
Kybernetika

Anastasios N. Venetsanopoulos; W. Waung
Adaptive bifurcation routing algorithms for computer-communication networks

Kybernetika, Vol. 21 (1985), No. 3, 178--196

Persistent URL: http://dml.cz/dmlcz/125539

Terms of use:
© Institute of Information Theory and Automation AS CR, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125539
http://project.dml.cz

K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 3

ADAPTIVE BIFURCATION ROUTING ALGORITHMS
FOR COMPUTER-COMMUNICATION NETWORKS*

A. N. VENETSANOPOULOS, W. WAUNG

With the cost of computation constantly decreasing, packet switched computer-communication
networks are becoming increasingly prevalent. To ensure robustness, mesh type topologies are
often used. However, such network configurations require efficient and effective routing algo
rithms. In this paper, two adaptive bifurcation with threshold routing algorithms are considered.
These algorithms use the usual update information available on standard computer-communica
tion networks. Various traffic conditions are simulated to compare the proposed routing algor
ithms with others. The performance criteria used are average packet delay and link utilization
at a specified load. Link failure effects are examined and observations are made about the algor
ithms' performance on actual networks.

1. INTRODUCTION

During the past two decades, the cost of communications has been steadily
decreasing. However, the last few years have also witnessed a drop in the cost of
computation, almost thirty times faster than that of communications [1]. This
trend, expected to continue, has brought about a change in the direction of computer-
communications networks (ARPA, TIDAS, Cyclades, Telenet, etc.). No longer are
simple switching nodes the most cost effective and efficient methods of using network
resources. Intelligent terminals, with the ability to make proper decisions on a more
efficient distribution of network capacities, are now desirable.

A major means of interconnecting computers separated geographically is by the
use of terrestrial links. Many different topological configurations can be used for
such networks. When a compromise between reliability and cost is needed, mesh
topologies with a connectivity of two usually result. These networks must have
at least two link failures before a node, or group of nodes, is isolated from the rest
of the system. However, since not every node is connected to all other nodes directly,

* The research presented in this paper was supported by a Natural Sciences and Engineering
Research Council of Canada Research Grant No. G-0669.

178

messages have to be relayed to their destinations through intermediate nodes, thus
requiring routing control.

Routing algorithms can be divided into three main categories: static, dynamic
and quasistatic or adaptive routing schemes.

Static algorithms do not allow routing parameters to vary with time and are
thus susceptible to changing traffic conditions. Dynamic algorithms, on the other
hand, adjust routing parameters instantaneously, adjusting to network conditions.
This flexibility is achieved at the expense of large and sometimes impractical informa
tion transfers. Adaptive algorithms adjust the routing parameters to accommodate
small or slow changes in network conditions. To do so, some information about
the network, but not the vast amount used in dynamic routing schemes, must be
available. The ability to cope with changing network conditions, albeit slow changes,
make these algorithms practical and useful in large systems [2 — 4].

The routing computations required to react to changing network conditions can
be achieved either centrally or through distributed methods. With centralized com
putation, a network routing centre (NRC) receives global information about the
system and routing decisions are made on these data. Distributed computation
implies that routing calculations are performed at all nodes of the network. In most
cases these calculations are performed using only local information available at the
individual nodes. This local information may lead to some ambiguity about network
conditions and thus preclude optimal behaviour. However, this may be tolerable
if network conditions change slowly with respect to routing update intervals. The
most important advantage of distributed computation is increased reliability. With
decision making capabilities distributed, single node failures would not render the
entire system inoperative. Centralized computation, conversely, has the undesirable
characteristic that the network can become paralyzed in the event of the NRC failure.
This reliability danger is contrary to presend trends for the development of robust
communication networks.

In this paper, adaptive algorithms using the desirable characteristics of distributed
computation are proposed. The next section briefly presents some well known adaptive
routing algorithms. These algorithms are examined and their desired features are
extracted and incorporated into the proposed routing schemes. The algorithms
proposed are then described in detail and their performance is analyzed.

Sections 3 and 4 detail the simulations used to compare different algorithms,
along with their results. The paper concludes with a discussion of the potential
application of the two algorithms proposed to a number of actual networks.

179

2. ADAPTIVE ROUTING ALGORITHMS

2.1. The Original ARPANET Routing Algorithm [5]

The original ARPANET routing algorithm is an example of an adaptive algorithm
which used simple updating methods. During updates, each node sends an update
message to all its immediate neighbours, containing a vector indicating its expected
delay to all nodes. Upon reception of these vectors from all its neigbours, a node
processes this information by adding a bias value and the length of the queue to
a particular neighbour. In addition, the expected delay to itself is set to zero. Then
the neighbour with the lowest expected delay to a certain destination is chosen as
the next node for all messages with that destination. At the time of the next update,
the new expected delay vector is transmitted to all neighbours. Therefore, no informa
tion about the network need be collected between updates. In such an implementation,
updates occur periodically three times every two seconds. During low traffic condi
tions, updates may occur more often.

