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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 1 

ON OPTIMALITY OF THE LR TESTS IN THE SENSE 
OF EXACT SLOPES 

Part I. General Case 

FRANTIŠEK RUBLÍK 

Optimality of the likelihood ratio test statistic in the sense of exact slopes is established under 
regularity conditions in the case, when sampling is made from q populations, and the ratio 
n

u
l)lHnuJ^ t e nds for u~> co to a non-zero limit. The conditions are in the second part of the 

J 
paper verified for particular families of distributions. 

1. INTRODUCTION AND THE MAIN RESULTS 

Let {Fy; y e 3} be a family of probability measures, defined on the sample space 
(X, .^) . If we denote 

(i.i) s = K°° x ... x X00 y = r x ... x #-°° 
the q-fold product of the infinite sample space (X00, ^°°) , then for the parameter 

0 = (0l9..., 0q) belonging to the set 

(1.2) 0 = Sq 

the corresponding product measure 

(13) Pe = FZ x ... x P -

describes independent sampling from the q populations (X9 #*, P0j)9 j = 1, ..., q. 
We shall consider the situation when 

(1.4) 0 4= Q0 c &! c 0 . 

the null hypothesis H0 is that 0 e Q0 and the alternative hypothesis is that 0 is an 
element of Qx — Q0. 

Let Tu: S -» R be a test statistic, u = 1, 2 , . . . and the hypothesis H0 is rejected 
whenever Tu equals or exceeds a chosen critical value. The smallest level of signifi­
cance, for which the test rejects H0 if Tu(s) is observed, is the number 

(1.5) Lu(s) = 1 - Gu(Tu(s)) 
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where 
(1.6) Gu(t) = inf [Fu(t, 0); 9 e Q0] , Fu(t, 0) = Pe[Tu < r] 

and is called the level attained by the statistic Tu. We suppose that sampling is made 
from q populations, the sample size of the uth sample from the jth population 
is nu

J), j = 1, ..., q and that T„ is a function of the uth sample, or more precisely, 
that Tudepends onseS th rough 

(1.7) x« = ((x[l),..., 4%), ..., (x?\ ..., *&>) 
only, where (x[j), ..., x$j)) is a sample from the jth population. Under the alternative 
the level attained in typical cases tends to zero exponentially fast. If we denote 

(1-8) nu = t ^ 
J = I 

and if for 6 e Ql — Q0 the relation 

(1.9) lim - logL„ ( s ) = -C(6) 
H-+CO n u 

holds almost everywhere Pe, then according to [3] the quantity C(0) is called the 
exact slope of the sequence {T„}. In order that we could bound this rate of conver­
gence, we introduce the following assumption. 

(A I) If u + v, then nu
J) + n[j) for some j , 

nU) 
(1.10) lim nu = + oo and lim -^- = pj e (0, 1> for j = 1, ..., q 

«-»oo u-^oo nu 

If for 9 = (91,...,eq), 6* = (0*, ...,0*) belonging to 0 we put 

(1.11) K(0,0*) = f P ,K (0 , , 0* ) 
J = I 

where K(6j, 0*) = K(Pg., P0.*) is the Kullback-Leibler information number, and 
denote 
(1.12) J(0) = inf{K(0, 0*);0*er2o} 

then a straightforward extension of the result from [10] (cf. also p. 29 in [4]) yields 
that for 0 e Qt — Q0 the inequality 

(1.13) ' lim inf — logL„(s) = -2J(9) 
u*i nu 

holds a.e. Pe, provided that the assumption (A I) is true. Hence if in this situation 
the exact slope exists, it cannot exceed 2J(9). 

Optimality of the likelihood ratio test statistic in the sense of maximization of the 
exact slope was in [3] proved under the assumption that the parameter space is 
finite. Further logical step is to prove optimality by means of compactness conditions. 
Since in the usual cases the parameter set is not compact (with the exception of the 
multinomial distribution), Bahadur proved in [2] the optimality under conditions, 
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including existence of a "suitable compactification". However, as observed in [5], 
p. 149, verification of these assumptions seems to be a formidable task even in the 
case of testing the hypothesis pix = ... = juk (under the usual assumption of normality 
and equality of variances). In further research the compactification approach was 
therefore abandoned. Optimality of a statistic in the Bahadur sense is in [9] proved 
under conditions, including the assumption, that distribution of the statistic under 
validity of Q0 does not depend on 60 e Q0 and that the ratio/(t, 9)jf(t, 90) of densities 
is an increasing function of t. Hsieh proved in [7] optimality of a test statistic Tn 

under the assumption that liminf T„ ^ J(9) a.e. P0 and that exp [— nTn~\ is under 
n 

Q0 distributed as a product of beta variates. We shall prove optimality of the LR 
statistic under regularity conditions, which we show to be fulfilled by regular normal 
distribution, exponential and Laplace distribution, and apply them to the Poisson 
distribution. 

