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KYBERNETIKA — VOLUME 22 (1986), NUMBER 1

LARGE SAMPLE BEHAVIOUR
OF THE -TRANSFORMATION OF TWO-SAMPLE
RANK STATISTICS

JAROMIR ANTOCH, DANA VORLICKOVA

Among important problems in the analysis of signals belongs the testing of mutual shift
of two samples. This contribution is devoted to the study of properties of test procedure based
m

on “t-transformation’” of a two-sample linear rank statistic S= 3 a(R;), where m is a size

i=

of a first sample. The authors of the present paper specified the assumptions for this convergence
and studied a behaviour of t-transformed rank statistics (Wilcoxon and median) with the help
of simulation of their values under the null hypothesis. The results are presented in Tables 1--4.
The numerical studies show a good fit of the 7-approximation of the distribution.

1. INTRODUCTION

Let X,,..., X, and Yy, ..., Y, be two independent samples from the continuous
distribution function F and F(x — 4), respectively. For testing the hypothesis 4 = 0
various rank tests based on the linear statistic S =) a(R,;), where (R, ..., Ry)

i=1
is the vector of ranks of the pooled sample, N = m + n, ay, ..., ay are scores, are
well-known. Nath and Duran [3] studied the asymptotic distribution of the ““1-
transform” statistic
/(N — 2)(S — E,S
1) Tp = J( ) ( oS) S
[(N — 1) vary, S — (S — E,S)*]?

where E,S, var, S are expectation and variance, respectively, of S under the hypo-
thesis 4 = 0:

) E,S = a; = ma,

1=

m
N i

mn s mn
3 vary § = ——— i — a)? = — a2,
® NN - Zla—a =75
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They showed that the first four moments of the statistic
S — EoS

@ k= V(N =1 var, S)

coincide or converge, under certain conditions which will be stated later, to the
moments of the distribution with the density

(5) alx) !

e € L e I
B(1/2,N[2 — 1) ( ) B

L,

A

=0 otherwise.

If a random variable X has a density (5) then \/(N — 2) X/\/(1 — X?) has the Student
distribution with (N — 2) degrees of freedom. Under the assumption of symmetry

(6) a;+dy_i+y=c, 1SisN,
or
(7) m=n= N/2,

it can be easy derived (utilizing Hajek, Siddk [2], Problems and complements to
Chapter II, 24, 25, e.g.) that

2.2 . N2 .
(8)  EofS — EoS)t= M (3(1\,' 1ot + (f\fﬂ _ 6) CM),

mn
where
1 N
Cag = N(N + 1 L= ar - 3N —1)°6%].
T B 3 N DT (e = )t =3 - 1l
Then,
9) EL 'Y =0, k=0,1,...,
1
10 varg L= ——,
(19) L=
3
(11) E L+ = NI (1 + ko) »
where
(12) g o= L (NN e
" (N -1) mn ol

Nath and Duran [4] showed that k,,, — 0 under the assumption that

oo ()
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which is stronger than the corresponding assumption for the asymptotic normality
of S. Moreover, for most usual rank statistics (including Wilcoxon one) this condition
is not satisfied. Following the pattern of the proof of Theorem in Appendix of Nath
and Duran [4] we can see o{1/N) is not necessary.

N
Theorem L.1. Let ) (a; — @)* > 0,
i=1
max (a; — a)?
1) (1),
Y (e — ay
i=1
(14) 5>0, %—»1, 0<i<1, Noo.
Then, K, given by (12) tends to zero as N — co.
Proof. According to (12) we can write

)

If we estimate
>(a; — a)* N(max (a; ~ a)*)?
ai—ay) — (X - ap)
and then use the assumptions (6) and (7), we can see that [(N* + N)/mn] — 6 tends
to a constant and the other part of k,,, tends to zero as N — co. d

A

Now, we may reformulate the Nath and Duran’s result as:

Theorem 1.2. Let (6) or (7) and the assumptions of Theorem 1.1 be satisfied.
Then, for L given by (4), E,[?*+%, E,I? coincide and E,L* tends to the corresponding
moments of the distribution with the density (5); the distribution of

T, = 1/.@,:219
Ji - 1)
is, for N — oo, approximately Student’s ¢ with N — 2 degrees of freedom.
Proof. The assertion follows from (9)—(11) and Theorem 1.1. ]

2. SIMULATIONS
The convergence of Kk, ie. of the fourth moment EoL*, gives no imagination
how fast the convergence of Ty in distribution is. Numerical studies of Nath and Duran

[4], concerned mainly a power and efficiency of Ty tests, were based on simulated
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samples from different distributions (normal, uniform, double exponential and
Cauchy).