This algorithm converges to the shortest path routing decision during low traffic
conditions. In heavy and/or unbalanced traffic conditions, the algorithm attempts
to seek alternate paths to avoid congested areas of the network. This algorithm,
referred in the sequel as the ARPANET routing algorithm, considers only one output
link for messages*.

2.2. The Bifurcation Routing Algorithm [6]

The bifurcation routing algorithm considers up to two output links for every
message. At network initialization, the topology of the entire network is examined.
First, the shortest delay path for each source-destination node pair is determined.
Then, secondary paths are picked for some node pairs of the network. The secondary
path is the shortest alternate path, less than two hops longer than the primary path.
If no alternate path satisfies the criterion, no secondary path is chosen. During the
operation of the network, a message is routed over the primary route if only one path
is permitted. When two output paths are allowed for a message, a random choice
is made. This random choice is achieved by using pseudo-random number generators
and predetermined ratios. The ratios, set at the initialization of the network, control
the proportion of the total traffic to be sent over the primary path. Simulation studies
on an arbitrary ten node network showed that the bifurcation algorithm gives

* Recently the original ARPA algorithm was modified to alleviate looping and improve
performance. Measured packet delays, averaged over some suitable interval, are used instead
of a delay estimate computed by adding a constant for each hop to the instantaneous queue
length at each node. These average packet delays are measured on each link in the network
and the results are placed in updates, which flood the network. Each node then constructs a min
imum delay path to each destination.

180

improved performance over single output link algorithms, during high unbalanced
traffic conditions.

During low traffic conditions the bifurcation routing performs poorly, when
compared to static shortest path routing. This behaviour is readily explained by
the unneccessary routing of messages over longer delay paths.

2.3. The Delta Routing Algorithm [7]

Delta routing is an adaptive routing algorithm, which uses a combination of cen
tralized and distributed computation. The centralized route calculation is done with
less frequency than the distributed update. At the initialization of the network,
up to two paths are considered for each source-destination node pair. These are
recorded at a node acting as the network routing centre (NRC). During a centralized
update, if two paths are allowed at a node, the expected delays on these two paths
are examined. If the difference in the expected delays of the two paths is above
a present threshold value, the lower delay path is chosen for all messages with that
destination. This chosen path will then be the only allowed path, until the next
centralized update decision. On the other hand, if the difference in the expected
delays on the two paths is below the present threshold value, the path choice is left
to the individual nodes. The node then chooses the lower expected delay path using
only local queue length information. Unlike bifurcation algorithms, only one output
path is allowed at all times.

This delta routing algorithm was compared with several others by simulation
studies on small networks with different traffic conditions [7]. The results showed
an improvement in the routing algorithm's ability to react to changing traffic situa
tions. However, the results on a larger network showed only a minor improvement
over standard routing algorithms. The centralized routing calculation required
reduces the algorithm's reliability. Software or hardware failures at the NRC can
cause the system to become inoperative.

2.4. The Adaptive Bifurcation Routing Algorithm

A logical evolution combining the advantages of the previous routing algorithms
is now proposed. The algorithm should use bifurcation techniques to spread traffic
and use network resources more efficiently. However, it must not do so by splitting
traffic during low network utilization. This condition can be met by the inclusion
of a threshold level as in delta routing. Finally, the algorithm should incorporate
an efficient computation method, without the need for a network routing centre.
This last condition avoids the reliability problems characteristic of centralized
computation.

The distributed computation method proposed can be viewed as an enhancement
to the original ARPANET routing algorithm. The new adaptive routing using

181

bifurcation uses update information identical to that used in the original ARPANET.
The justification for this choice is that numerous computer-communications networks
were based on the approach taken in the original ARPANET routing algorithms,
which has influenced routing research a great deal [1, 5]. In addition, the ideas descri
bed here can find application in other similar routing algorithms. For a bifurcation
algorithm, the two best paths need to be chosen and the traffic to be divided between
them. The secondary path should be the path with the lowest delay, when the primary
path is excluded and can be chosen using the original update information, with
little increase in complexity.

To avoid bifurcation of traffic at low utilization, a threshold involving the difference
in expected delays of the primary and secondary path is practical. The ARPANET
update information contains data about the number of hops to the destination and
queue lengths along a path. During low traffic conditions, queue build-up is minimal,
therefore the updating information contains numbers that are multiples of the bias
value of 4. A difference between expected delays of 4 thus indicates a path length
difference of a single hop.

A choice of a threshold of 3 is surmised as a good compromise providing early
bifurcation, but reducing the possibility of unnecessary splitting of traffic. However,
threshold values ranging from 2 to 7 are also examined here, to establish the validity
of this hypothesis. In the algorithm proposed, if the difference in the expected delay
between primary and secondary paths is less than the threshold value, then the traffic
is bifurcated. Otherwise, the traffic is sent on the primary path only.

The algorithm splits all traffic allowed to be bifurcated evenly. Other methods
of splitting are of course possible. Such an even split is considered for two reasons:

1) with the inclusion of the threshold, traffic is allowed to be sent on a secondary
path only when the difference in expected delays is small, and

2) with an even bifurcation of traffic between two output links, simple deterministic
techniques of splitting can be used.