Throughout the paper we shall assume that the probabilities (P7; y e S} are defined 
by means of the densities 

(i-i4) / ( * , y) = ^ « 

dv 

where v is a tr-finite measure. We shall use the notation 

(1-15) 
L(xx, ...,xn,y) = Y[f(xj, y) , L(xx, ..., xn, V) = sup {L(xx, ..., xn, y); y e V} 

J = I 

and for 9 — (6X,..., 9.) e © in accordance with (1.7) we put 
0-16) 

L(x<"\ 9) = flL(x[ j\ ..., xn%, 9j), L(x<"\ Q) = sup {L(x(u>, 9); 9 e _} 
j = i 

(A II) S is a metric space, if q = 1 is an integer and Q _ Sq is either open or 
a closed set, then L(xw, Q) is a measurable function of x(M), and if y e 3, then there 
exists a set Ay such that 

(1.17) v(Ay) = 0 

and for every sequence {y„}^_ i of elements from S tending to y the equality 

(1.18) limf(x,yn)=f(x,y) 
n-> oo 

holds, whenever x e X — Ay, 

(A III) Let y e S and t] > 0 is a real number. One can find measurable sets An _ X" 
and a positive integer N with the following properties. 

1) The inequality 

(1.19) lim sup - log Py(A„) ^ -n 
n->oo fl 

holds. 
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V 

2) In the notation (1.15) 

(1.20) mf)-\ogL(x1,...,xn,y);(x1,...,xn)eXn - An, n = Nl > - c o . 

3) If c is a real number, then there exists a non-empty compact set Ec <= 3 such 
that 

(1.21) sup)-logL(x1,...,xn,S - rc);(xt, ..., xn) eX" - An, n > Nl = c. 

(A IV) If y e 3, then there exists a real number 5 > 0 such that in the notation 

(1.22) V = V(y, 5) = {y* e 3; Q(y*, y) < 6} 

the inequality 

(1.23) JL(x,V)dv(x) < +oo 
holds. 

(A V) If y e 3 and n > 0 is a real number, then there exists a real number s > 0 
such that 

(1.24) lim sup - log Py \-log L(xi>--->*»>5) = e l ^ 
«gi « L" L(xi, . . . ,*„, y) J 

(A VI) If y, y„, n = 1, 2 , . . . belong to 3, then 

(1.25) limK(y,y„) = 0 
n-+oo 

implies 
(1.26) limy„ = y . 

n-»oo 

(A VII) If (A I) holds, then there exist a number N1} a constant cx and a point 
5 e 0 such that 

for all M = Nj and t > Cj. 

Theorem 1.1. Let us assume that the assumptions (A I) - (A IV) hold, the inclusions 
(1.4) are valid, Q0 is a closed set and Qx is either closed or open. Let us put 

<-« •»-"• .$§ . 
where log denotes logarithm to the base e, the vector (1.7) corresponds to s e S, 

0/0 = 1 and a/0 = + oo for a > 0. Let 9 e Q1 - Q0. 

(I) The relation 

(1.29) lim ^ = 2 J(9) 
u-»oo nu 

holds a.e. Pe. 
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(II) If (A V ) - ( A VII) hold, then (1.9) holds a.e. P0 with 

(1.30) C(e) = 2J(9) 

and therefore the likelihood ratio test statistic (1.28) is optimal in the sense of exact 
slopes. 

If the regularity conditions are modified, we get a version of Theorem 1.1, not 
imposing conditions on closeness of Q0, Qv 

(ARII) 3 is a separable metric space and the function f(x, •) is continuous for 
each x e X. 

(AR VI) The function <p(y*) = K(Fy, P,*) is continuous on 3 for all y a 3, and 
if y, yn, n = 1,2,... belong to 3, then (1.25) holds if and only if (1.26) is true. 

