\oaj(a(r)) if defined or zero otherwise 
where 

°5,-.(flM) = I OJM.M a M ) ,0J(*> a(r)) 
5j/a 

and 

^ M ) = 2>/->«M) 
This symbolic notation describes averaging conditional probabilities from Oj\di — 
i.e. the probabilities of dt conditioned by 5j. Dots inside brackets stand for values 
of those variables over which the summation takes place. In this particular case 
we sum over all variables £ from dj that are not in the support of a. 

3. The most general and most often encountered situation is when an aperture a 
and oligodistribution Oj have a nonempty intersection of their supports and non 
empty differences 

a n 6j #= 0 , a\5j =1= 0 , 5j\a 4= 0 , 

Ea,o,(Pdt\r) is t , nen defined as 

o^(aan5j(r))los.n5iaSn5j(r)) 

for non-zero denominator or zero otherwise. Where 

(3) ojft? (a*"sir)) = X o,|(J, (-, a^(r)) • o, (-, a3"3' (r)) 
o,/a 

and 

o,/« 

4. If a n 0/ = 0 then applying the fact to formula (3) we sum and normalize 
over the whole Oj\d. getting thus an averaged conditional oligodistribution irre
spective of measured symptoms and this corresponds to aprioristic occurrence of 
different diagnoses in the training data set from which the knowledge base was 
generated. 

4. GLOBAL COMBINING FUNCTION D 

After introducing the construction of the numbers Eao{Pd.\^) for an arbitrary pair 
(a, Oj), we may return to the question of "integrating" the {Ea>0.(Pdi^}^= t to a single 
Ea(Pdi\r) via the global function D. 

Before giving a final answer let us briefly mention some possibilities: 
a) to apply certain statistical estimator (after having made some supposition about 

the family of distributions where we believe to find the actual joint distribution; 
b) barycenter approach as proposed by Perez [8]; 
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c) to understand the construction of D as a problem of multicriterial decision with 
certain Pareto optimal set; 

d) it is possible at least formally (if we can justify it) to apply as D some combining 
functions used in rule-based systems; 

e) to apply estimators of the averaging type (arithmetical, geometrical, harmonical 
etc.); 

f) to consider chances of applying gnostical theory (cf. [3]). 
The question seems to be still open and will be subject to further experiments. 

Let us only stress the following idea: It is not the actual value of Pdi\r probability 
for different diagnoses but their ratio only (with certain threshold strategy) that 
matters. This ratio should be the invariant of our "knowledge geometry" and this 
fact may bring about as its consequence more simple and robust forms for the 
function D. As the first prototype of the global function D for DINES systems we 
have adopted the following heuristical approach: 

First some more conventions: R(l) denotes an arbitrary partition of a set I, |R(I)| 
is the number of its components and for each component SteR(l) \St\ is the number 
of elements Si consists of. 

Let us have an aperture a and let us consider different partition R(a) of the set a 
fulfilling 
a) V 3 St = an 5} 

Sj6K(a) ojeO 

Components S( of the partition are thus assembled only from such oligodistribu-
tions Oj that "coincide" with the aperture a 

I \RW\ 
h\ Y \a n <v| -> max 
b j \R(a)\ >=i ' "' 
where oSi = o^f for o ; generating S^. St = an dj. The condition b) favours the 

partitions R(d) with a small number of "large" components. In the sequel, the 
symbol 0t(a) will be used for all partitions R(a) of a with the mentioned properties 
a) and b). Now we can define 

|R(3)| 

(4) £„(/>,,„,) = max {( ff max {E (Pdllr), e/(S,)])" |K(5>1} 
R(a)e@{a) j=l J 

where f(Sj) may be chosen e.g. as 

(5) \Sj\ ~ 1 
or 

w n \m\n 
SkcSj 

The formula (4) for the DINES global function D needs some comment. In fact, 
we recommend the geometrical mean of estimations Eao (Pd.\r) where the compo
nents Sj of the partition R(a) are in a sense the largest possible ones. The internal 
maximization along with / and s guarantees non zero values of Ea(Pdi\r) even for 
degenerated oSj. The variant (5) requires exact zeroes only if one-dimensional margi-
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nals say so. The variant (6) o f / reflects the emptiness of the symptom space with 

respect to the number of cases in the training set T. With values of s ~ 1 0 " 7 these 

provisions may give a rough guess about how many components "voted" for zero 

in Ea(Pd .j r). The external maximization is just a protection against unfavourable 

position of components of R(a) for estimating Pdiir. As a result &(a) need not contain 

more than 2 or 3 partitions R(d). They can be selected with the aid of a slightly 

modified greedy algorithm. 

The symbol -> max in the condition b) should be interpreted in such a way that 

only those partitions R(d) for which the root 's argument in (4) is non zero at least for 

one dt are apt as candidates for <%(a). Ea(Pd ) as defined by (4) do not satisfy 
M 
]T Ea(Pdi]r) = 1. They can be normalized to do so if necessary but, as we have 

j= I 

stressed already it is usually the difference or ratio between the first and second 

largest Ea that really matters for decision making. 
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