In addition to the conservation of processing capacity and processing time, the al
ternate queue splitting technique produces a stream of traffic whose interarrival
times have a lower variance than that of traffic subject to random splitting. A lower
variance in interarrival times of customers will improve the performance of a queueing
system [8], thus also improving the performance of the network.

Another deterministic switching method considered here is the one where a message
joins the shortest of the two allowed queues. Since this 'join the shortest queue'
discipline requires some current knowledge of the conditions at the node, it is expected
to result in a slightly better performance compared to the simple alternate switching
system.

In the following sections we shall examine these algorithms' capabilities to handle
a variety of topologies and traffic conditions. The performance criteria used are
average packet delay and link utilization at a specified load. The evaluation is per-

182

formed by conducting simulations of different networks and traffic conditions. The
algorithms compared include:

1) A static routing scheme, designed as a shortest path algorithm. This algorithm
gives excellent performance at low or balanced traffic conditions.

2) The ARPANET routing algorithm. On this simulation, simple loops are avoided
by the 'hold-down' technique discussed in [9].

3) The bifurcation routing algorithm, using ARPANET update information, but
without any threshold.

4) A bifurcation with threshold algorithm using a 'join the shortest queue' splitting
discipline (Bif. w/thres. (s.q.)), and

5) A bifurcation with threshold algorithm using alternate queue switching (Bif.
w/thres. (alt.)).

The alternate splitting bifurcation algorithm is also simulated with a range of thresh
old values. These are compared among themselves to determine the best threshold
value.

Details on the network simulation models used are presented in the following
section.

3. NETWORK SIMULATION MODELS

In the simulations performed, the delay encountered by each packet is recorded
and its average is calculated. Related to the packet delay are two useful measures.
These are the variance of the packet delays and the 95% delay level. Both of these
measures are useful from the user's point of view and are provided for all simulations.

Another parameter examined is link utilization. This indicator, throughout the
network, gives the proportion of the available bandwidth used for transmission
of data. If some links are used heavily while others are idle, there is inefficiency and
can appear as a large variance in link utilization.

Although the routing algorithms evaluated are designed for operation on large
networks, the complexity of such networks makes a good understanding on the
routing effects difficult. To circumvent this problem, small networks arefirst examined.
Insight on the various algorithms is gained from their respective performances over
these small networks. Finally simulation is performed on larger and more complex
networks, to enhance our understanding of the behaviour of these algorithms in
realistic situations. Different traffic conditions on all these networks are simulated
to observe each algorithm's ability to react to changes in network conditions.

The arrival statistics used in the simulations were chosen after preliminary examin
ation of the simulations of the static shortest path routing algorithm. The 'low
traffic' condition produced link utilizations of less than 0-50 on all links. 'Moderate
traffic' conditions produced at least one link with a utilization of greater than 0-50.

The small networks used in simulations are of four types. Schematically, these

183

networks are shown in Figure 1. The three four node networks are distinguished
from each other by the different types of traffic carried. The four networks studied
are similar to, but not identical, to the small networks used in [7]. In that work,

additional
traffic between

Network 1

additional
4) traffic between

additional
\ _ traffic between

D 0*©°(!)'<<D

Network 3 Network 4

Fig 1. Four Small Simulated Networks.

the networks used simplex links only, while in the present paper, all links are full
duplex. This change is made because simplex links limit the interrupting effect
of the network resources. Full duplex links more accurately represent real networks
and are thus used here.

After some insight, obtained from the performance of the various routing algo
rithms in the small networks, these algorithms are examined on larger networks.
The first large network topology (network 5) is shown in Figure 2. This represents

Fig. 2. Network 5 — Eight Node Balanced Topology.

an eight node balanced topology*. Three traffic conditions are simulated on this net
work. The first corresponds to a low balanced traffic. The second to an unbalanced
traffic, where in addition to the balanced traffic of the previous simulation' model,
traffic between nodes 1 and 8 is introduced, which increases the traffic intensity between
these two nodes to approximately 10 times that of any other node pair. This simula
tion thus examines the routing algorithms' ability to handle the resulting congestion.
The remaining traffic condition simulated on this balanced large network is similar

* A balanced topology is one where ail links are of the same length and capacity.

184

to the previous unbalanced traffic case except that the balanced background traffic
is increased. This traffic condition is used to observe the routing algorithms' ability
to handle increased load. The routing algorithms' robustness is examined by simula
tion on a large network. The main concern here is a routing scheme's ability to provide
acceptable performance levels during link failures.

Network 6, used to investigate the effects of link failures, consists of 10 nodes.
Its topology is shown in Figure 3. A large network is used here, because link failures

(3)

Fig. 3. Network 6 - Ten Node Unbalanced Topology.

in small networks often result in trivial topologies. An unbalanced topology is con
sidered, because these topologies result in very uneven loading of network links. This
uneven loading produces 'major links', heavily utilized, whose failures can cause
major degradation of the network performance. The complement of these links are
the minor links. This paper considers both major link and minor link failures.
Therefore, the simulation of a major link failure is achieved by severing the connection
between nodes 1 and 6. The traffic on the network is unbalanced. The minor link
failure was simulated by disconnecting the link between nodes 3 and 4.