Theorem 1.2. Let the assumptions (A I), (AR II), (A III), (A IV) and (AR VI) 
hold, and Tu is the statistic (1.28) determined by the sets (1.4). Let us assume that 
OeQy - Q0. 

(I) The relation (1.29) holds a.e. Pg. 
(II) If also (A V) and (A VII) hold, then (1.9) holds a.e. P0 with C(9) = 2 J(d) 

and the test statistic (1.28) is optimal in the sense of exact slopes. 

Maximization of C(6) is a nice property, because the greater the exact slope is, 
the smaller the level attained tends to be, and the more an experimenter can be 
convinced that the rejected hypothesis is indeed false. However, finding value of the 
level attained can turn out to be a difficult process, either if the function Gu defined 
by (1.6) is complicated, or when it is even unknown (this occurs in Examples 1 
and 6 in the 2nd part of the paper). If in the last case at least the limiting distribution 
is known, the test can be performed by comparing Tu with a quantile of the function 

(1.31) G(t) = inf limFu(t,9). 
6eQo u-+co 

As a measure of evidence against the null hypothesis now serves the approximate 
level attained 

(1.32) I$?(s) = 1 - G(T„(s)) 

whose asymptotic behaviour, when a non-null 0 obtains, can be characterized by 
the approximate slope. This quantity, introduced in [1] and [3], is a number C(a)(0), 
satisfying with probability 1 the equality 

(1.33) lim - log L(„a)(s) = - C(a)(6). 
u-+co t1[( 

A relation between the approximate and the exact slope is a topic of the following 
theorem, in which by a finite mixture G of chi-square distributions we understand 
the function 

m 

(1-34) G(t) = j:ajP[x2
dj<q 

J = I 
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where m is a positive integer, x\, is a random variable which has chi-square distribu­
tion with dj degrees of freedom (by convention P[xl = 0] = 1), max dj > 0, the 
numbers a1; ..., am are positive and their sum equals 1. I 

Theorem 1.3. Let Tu be the statistic (1.28) determined by the sets (1.4). Let (1.29) 
holds a.e. Pe, the assumption (A VI) and the equality (1.30) are true and 9 e Qx — Q0. 

(I) If the function (1.31) is such that 

(1-35) l o g [ l - G ( t ) ] = - i t [ l + o(l)] 

where lim o(l) = 0, then the approximate slope exists and 
.•-•oa 

(1.36) C^(6) = C(9) . 

(II) If the function (1.31) is a finite mixture of chi-square distributions, then the 
approximate slope exists and (1.36) holds. 

Since according to [8], p. 173 

P[xl = *] = exp (-*/2)lV/2>7j! 
j = o 

Pb&y-i = *] = exp (-x/2)V£2(x/2y + ° ' 5 « j + I) + 2[1 - <f>(x1/2)] . 
j = o 

and value of the standard normal distribution can be determined by means of a suit­
able approximation with a good precision(cf. [8],pp. 53-57), the value of (1.34) can be 
computed even with a desk calculator. Hence Theorem 1.3 provides a basis for the 
approximation 

Lu(s) == 1 - G(Tu(s)) 

by means of a finite mixture of chi-squares, which is numerically not too difficult 
to handle. 

2. PROOFS OF ASSERTIONS FROM SECTION 1 

Lemma 2.1. If {«„}„*= i is a sequence of integers and {a(j, nu); j = 1, . . . , k, u = 
= 1,2,...} are non-negative numbers, then 

1 k 1 
(2.1) lim sup — log [ Y, a\h nu)] — m a x lim sup —- log a(j, nu) 

u-*co nu J = I j = I,...,& u-+oo nu 

whenever k is a positive integer and lim nu = + oo. 
H-» 00 

The proof can be simply carried out by means of the inequalities 
k 

log a(j0, nu) = log [ J a(j, nu)] = log [k max a(j, nu)] 
J=i J 

and is therefore omitted. 
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Lemma 2.2. Let us assume that (A I) holds and L(x(">, __) is a measurable function 
of x("> whenever Q is either open or closed subset of the metric space E. Let 9 be an 
arbitrary but fixed element of 0. 

