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K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 1 

A REVERSIBLE CODE OVER GE(q) 

SUNIL KUMAR MUTTOO*, SHANKAR LAL 

This paper deals with the construction of codes over GF(q), q prime, by annexing two triangular 
matrices, one upper triangular and the other lower triangular. The error-correction capabilities 
of such codes are also studied. 

0. INTRODUCTION 

An (n, k) linear code C of length n over GF(q) = Fq, a Galios field of order q, 
where q is a prime, is a fc-dimensional linear subspace of F"q, where F"q denotes the 
space of all n-tuples over GF(q). A generator matrix G of this code is a k x n matrix 
whose rows form a basis of C. The parity-check matrix H of this code is an(n — fc) x n 
matrix such that HvT = 0 for all vectors veC. The row space of (n - k) x n matrix 
H is an (n, n — fc) linear code C1 called dual code of C. The Hamming weight of 
a vector is the number of non-zero elements in it. A code word in C consists of some 
fc symbols as message or information symbols and the remaining symbols as 
check-digits [2]. 

A class of codes called 'reversible codes' introduced by Massey [3] is defined 
as follows: 

Definition. A linear code C is called reversible if a vector obtained by reversing 
the order of the digits of a code word in C result in a code word in C, i.e., (v0, vu ... 
..., tf„_i)e C implies that (vB„t, v„_2,..., vu v0) e C. 

Consider a (fc + 1) x (2k + 1) matrix Hk over GF(q) (q prime) formed by annex
ing two square triangular matrices, one upper triangular and the other lower triangular 
such that the last column of the first is the first column of the second, where the 

* The author carried out this research work under a minor research project sponsored by 
U.G.C., India. 
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entries are chosen in a well-defined way viz. consider Hk of the type 

, k • < k 

xt x2 x3 ... xk-t xk y 0 0 0 

0 x2 x3 ... *,<_! xk y xk 0 0 

0 0 x 3 . . . xk_1 xk y xk x t _i 0 

n /c + l ° ° ° ••• Xk~1 Xk y Xk Xk~l Xk~2 

... 0 0 0 

... 0 0 0 

... 0 0 0 

... 0 0 0 

0 0 0 ... 0 

0 0 0 ... 0 

xk У xk xk~í xk~2 • • • x3 x2 " 
0 У xk x k - i xk~2 ••• xъ xг x\l 

where y, xt e ( l , 2,..., q — 1) and (x,-, y) = 1 and (x ;, Xj) = 1 for i 4= j , i,j = 

= 1, 2,..., k. 

The code obtained by considering Hk as the parity-check matrix will be a (2fc + 1, fc) 

linear code Ck. It will be shown that the code Ck which is the null space of Hk turns 

out to be reversible, as defined by Massey [3] and for further work one may refer 

to Tzeng and Hartmann [6]. It is also shown that such codes are capable of correcting 

a well-defined class of solid burst errors. Codes correcting solid bursts have also 

been studied by Shiva and Sheng [5]. 

In what follows, by a solid burst of length b we shall mean an n-tuple whose all 

the b non-zero components are among some b adjacent positions. 

1. CHARACTERIZATION 

In the following theorem we prove that the code Ck is a reversible code. We first 
prove a lemma. 

Lemma 1. The number of non-zero components in any code word of Ck, in the first 
fc-positions and in the last fc-positions is same. 

Proof. Let hu h2,..., h2k+1 denote the columns of Hk, h; denoting the ith column. 

The formation of the last fc-columns of Hk may be stated as 

K+2 - o A + i + M i 

!;2fc+i = « A + i + l>A 

K+x + i = « A + i + bthi, i = 1,2, ..., fc 

where 0 < at = q — I , 0 < bt _ q — 1. 

Let there be a code word with 5 non-zero components at the ijth, j 2 th , . . . , isth place 



in the last k positions. Then 

(1) hk+1+il + hk+1 + i2 + ... + hk+1 + is = 

= (ah + ai2 + ... + ais) hk+1 + (bifa + bi2h2 + ... + bths) • 

Case I. When ah + ah + ... + ais = 0. 

The R.H.S. of (1) is clearly a sum of exactly s columns from the first fc-columns, 
ht, h2,..., hk of Hk. Thus there are exactly s non-zero components in the first and 
in the last k positions of the code word under discussion. 

Case II. When 0 < ah + ai2 + ... + ais ^ q - 1. 

In this case, the R.H.S. of (l) is a sum of the (k + l)th column hk + 1 and exactly 
s columns from the first k columns hu h2,..., hk of Hk showing that there are exactly 
s non-zero components in the first k positions and the last k positions. • 

Note that we have proved more than what has been stated in the lemma in view 
of the following corollary: 

Corollary 2. A one-to-one correspondence between the non-zero components 
in the first k positions and the non-zero components in the last k positions exist, 
viz. the ith component 1 < i ^ k is related to the (k + I + i')th component. 