4. NETWORK SIMULATION RESULTS

In this section, the various simulation results are discussed and some are explained
in both graphical and tabular form.

The first small network simulated is network 1 and the results are as expected.
The bifurcation without threshold routing performs poorly, when compared to the
other algorithms simulated. The remaining four algorithms show small differences
in average packet delays. However, the bifurcation with threshold routing has a 33%
smaller variance than that of static routing and a 16% small variance than that of the
ARPANET routing algorithm. No significant difference is observed where the
threshold is varied. Bifurcation without threshold is found to be the worst algorithm
for this type of traffic conditions, because of the unnecessary splitting of the traffic.

Networks 2 and 3 were then simulated. Static routing in such fluctuating traffic
conditions showed poor performance. Both the ARPANET routing and the bifurca
tion with threshold routing showed the ability to adapt and keep packet delays
to a reasonable level. The bifurcation with and without threshold routing algorithms
exhibit an improvement over the ARPANET routing algorithm. The average

185

packet delays for the complete simulation runs indicate that the bifurcation with

threshold, using a threshold value of 3 has a reduced average packet delay compared

to that of the ARPANET routing algorithm. Thresholds of 2 and 4 show minor

eragc Packet Delay
(milliseconds)

bifur. w/o thrcs.
bifur w/ihres. (r
bifur. w/thrcs. (S

Time (seconds)

Fig. 4. Average Packet Delay Plot of Network 4.

Table 1. Network 4 simulation results and comparisons.

Packet Delay Link Utilization

Average a2 95% level Average a1

(msec) (sec2) (±10msec)

0-217 Static 197-8 9-55(10~2) 930 0-217 304(10~ 2)

ARPANET alg. 72-4 7-24(10~3) 270 0-219 l-35(10~2)

Bif. w/o thres. 600 2-17(10~3) 150 0-277 8-97(10~3)
Bif. w/thres. T= 2(alt.) 57-4 3-64(I0~3) 190 0-219 7-24 (10~ 3)
Bif. w/thres. Г = 3 (alt.) 55-1 3-28 (10~ 3) 170 0-225 1-15(!0~3)
Bif. w/thres. T= 4(ait.) 60-2 2-44(10~3) 170 0-292 6-31 (I 0 ~ 3)
Bif. w/thres. Г = 5(alt.) 53-6 2-94 (Î0~ 3) 170 0-221 7-05 (I0~ 3)

Packet delay

with ARPANET algorithm. Average Variance

A% | Confidence A%„ | Confider.ce

Bif. w/thres. T= 3(alt.)
Bif. w/thres. T= 3(s.q.)

- 2 4 %
- 2 6 %

99-5%
99-5%

-54-7%
- 5 9 - 3 %

97-5%
97-5%

Table 2. Network 5 (Balanced Traffic) simulation results and comparisons.

Average

Packet Delaj Link Utilization

Average a2 95% level Average a2

—
(msec)

59-S

(sec2) (±10msec)

0-213 Static

—
(msec)

59-S 1-27 (10~ 3) 130 0-213 8-31 (1 0 " 3)

ARPANET alg. 59-4 1 21 (10~ 3) 130 0-213 6-61 (I 0 ~ 3)

Bif. w/o thres. 87-1 3-46 (10~ 3) 190 0-295 3-06 (10~ 3)

Bif. w/thres. T- 2(alt.) 58-8 1 1 9 (I 0 ~ 3) 130 0-214 6-19(10~3)

Bif. w/thres. Г = 3 (alt.) 59-0 1-22(10~3) 130 0-214 610(10~ 3)

Bif. w/thres. Г = 4 (alt.) 66-5 1-54(10~3) 150 0-244 4-25 (10~ 3)

Bif. w/thres. Г = 5 (alt.) 67-1 1-58 (1 0 н з) 150 0-247 4-20 (10~ 3)

Bif. w/thres. Г = 6 (alt.) 67-3 1-58(10~3) 150 0-247 419 (1 0 " J)

Bif. w/thres. Г = 7 (alt.) 68-3 1-68 (10~ 3) 150 0-248 409 (10~3)
Bif. w/thres. Г = 3 (s.q.) 58-9 1-16(10~3) 130 0-214 6-57 (10" 3)

Comparison
Packet delay

with ARPANET algorithm Average Va riance

Confidence A%0 Confidence A%

riance

Confidence

Bif. w/thres. Г = 3(alt.)
Bif. w/thres. Г = 3(s.q.)

1

- 0 - 5 % 99-0% - - %

- 0 - 8 % 99-5% -4-2%

insigniґ.

90%

differences in performance. Similarly, bifurcation without threshold also showed
only minor differences.

Network 4 is the three node network with unbalanced and switched traffic, shown
in Figure Id. The simulation results are shown in Figure 4. Here the additional traffic
is introduced at time A and removed at time B. The static routing algorithm does
not handle the additional traffic effectively. The ARPANET routing algorithm shows
a reasonable performance, but is worse than any of the bifurcation routing algorithms.
During unbalanced traffic conditions, all bifurcation routing algorithms show
similar performance. When the additional traffic is removed, the bifurcation with
threshold routing algorithms exhibited superior performance.