(I) If (A II) and (A IV) hold, and E c 0 is a non-empty compact set, then a.e. P0 

i , L(*(tt),r) 
(2.2) lim — log - -J( ,г) 

nu L(x(">,0) 

where (cf. ( l . l l)) 

(2.3) J (9, r) = inf {K(0, 9*); 6* e E] , 

(II) Let the assumptions (All) —(AIV) be valid. Then 

(2.4) r 1 L(x(м>, 0) 
hm — log - - ; — — = 0 
„->co nu L(xu\ ) 

a.e. Pe, and if M > 0 is a real number, then there exists a non-empty compact set 

F c 0 such that a.e.Pe 

(2.5) ľ 1 L(x(u>, - E) . _ _ 
limsup — log — < — M . 

„-oo л_ L(x(м>, 0) ~ 
(ill) If the assumptions (A III) and (A V) are true and r\ > 0 is a positive number, 

then there exists a non-empty compact set E c 0 such that 

(2.6) lim sup — log Pв[Цx<"', - Г) ž _.(„<">, 9)] Ş - ц 
u-*aa ľl„ 

Proof. (I). If 9* e 0 and Vj is a neighbourhood of 9* for which (1.23) holds, 
then in the notation y+ = max {y, 0} by means of log x < „ w e get 

JL -<-.«І)J 
l o g 7 7 ^ " . I d P f l

J ( ; c ) = L ( x ' FI) d v ( x ) < + w • _ L(x, 9j)j J 

Hence the function log [L(x, Vj)\L(x, 9jJ] is Pe. integrable with — oo as a possible 
value of the integral. Making use of (A II) and the monotone convergence theorem 
(in the "almost everywhere" sense), we get that (cf. (1.22)) in the notation Vd = 
= V(9*,d) 

~L(x, FN 
(2.7) lim log 

.-+0+ J 
dP j(x)= -K( j , *). 

In proving (2.2) we now proceed similarly as in the proof of Lemma 4 in [2]. If 

(2.8) m < J(9, r) 

then compactness of E and (2.7) imply that there exist finitely many open subsets 

(2.9) Wt= V/0 x ... x V^ , i = 1, ...,k, 

of 0 such that 

(2.10) E c u wt 
i = l 
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and in the notation (1.10) for i = 1, ..., k 

(2.11) t Pj f l o g 1 ^ ^ dP9j(x) < - m . 

Since the number m in (2.8) is arbitrary, from (2.9) —(2.11) and the law of large 
numbers we easily obtain that a.e. Pe 

(2.12) lim sup 1 log ^ g i / J s _ J ( e , r) . 

u-oo nM L\XW, 0) 

But if 0* e E, then according to the law of large numbers a.e. Pe 

r i L(XCU\ r) i L(xw, 0*) „, f l fl#v 
hm inf — log —7-——f > hm mf — log -• - -—? = -Kid, 0*). 

„->oo nu L(x(u),0) u-00 nu L(x(u),0) 

Letting K(0, 0*) -> J(0, E) and taking into account (2.12) we get (2.2). 

(II) Let us put in (A III) the number n = 1 and 

c = i n f i - l ogL (x l 5 ...,xn,y);(xu ...,xn)eXn - A„, n = Nl - M . 

00 00 

Since £ Py(A„) < +00, the set A = f) U A„, where A„ = {x00 eX0 0 ; (x,.,.. . 
n = iV m = N n = m 

...,x„)eAn], has Ey probability zero, and if x°° ^ A, then 

(2.13) i l o g ^ i > - ^ - > g - ^ ) <- _ M 
n L(xl5...,x„, 7) 

for all n = m(xc0). Making use of (I) and (2.13) we get that a.e. Py 

lim sup - log L(*i» •••'*»> 5) < m ax { - M , - J(y, Ec)} < 0 
„si n L(xl5...,x„, 7) 

and the assertion is proved for q = 1. 
Let q > 1. Validity of (2.4) follows from its validity in the case of one sample. 

If Ej c 3 is the non-empty compact set for which (2.5) holds with q = 1, 9 = 9j 
and Mj = M\p}, then denoting 

(2.14) E = Tx x ... x rq 

utilizing subaditivity of limes superior, (2.4), and making use of the obvious inequality 

(2.15) 

1 . L(x(u), 0 - T) ^ 1 , L((xw,S x ...x E x(S-ri)xSx ...xS) 
— log —-————-—- < max — log - ^ ' -
nu L(x(M),0) ~j = i,...,qnu L(x<"\9) 
we get validity of (2.5) a.e. Pe. 