Theorem 3. Ck is reversible. 

Proof. Let v = (vu v2,..., v2k+1) be a code word of Ck. Then 
2k+l 

(2) Z vthi = 0 . 
j = i 

We have 

(3) hk+1 + i = flA+i + M ; , 

where 

( 4) K1 = K-i+i and ~aibk-i+1 = ak_i + 1 

i = 1,2,3, ...,/c; ah bieGF(q). 

Equivalently, 

(5) hi = bTlhk+1+i - (aib7i)hk+1 = bk-i+1hk + 1 + i + ak_i+1hk+1 . 

Then (2) gives 
k k 

Y^v.hi + vk+1hk+1 + Zvk+t + ihk+l + i = 0 , 

(using (3)) 

E VІҺІ + vk+iҺ+i + Z vk+l + i(aihk + ì + bihi) = 0 , 
;=i ;=i 

k k 
Z ( " ; + V Ł + n - i ) / г ; + Z ( a i ^ + 1 + ř + vk+1)hk+1 = 0 . 
;=i ;=i 
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Therefore, we must have 

(6) v, + b-fik+l + t = 0, 
k 

I " f t + i t i + vk+i = 0> i - 1,2, ..., fc. 
;=i 

Consider the vector v = (v2k+1, v2k,..., vk + 2, vk+i,..., v2, vx). Then 

vHT = S = v2k+1hx + v2kh2 + ... + vk + 3hk_1 + vk + 2hk + 

+ vk+ih+i + vkK + i + ••• + v
3h2k-i + v2h2k + v1h2k+1 . 

Using (5) and then (4), we get 

S = (bkv2k+1 + vk) hk + 2 + (bk.lv2k + i>t-i) hk + 3 + ... + (bxvk + 2 + vt) h2k + 1 + 

+ Dv>2*+i + a»-i»2* + ak.2v2k-i + ... + atvk+2 + vk+1] hk+x 

which on using (6) gives 
S = 0 . 

Thus v is a code of Ck. Hence Ck is reversible. • 

Remark. Taking at — 1, fe, = 1, i = 1, 2, ..., fc, we have the relations 

lt*+i + i = K + i + >h. 

The codes generated by the matrix satisfying the above conditions in the binary case 
i.e. over GE(2) have been studied by Dass and Muttoo [1]. 

Theorem 4. The dual, Ck, of the reversible code Ck is reversible. 

Proof. A parity check matrix of the code Ck is a generator matrix for the code Ck. 
The code words of Ck are various linear combinations of the rows of Hk and the 
rows of Hk are such that the reverse of any row of Hk is again a row of Hk. Therefore, 
the reverse of a code word of Ck is a code word of Ck. 

This completes the proof of the theorem. • 

2. ERROR CORRECTION CAPABILITIES 

The following result determines the error-correction capabilities of the reversible 
codes considered in this paper. 

Theorem 5. An (n, fc) linear code Ck, n = 2fc + 1, whose parity check matrix is 
Hk, is capable to correct, 
(i) all solids bursts of odd lengths upto 2fc — 1, if n — k is even, i.e. if fc is odd, 

(ii) all solids bursts of odd lengths upto fc — 1, if n — k is odd, i.e. if fc is even. 

Proof. Firstly, we shall derive an upper bound on the sufficient number of parity-
check digits for the existence of a code that is capable to correct a solid burst of odd 
length, say b, by constructing a suitable parity-check matrix. The procedure involves 



suitable modifications of the technique used in deriving Varshamov-Gilbert-Sacks 
bound [4]. 

After having selected the first (j - l) columns ht, h2, •••, hj_1 of the parity-check 
matrix, the jth column hj to be added to the matrix should be such that 

hj * (aj_b+1hj_b+1 + aj„b + 2hj_b + 2 + ... + -O-ifcy-i) + M i + 

+ bi+1hi+1 + ... + bi+b_1hi+b_1 , 

where the columns ht are any fo-consecutive columns among the first (j — i — l) 
columns, / = 0, 2, 4 , . . . , b — 1, and all the coefficients at and bt are non-zero. 
Thus, the coefficients a ; form a solid burst of even length b — 1 or less and the 
coefficients fr; form a solid burst of odd length b or less in a (j — i — l)-tuple. 

The number of choices of these coefficients can be calculated as follows: 
If a solid burst of even length is of length (b — l) then the number of solid bursts 

of odd length b or less in a (j - b) - tuple is 

(Vx) 
(j -b)(q-l) + (j-b~ 2)(q - l )3 + . . . + (j - b - b + l)(fl - l)6 . 