In all four cases, the bifurcation with threshold results in a smaller variance
in packet delays than the ARPANET routing algorithm. These smaller variances,
coupled with lower average values imply a lower maximum value. This is supported
by the lower 95% delay level of the bifurcation with threshold (T = 3) algorithm
in all cases.

The average link utilization of the static routing and bifurcation with threshold
routing differs very little in the four cases examined. The bifurcation without threshold
routing has average utilization values that are noticeably higher in all cases. This
may indicate some inefficiency in the routing algorithm. Possibly some packets were
sent along paths requiring more links unnecessarily, thereby raising the average link

187

Table 3. Network 5 simulation results and comparisons (unbalanced traffic, low background)

Packet Dela> ._
95% level

(І ІOmsec)

Link I

Average

Jtilization

Overall Traffic Average
(msec) (sгc2)

._
95% level

(І ІOmsec)

Link I

Average a2

Static 79-1 4-76ҶI0"3) 210 0-245 2-47(IO"2)
ARPANETalg. 72-2 2-77(10~3) 170 0-246 I-89O0" 2)
Bif. w/o thres. 99-5 4-87 (10~ 3) 230 0339 l-02(10" 2)
B:f. w/thres. Г = 2(alt.) 70-3 2-43 (I 0 ~ 3) 170 0-247 1-78(10"2,
Bif. w/thres. Г = 3(alt.) 69-6 2-25 (10" 3) 170 0-255 1-61 O O " 2)
Biľ. w/thres. Г = 4(alt.) 760 2-29O0" 3) 170 0-288 1-15(10"2)
Bif. w/thres. Г = 5 (alt.) 76-3 2-20 (1 0 " 3) 170 0-293 1-19(10~2)
Bif. w/thres. Г = 6(alt.) 76-3 2-25 (10" 3) 170 0-294 1-20O0"2)
Bif. w/thres. Г = 7(alt.) 77-5 2-25 (10" 3) 170 0-299 1-22(10~2)
Bif. w/thres. Г=- 3 (s.q.) 69-3 2-20 (10~3) ,50 0-248 1-75O0"2)

Node 1 to Node 8
I
I

í Average 1

Packet Delay

a2 ' I Traffìc

I
I
í Average 1

Packet Delay

a2 ' I 95% level

1 (msec) 1 (sec2) (±10 msec)

Static 1490 104(10" 2) 350
ARPANET alg. 118-9 5-22(10~3) 270
Bif. w/o thres. 1260 5-09(10"3) 270
Biľ. w/thres. Г = 2(alt.) 111-1 407 (ІO" 3) 250
Bif. w/thres. Г = 3 (ait.) 105-7 3-46(10~3) 230
Bif. w/thres. Г = 4 (alt.) 105-7 2-63 (І O " 3) 210
Bif. w/thres. Г = 5 (alt.) 102-1 2-14(10"3) 190
Bif. w/thres. Г = 6 (alt.) 100-8 1-94(10"3) 190
Bif. w/thres. Г = 7(alt.) 102-5 212(10~ 3) 190
Bif. w/thres. T= i (s.q.) 104-2 3-72(I0~3) 230

Comparison Packet delay

with ARPANET algorithm Averaj

ДУo Cc

;e

>nfideгce

)9-95%

Variance

(Overall Traffic)

Averaj

ДУo Cc

;e

>nfideгce

)9-95%

J%
-18-7

| Confidence

Bif. w/'thres. Г = 3 (alt.)
1

- 3 - 5 % |

;e

>nfideгce

)9-95%

J%
-18-7 % 1 99-9%

Bif. w/thres. Г = 3 (s.q.) -4-0% !)9-5% -20-7 % j 99-5%

Comparison
with ARPANET algorithm
(Node 1 to Node 8 Traffic)

Bif. w/thres. r = 3 (alt.)
Bif. w/thres. T = 3 (s.q.)

Packet delay

Average Variance

j Confidence ' A% j Confidence

1115
12-35

99-5%
99-95%

-33-7%
-28-7%

97-5%
99-5%

Table 4. Network 5 simulation results and comparisons (unbalanced traffic, high background).

Link Utilization

Overall Traffic
Average
(msec)

Packet Delay _____

(sec2)
95% level

(i l O m s e c)
Average

Static 1231 3-30(10~2) 450 0-318 3-24(10~2)
ARPANET alg. 84-3 5-04 (10~3) 210 0-321 2-28(IO~2)
Bif. w/o thres. 120-2 8-30 (10~ 3) 290 0-439 Ы 0 (1 0 ~ 2)
Bif. w/thres. T = 2(alt.) 80-6 401 (10~ 3 210 0-323 2 I 4 (I 0 ~ 2)
Bif. w/lhres. T- 3 (alt.) 81-3 406 (10~ 3) 210 0-328 2-00 (10~2)
Bif. w/thres. T = 4(alt.) 89-8 4-01 (10~3) 210 0-376 1-44(10~2)
Bif. w/thres. Г = 5(alt.) 90-3 4-38(10~3) 210 0-385 1-42(I0~2)
Biľ. w/thres. Г = 6 (alt.) 91-3 3-86 (10~ 3) 210 0-392 Í-44(I0~2)
Bif. w/thres. T = 7(alt). 941 4-27 (10~3) 210 0-404 1-43 (10~2)
Bif. w/thres. Г = 3(s.q.) 79-6 3-86 (10~ :) 190 0-325 214(10~ 2)