(Ill) If j e (1, ..., q}, then according to (A III) and (A V) there exist measurable 
sets {An

})}^x and a real number Sj > 0 such that both (1.19) and (1.24) hold with 

20 



y = 6j,fj = njpj and that 

*j = inf j - log l / x l 9 . . . , x„, 0,); (x l 5 . . . , x„) eXn - A<->, n = N| 

is a real number. Let us denote & = ^ 8j and choose a non-empty compact set 
J = I 

E,- = Ec of 5 such that (1.21) holds with A„ = A„J) and 

2 
C = Cj = !Xj £ — 1 . 

Since the set (2.14) is compact, it is sufficient to prove that it satisfies (2.6). In the 

notation 

(2-16) ^ = ( ^ - , ^ 0 ) 

the inequality 

(2.17) J . . L ^ ' " • S " - >< - >< (g - r,U3 x ... x S) I 

s I n, T-log ^ ^ > J + 5(«, j), 
1*1 L"« M« ,9.) J 

y ' * U "W.«i) 
obviously holds, and from the choice of Cj 

1 1 
lim sup — log S(u,j) <. lim sup — log Po[A^u)] ^ — V • 

u-+oo /Tu W-+00 nu 

Hence making use of (2.15), (2.17) and Lemma 2.1 we get (2.6). • 

Proof of Theorem 1.1. (I) If 9* e Q0, then making use of Lemma 2.2 (II) 
and the law of large numbers we get that a.e. Pg 

Jim sup —Tu(s) = lim sup — log —̂  —'- = 
u-+<x> nu M->oo nu L(x^u),9*) 

= lim sup - log y ^ 9\ = 2K(9, 9*) 
«->« nu L(x(u\9*) V J 

which means that 

(2.18) lim sup — Tu(s) = 2 J(9) 
u->oo nu 

a.e. P0. Let a real number 

(2.19) M < 2 J(9) 

and E cz 0 be a non-empty compact set, satisfying (2.5) a.e. Pe with M = M/2. 

21 



If the set Q0 — E is non-empty, then a.e. Pe 

/<> ™\ r • f 2 i L ( ^ ( W ) ' e ) *> r • P 2 i L ( x ( M ) ' 0 ) >̂ A , 
(2.20) lim inf — log —•—- - — = hm mf — log — > M . 

«-« nu L(;c(u), Q0 - E) «-oo nu L(x{u\ 0 - E) 
If iQ0 n E is a non-empty set, then taking into account compactness of Q0 n E and 

Lemma 2.2 (I) we see that a.e. P0 

(2.21) lim inf - log — v - - — = 2 j(0, O0 n E) > M . 
V 7 u-oo ntt L(x(u), O 0 n E) V ; 

Since 

w CAW • L , L(x(u), 0) „, L(x(u), 0) ) 
TJx(u)) > m i n 2 log - L_j— 2 log — — - - - — I 

V ; ~ 1 ^ L ( x ( u ) , r 2 0 - E ) ' B L ( ; c ( u ) , a 0 n E ) J 

the assertion (I) can be easily proved by means of (2.18) —(2.21). 

(II) Since 6 does not belong to the closed set Q0, according to (A VI) 

(2.22) J (9) > 0 . 

Let S be the parameter from (A VII) and 

(2.23) L:(() = p 8 [ 2 1 o g | ^ | ) , ( ] . 
It is obvious from (I), (2.22), (A VII), (1.5) and (1.28) that a.e. Pe for all u > U(s) 

Lu(s) = L*u(Tu(s)) . 

Hence taking into account (I), (2.22) and (1.13) we see that it is sufficient to prove 

the following lemma. 

Lemma 2.3. If {tu}u=1 is a sequence of elements from <0, + 00> and 

(2.24) lim ---. = t > 0 
M— 00 nu 

then the notation (2.23) 
\ 

(2.25) lim sup — log L*u(tu) = - f/2 . 
» — 00 M u 

Proof. If 77 < t/2 is a real number and E cr 0 is the non-empty compact set 

satisfying (2.6) with 9 = S, then taking into account Lemma 2.1 we get the inequality 

(2.26) lim sup — log L*(tu) = max { — Y\, 3} 
11—00 nu 

where 

(2.27) 8 = lim sup — log P 3 

u— 00 /?„ 

Let s > 0 be a fixed real number. Making use of (A II), (A IV), the monotone 
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convergence theorem (similarly as in proving (2.7)) and compactness of T, we see 
that there exist finitely many sets W±,..., Wk such that (2.9), (2.10) hold and 

(2.28) jL(x, Vj*>) dv(x) = 1 + 8 , i=\,...,k, j=l,...,q. 