If a solid burst of even length is of length (b - 3) then the number of solid bursts 
of odd length b or less in a (j - b + 2)-tuple is 

(Va) 
(j - b + 2)(q - 1) + (; - b)(q - l ) 3 + . . . + (j - b + 2 - b + l)(q - l)b 

If the solid burst of even length is of length zero, then the number of solid bursts 
of odd length b or less in a (j - l)-tuple is 

(70) (J - 1)(« - 1) + (j - 3)(a - l )3 + ... + (j -b)(q~ 1)" . 

Therefore, the total number of possible choices of the coefficients a ; and fo; are 

( « - l ) d - 1 ( 7 i , - 1 ) + ( a - l ) 6 - 3 ( 7 i , - 3 ) + ... + (7o) 

which on simplification gives 
(»+J)/2 (&- l ) /2 ( 6 - l ) / 2 

(8) [ I (J - 2i + l)(q~ If"1 - X q{q - l)2; + 1] £ (q - I f . 
i = i i = i ; = o 

At worst, if all the linear combinations yield a distinct sum, then the y'th column hj 
can be added to Hk if 

(9) <r*>(8). 
But for an (n, k) linear code to exist, the inequality in (9) should hold for j = n, and 
we get 

( 6 + l ) / 2 ( h - D / 2 

(10) q"'k > [ X („ _ 2i + l)(q ~ I f 1 - £ 2i(q - i f + 1 ] . 
; = i ; = i 

( 6 - l ) / 2 

• Z (4 - i ) 2 ; -
i = 0 

We now prove the main result. 



Case (i). Let k be odd. 

The solid bursts of odd lengths upto 2k — 1 are the solid bursts of lengths 
2k — 1,2k — 3,..., 3, 1. For these values of b, the inequality in (10) has the form 

(11) «* + 1 >Pl ' -4 , -2" l 1 -»J [TcJ 
;=i ;=i ;=i 

where A; = (k - i + l) (q - l)2i~1,Bi = ife - l ) 2 ; + 1 , C, = (_ - l)2'', 
s = 0, 1,2,..., ik. 

To prove the above claim, we employ induction technique. We wish to prove that 

k-s+2 k-s+1 k-s+1 

qk+3 > [2 £ A. - 2 £ 5;] [ _L C j . 
; = i ;=i ;=i 

Now 

^ + i >[ 2 ' xA ; -2"i : 1
J B ; ] [T 1 c ; ] = 

;=i ;=i i=i 

= [__ - 2(A,_S+1 + A,_s+2 - _?*_s - 5,_ s + 1)] [ Y - C,_s - C,_s + 1] 

fc-s+2 k-s+l k-s+l 

where X = 2 __ A; - 2 £ _?;, 7 = £ C,, Thus 
; = l ; = l ; = i 

q*+i > [XY-X(Ck_. + C,_s+1) - 2F(A ,_S + 1 + A,_s+2 - Bk_s - B,_ s+1) + 

+ 2(C,_S + C,_S + 1)(A ,_S + 1 + A,_s+2 - Bk_s - £___+_)] . 

As k — s __; 1, 5 + 1 2_ 1, therefore 

-fc+3 > ^ + 1 + _qck__ + c & s + i ) + 2Y(A ,_S + 1 + A,_s + 2 - f?,_s - B,_ s + ]) -

- 2(C,_S + C,_S + 1)(A ,_S + 1 + A,_s+2 - 5 ,_ s - B__t+1) > XY. 

Thus the inequality in (10) is true for all odd values of k. Hence the case (i). 

Case (ii). Let k be even. 

The solid bursts of odd lengths up to k are the bursts of lengths fe — 1, k — 3 , . . . 
..., 5, 3, 1. For these values of b the bound in (10) has the form 

(t-2s)/2 (k-2s-2)/2 (k-2s-2)/2 

(12) g " + 1 > [ 2 £ A,-2 £ 5 ;] £ C ; , s = 0 , l , 2 , . . . , ( / c - 2 ) / 2 , 
; = i ; = i ; = o 

where A;, Bt and C ; are as in (11). To prove that this is true, we shall use the induction 
technique. We wish to prove that 

(*:-2s+2)/2 (k-2s)/2 (k-2s)/2 

qk + 3>[2 _Z A;~2 £ _?,] X C ; . 
; = i ; = i i = o 

Using the technique of case (i), the result follows. __ 
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Example. Consider the following (4 x 7) matrix H3 over GF(5): 

Я , = 

1 3 3 4 0 0 0 

0 3 3 4 3 0 0 

0 0 3 4 3 3 0 

0 0 0 4 3 3 1 

The columns of this matrix satisfy the relations 

K+i + t = aA+i + b A , i = 1 , 2 , 3 

where 

a1 = 2, bl = 2, 

a2 = 2, b2 = 4 , 

a3 — 4 , b3 = 3 . 

It can be seen that the null space of H3, is a reversible code and corrects all solid 

bursts of lengths 1, 3, 5. 
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