Node 1 to Node 8
Traffic

Packet Delay

Average
(msec)

95% level
(±10msec)

Statìc 351-5 918(10~ 2) >1000
ARPANET alg. 156-2 I 10(10 ~) 370
Bif. w/o thres. 166-3 1-01 (10~2) 370
Bif. w/thres. T = 2 (alt.) 138-4 | 7-27 (10~3) 290
Bif. w/thres. Г = 3(alt.) 137-2 j 700(10~ 3) 290
Bif. w/thres. T- 4(alt.) 135-5 5-38 (10~3) 290
Bif. w/thres. Г = 5(alt.) 131-7 4-72(10~3) 270
Bif. w/thres. Г = 6 (alt.) 130-7 4-51 (10~3) 270
Bif. w/thres. Г = 7(alt.) 132-5 5-45 (I 0 ~ 3) 270
Bif. w/thres. Г = 3 (s.q.) 131-8 7-29(10~3) 310

Comparison
with ARPANET algorithm

(Overall Traffic)

Bif. w/thres. T= 3 (alt.)
Bif. w/thres. T = 3 (s.q.)

Packet delay

Average Variance

_% j Confidence I _% i Confidence

Comparison Packet delay

with ARPANET algorithm Average Variance
(Node 1 to Node 8 Traffic) _% Confidence _% i Confidence

Bif. w/thres. Г = 3(alt.)
Bif. w/thres. Г = 3 (s.q.)

!
-12-2% 99-5%

-15-6% ; 99-95%

- 3 6 1 % 99-0%
-33-7% ì 99-0%

189

Table 5. Simulation Results with Major Link Failure.

Packet Delay

Overal Traffic Average

%

82-7%

Variance
(sec2)

2-57(10~2)

95% IЄVЄІ

(±10msec)
Normal
(msec)

Link Fail.
(msec)

%

82-7%

Variance
(sec2)

2-57(10~2)

95% IЄVЄІ

(±10msec)

ARPANET alg. 114-9 209-9

%

82-7%

Variance
(sec2)

2-57(10~2) 490
Bif. w/thres. T~ 3 (alt.) 103-9 173-9 67-4% I-бЗ (10~ 2, 390

д% + 10-6% + 20-7% — + 57-9% -
Confidence 99-95% 99-95% — 99-95% —

Node 5 to Node 10

Traffic

^acket Delay

Node 5 to Node 10

Traffic
Average

%

59-7%
54-3%

Variance
(sec2)

2-90(10~2)
1-68(10~2)

-'-72-2%
99-95%

95% level
(±10msec)

Node 5 to Node 10

Traffic Normal
(msec)

Link Fail.
(msec)

%

59-7%
54-3%

Variance
(sec2)

2-90(10~2)
1-68(10~2)

-'-72-2%
99-95%

95% level
(±10msec)

ARPANETalg.
Bif. w/thres. T = 3(alt.)

л%
Confidence

219-0
1871

+ 17-1%
99-95%

349-7
288-7

+ 21-1%
99-95%

%

59-7%
54-3%

Variance
(sec2)

2-90(10~2)
1-68(10~2)

-'-72-2%
99-95%

590
490

Table 6. Simulation Results with Minor Link Failure.

1 ̂acket Delay

Overall Traffic Average

18-6%

Variaпce
(sec2)

95% level
(± 1 0 msec) Normal

(msec)

163-5

Link Fail.
(msec)

193-9 18-6%

Variaпce
(sec2)

95% level
(± 1 0 msec)

ARPANET alg.

Normal
(msec)

163-5

Link Fail.
(msec)

193-9 18-6% 2-88 (i0~ 2) 530
Bif. w/thres. T= 3(alt.) 147-5 164-2 113% 1-89 (10~ 2) 430

л% + 10-9% + 18-1% __ + 52-3% -
Confidcncc 99-95% 99-95% — 99-95% —

utilization. The variance of link utilizations cannot be compared with confidence,
due to the small number of links on these networks.

Network 5, with low balanced traffic, was then simulated. From Table 5, it can be
seen that the bifurcation without threshold algorithms give poorer performance than
all the other algorithms. Among the remaining routing algorithms shown in the figure,
differences in average packet delays are insignificant. Also shown, the bifurcation
with threshold values greater than 3 result in significantly larger average packet
delays. These results confirm the findings of the simulations on network 1. On this
larger network, the bifurcation without threshold routing algorithm performs poorly.
This is attributed to unnecessary transmission of traffic over long delay paths. Unlike
small networks, secondary paths in this large network may be much longer than the

190

Average Packet Delay
(milliseconds)

Time (second,)

Fig. 5. Overall Traffic Average Packet Delay on Network 5. (Unbalanced Traffic, Low Back

ground)

Average Packet Delay
(milliseconds)

:ш /

150

/
o ••—zt-si

100

ş

v--

50

*• < ЛRPЛNET

i 1

°— o bifur. w/o thres.
w/thres. (alt.)
w/thrcs. (s.q.)