Let the integer i e ( l , . . . , k] be fixed. If we put 

, , L(x, V}1)) . 
yj(x) = log - v J ' j = \,...,q, 

f(x> $j) 

then making use of the Markov inequality and (2.28) we get that for real tu 

L(x<»>, 9) ~ J " 
q n„U) g nuO') 5 n u U) 

^ j ex? [ 1 1 y,(x<'>) - ^ j n n /w0 , ,̂) n n H*?) = 
j = i i = i ; = i « = i / = i « = i 

^ exp [ - | t J (1 + e)"" 

and the resulting inequality is true also if tu = +00. This together with (2.10) yields 

Ps[2logiS"§ - '•] - *exp [_i'"] (1 + 6)"" • 
Hence the quantity (2.27) satisfies the inequality 

3 = - i t + log(l + e ) 

and letting £ ->0we obtain from (2.26) easily (2.25). • 
Proof of Theorem 1.2. Let 9 belong to the closure Q0 of the set Q0. This 

according to (AR VI) means that 
(2.29) J(0) = 0 . 

But if 9* G Q0, then making use of (2.4) we get that a.e. Pg 

lim sup i Tu(s) = lim sup 1 log 5 1 / 1 1 = 2K(0, «*) 
u->oo nu «-»oo nu L(:r-;, t r ) 

and since T„(s) ^ 0, (1.29) follows from (2.29). From (1.5) we obtain that 

(2.30) lim sup — log Lu(Tu(s)) = 0 
u~* co nu 

and combining (2.29) with (1.13) yields (1.9) and (1.30). 
If 9 £ Q0, then taking into account (AR II) we get the equality 

(2.31) TJs) = 2 log y * 0 , fii) 
V ; u W L(x(u),f30) 

and (1.29) follows from Theorem 1.1 (I). Making use of the Scheffe theorem (cf. 
[11], section 2.c.) we see that 

Lu(s) = Lu(s) 
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where L0 is the level attained by the statistic (2.31) for testing Q0 against Qt, and (II) 
follows from Theorem 1.1 (II). Q 

Proof of Theorem 1.3. Since 0 £ Q0, (2.22) holds and according to the as­
sumptions 

lim Tu(s) = + oo 
M-*00 

a.e. Pe. Combining this with (1.35) and (1.29) we obtain that the first assertion is 
true. Now, if Fk denotes distribution function of the chi-square distribution with k 
degrees of freedom, then for k > 0 according to Lemma 3.2 in [6] 

(2.32) log [1 - Efc(t)] = - i t [ l + o(l)] 

where lim o(l) = 0. Since the mixture (1.34) satisfies the inequality 
I - * oo 

a(l - Ft(t)) < 1 - G(t) < a(l - Fd(t)) 

where d = max dj and a is the sum of the coefficients a,- for which dj > 0, the condi-
j 

tion (1.35) follows from (2.32). • 

We remark that the assumption of possible discontinuity of densities necessitates 
postulating measurability of L(x(t°, Q). To verify this condition the following lemma 
appears to be useful. 

Lemma 2.4. Let 3 be an open subset of Um and {f(x, y); y e 3} be the densities 
(1.14). Let us assume that for each y e 3 there exist {yfc}r=i from 3 = {y e 3; >all 
coordinates of y are rational numbers) such that 

(2.33) lim yk = y 
k-*co 

and 

(2.34) limf(x,yk)=f(x,y) 
k-+ oo 

for all x e x . If (2.33) implies that for each x e x 

(2.35) lim sup/(x, yk) < f(x, y) < + oo 
k-* os 

then L(x(u), 0 n C) is a measurable function of x(u) whenever the set C c Umci is 
either open or closed. 

Proof. If the set C is open, then L(x(u}, 0 n C) = L(xw, C n 3q) where the last 
function is obviously measurable. If the set C c 0 is compact, e > 0 and Ce = 
= {0* e 0; max Q(0L, 0*) < s for some 0 e C}, then according to (2.35) 

lim L(x(u), Ce) = L(x{u\ C) 

and since the sets Ce are open, measurability of L(', C) follows. Since the sets 

Wk = {0* e 0; J0*|| < k , Q(0*, Umq - 0) = k~1} 
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form an increasing sequence of compact sets whose union equals 0, the lemma is 
proved. • 

(Received April 22, 1988.) 
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