*• < ЛRPЛNET

i 1

ч bifur.

w/o thres.
w/thres. (alt.)
w/thrcs. (s.q.)

Time (seconds)

Fig. 6. Node 1 to Node 8 Average Packet Delay on Network 5. (Unbalanced Traffic, Low

Background)

primary path, thus resulting in a greater discrepancy in the performance of bifurcation
without threshold and other routing disciplines. This also explains the poorer per
formance of larger threshold valued bifurcation algorithms.

The same balanced network 5 was also simulated with low balanced traffic plus
an additional load from nodes 1 to 8. Figure 11 shows the average packet delay
of the entire network and shows bifurcation without threshold routing performing

191

poorly under these conditions. High threshold values produced approximately
10% higher average packet delays, when compared to the algorithm with a threshold
of 3. Static routing accommodates the traffic loads with reasonable efficiency but
is inferior to the ARPANET routing algorithm. The two bifurcation with threshold
(T = 3) routing algorithms perform equally well and are slightly more efficient
than the ARPANET routing algorithm. Table 3 indicates the same ordering of per-

Avcrage Packet Delay
(milliseconds)

££=-=-•= .^-^r^џ^
bifur. w/o thres.
bifur. w/thres. (ait.)
bifur. w/thres. (s.q.)

300 400

Time (seconds)

Fig. 7. Overall Traffic Average Packet Delay on Network 5. (Unbalanced Traffic, High Back

ground)

Average Packet Delay
(milliseconds)

, bifur.w/thrcs.fs.q.)

0 100 200 300 400

Time (seconds)

Fig. 8. Node 1 to Node 8 Average Packet Delay on Network 5. (Unbalanced Traffic, High

Background)

192

formance in terms of average packet delay. The variance of packet delays further
establishes that the bifurcation with threshold (T = 3) routing results in a more
compact distribution of packet delays. The bifurcation with threshold algorithms
also exhibit a more even loading of network links by presenting smaller variances
in link utilization.

These results indicate the advantages of the bifurcation with threshold algorithms.

Average Packet Delay
(milliseconds)

210
, • " " - -л

200 *- *" \

1GÌ) / A - -—* ' /

120
: /

, - • < /

^ — Л /
V ^ . ""-/ -"" '

-*

80
*• « ARPЛNĽT

i 1 , 1

д_ tì ЬІГu r XV/.ҺГ es.falt.)

-+
0 A 250 B 500 750

Time (seconds)

Fig. 9. Overall Traffic Average Packet Delay with Major Link Failure. (From A to B)

The two algorithms not only provide lower average delays, but also lower variance
of the packet delays. The bifurcation without threshold algorithm does not handle
traffic for the entire network effectively. This demonstrates the inefficiency of bi
furcation in controlling low balanced traffic conditions. Figure 5 shows the node 1
to node 8 average packet delay for the same network.

In the next simulation, the intensity of the balanced traffic was raised, while the
traffic from node 1 to node 8 remained the same. The bifurcation without threshold
algorithm results in average packet delays, which were higher than those of the
remaining algorithms. The three adaptive routing algorithms provide similar average
packet delays throughout the simulation. However, the variance of packet delays
using the bifurcation with threshold (T = 3) algorithms is approximately 20% less
than that with the ARPANET routing algorithm. The link utilization average and
variance also indicates that the bifurcation with threshold routing provides more
even and efficient loading than the other algorithms. Bifurcation with large threshold
values however exhibits significantly worse performance than the ARPANET
routing algorithm. This indicates the possible problems of early bifurcation, when
considering all network traffic during unbalanced heavy usage. The higher balanced
background traffic in these simulations does not affect the bifurcation with threshold

193

(T= 3) algorithms' performance drastically. These two algorithms consistently
provide routing with packet delays of low average value and low variance. The
bifurcation without threshold algorithm shows its effectiveness in handling the hea
vily loaded portion of a network, while the static algorithm indicates a definite
lack of such an ability.

Of the routing algorithms considered so far in this work, only two were chosen

Time (seconds)

Fig. 10. Node 5 to Node 10 Average Paket Delay with Major Link Failure. (From A to B)

to examine their abilities to handle link failures. These were the ARPANET routing
algorithm and the bifurcation with threshold (T= 3) routing algorithm. The static
routing algorithm was not considered because of its inability to react to any changes
in network conditions. The bifurcation without threshold routing algorithm was
omitted, because of its poor performance in the large network simulated. The bifurca
tion with threshold (T= 3) routing algorithm using alternate splitting of traffic
was chosen over the other bifurcation algorithms, because of its overall performance
and reduced complexity. The ARPANET routing algorithm was examined to provide
a comparison standard. The difference in the behaviour of the two routing algorithms
is now summarized.

A plot of the transient behaviour of the two algorithms, when subjected to a link
failure between nodes 1 and 6, is shown in Figure 9. The link is disconnected at point
A and an increase in average packet delay is immediately evident. Note that the
ARPANET routing algorithm results in a larger average delay at all times. The link
between nodes 1 and 6 is reconnected at point B and the average packet delays using
both algorithms quickly return to a lower value. Both algorithms appear to react
to the link failure with similar swiftness. From the figures in Table 5, it can be seen
that the ARPANET routing algorithm results in a higher average packet delay
upon failure of the link. The bifurcation with threshold algorithm also provided
lower variance of packet delay and a lower 95% delay level.

194

Traffic from node 5 to node 10 also experienced a similar pattern in average
packet delay and variance of packet delay.

When considering a failure of the link between nodes 3 and 4, an increase in average
packet delay is noted for both algorithms during the link failure but this increase is
small. The variance and the 95% delay level are also higher using the ARPANET
routing algorithm.

Average Packet Delay
(milliseconds)

Time (seconds)

Fig. 11. Overall Traffic Average Packet Delay with Minor Link Failure. (From A to B)

When considering only the traffic from node 5 to node 10, a very similar trend
appears. The results presented in Figure 12 as well as additional results, indicate
that one significant difference is that the link failure causes the average packet delay
to increase by only 2-4% when using the bifurcation algorithm. With the ARPANET

Averagc P cifetDcli-.ï
(milliь conds)

300
"" л 1

320 4 i

\- -Ł - / 280 У \ /
2-10 \—— *— V -i ЛRP \NET bifur. w/thres. I all |

Fig. 12. Node 5 to Node 10 Average Packet Delay Plot with Minor Link Failure. (From A to B)

routing algorithm, the link failure increases the average packet delay by 13%. This
shows the bifurcation algorithm's ability to effectively react to minor link failures.
During normal network conditions, the ARPANET routing algorithm produces
an average delay, that is 18% higher than that with the bifurcation routing technique.
Under link failure conditions, this difference grows to 29%. The variance and 95%
delay level are again lower with the bifurcation routing scheme.

195

5. CONCLUSIONS

In this paper, routing algorithms used on computer-communication networks
were examined. Knowledge gained from the characteristics of other routing algo
rithms lead to the proposal of bifurcation with threshold algorithms.

From the simulation results, it is expected that bifurcation without threshold
routing algorithms would perform poorly in large networks. Static routing algorithms
are ineffective in handling heavy or unbalanced traffic conditions. The ARPANET
routing algorithm performs very well under almost all traffic conditions, but is not
as efficient as the bifurcation with threshold algorithms proposed. The best com
promise for threshold appears to be a value around 3*. This choice provides good
performance for the overall network traffic, without neglecting portions of the
network with heavy traffic.

The link failure simulations demonstrate the bifurcation with threshold routing
algorithms' ability to react to and handle topological changes. The algorithm exami
ned appears to provide much smaller percentage degradation of service during
failures, which makes it a very useful routing technique.

The 'join the shortest queue' discipline of traffic splitting exhibits a slight advantage
over alternate queue splitting. This small improvement however, may not be worth
the increased processing complexity required in sensing queue conditions in practical
networks . (Received October 5, 1983.)

* The choice of the threshold is naturally related to the bias of 4 used in the routing updates.

R E F E R E N C E S

[1] L. G. Roberts: The evolution of packet switching. Proceedings of the IEEE 66 (1978),
1307-1313.

[2] R. G. Gallager: A minimum delay routing algorithm using distributed computation. IEEE
Trans. Coram. COM-25 (1977), 7 3 - 8 5 .

[3] A. Segall: The modeling of adaptive routing in data-communication networks. IEEE Trans.
Comm. COM-25 (1977), 85 -95 .

[4] T. E. Stern: A class of decentralized routing algorithms using relaxation. IEEE Trans. Comm.
COM-25 (1977), 1092-1102.

[5] J. M. McQuillan: Routing algorithms for computer networks. In: Proceedings of the 1977
National Telecommunications Conference, 1977.

[6] W. L. Price: Adaptive routing in store-and-forward networks and the importance of load
spliting. In: Information Processing 77, 1FIP, North Holland, Amsterdam 1977.

[7] H. Rudin: On routing and delta routing : a taxonomy and performance comparison of
techniques for packet-switched networks. IEEE Trans. Comm. COM-24 (1976), 43 — 59.

[8] L. Kleinrock: Queueing Systems, Volume II: Computer Applications. J. Wiley and Sons,
New York 1976.

[9] J. M. McQuillan, G. Falk and I. Richer: A review of the development and performance
of the ARPANET routing algorithm. IEEE Trans. Comm. COM-26 (1978), 1802—1811.

Prof. Anastasios N. Venetsanopoulos, Department of Electrical Engineering, University of Toron
to, Toronto M5S 1A4. Canada.
Mr. W. Waung, Microtel Pacific Research Limited, Burnaby. Canada.

196

		webmaster@dml.cz
	2012-06-05T14:17:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