In contradiction to Nath and Duran [4] we were interested in the accuracy of the
approximation of the exact distribution of the statistic L, given by (4), by the distribu-
tion with the density (5), which determines the accuracy of the f-approximation
of Ty given by (1). For this goal we have not simulated the samples but directly
the linear rank statistics (we used Wilcoxon and median ones). For simplification
of the procedure we simulated the dual form of linear statistic, i.e.

N
(15) S=%Yaz,
i=1

where Z; = 1 if the ith order statistic XV is from the first sample and Z; = 0 other-

wise.

It is well known that under hypothesis 4 = 0 the vector of ranks (R,, ..., Ry)
has the uniform distribution over the space of all permutations (1, ..., N), so that
every permutation of m ones and n zeros, n + m = N, has the same probability.
Now it is obvious that the simplest way for simulating the realizations of the rank
statistic S is, in every step, to permute randomly elements of the vector Z = (Zl,
.-+ Zy) of m ones and n zeros and to compute S using (15).

Below we bring the scheme of our simulations:

1) Type of the rank statistic was chosen. We used Wilcoxon and median ones.

2) Sample sizes m and n were fixed. We used all combinations of m = 10-60 (10)
and n = 10-60 (10).

3) The vector a = (ay, ..., ay) of scores was computed.

4) The vector Z = (Z,, ..., Zy) of m ones and n zeros was prepared. The initial form
of Z was chosen in conformity with the null hypothesis. More precisely, we put
Z=(1,0,10,...,1,0) when n=m,

Z =(1,0,0,1,0,0,...,1,0,0) when 2m = netc.
5) Number k of repetitions of the simulation was fixed. We put k = 1000 in all cases.
6) In every repetition of the simulation specificated during the steps 1)—5):
(1) value of the rank statistic S was computed (using (15)) and stored;
(i) vector Z was randomly permuted.
7) Obtained values of S were evaluated.

Remark. For the random permutations we used Durstenfeld’s algorithm as it is
described in Appendix.

3. RESULTS
Results of our simulations are summarized in Tables 1 —4.
Tables 1,2 provide the values of theoretical expectation ES, resp. theoretical

dispersion var S, and their empirical counterparts ES, resp. var S, obtained by our
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simulations for Wilcoxon (Table 1) and median (Table 2) statistics. We can sec that
the fit is almost absolute for expectation and very good for dispersion, too.

The more detailed information is contained in Tables 3 —4. We prefered to present
the values of theoretical density (5) and estimates of this density based on simulated
values of rank statistic to giving here the results of tests of goodness of fit between
the theoretical model and empirical data. We believe that this approach gives to the
reader more information about the real shape of empirical distribution of studied
statistics. We shall describe Tables 3—4 in more details below.

Table 3 provides the results for the Wilcoxon statistic. Because the Wilcoxon
statistic can acquire a lot of values even for small m and n, interval [— 1, +1] was

20
divided into 20 subintervals 1y,...,150, Uty =[—1, +1], I;n1; =0, i + j, and
i=1

we have counted number of values of statistic S which fell into different sub-
intervals I;, 1 £ j £ 20, during every simulation. The density g(x) was estimated
by the frequency of occurrences of S in a given subinterval normed to one over all
I, j=1,...,20. More precisely, Table 3 contains:

— denotation of subintervals, denoted I, — I,5;

— centres of these subintervals, denoted x;

— values of density g(x) in points x, denoted g(x);

— estimates g(x) in points x, denoted g(x).

Results for subintervals I, — I and I,5 — I, were not included because g(x) = 0
in all cases, what corresponds to the fact that for these intervals g(x) ~ 0.

Table 4 provides similar results for the median statistic. In contradiction to the
Wilcoxon statistic, the median statistic can acquire only a few values even for large
m and n. This was the reason why we did not divided [‘l, +1] into subintervals
like in the previous case, but we estimated g(x) in all points which could be acquired
by the median statistic for given m and n. Again, the density g(x) was estimated by
the frequency of occurrence of S in these points normed to one.

More precisely, Table 4 contains:

— values which can be acquired by median statistic, denoted x;

— values of density g(x) in points x, denoted g(x);

— estimates g(x) in points x, denoted g(x).

As in the previous case we omitted those values of x for which g(x) ~ 0.

4. CONCLUSIONS

Results of our simulations show a surprisingly good fit between the empirical
distribution for both studied statistics and the theoretical model. The fact, that the
empirical density is slightly flatter than the theoretical one corresponds to the fact
that k,, is positive.

According to our numerical studies f-transformation of rank statistics seems to be
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Table 1. Wilcoxon statistic.

10
20
20
30
40
30
30
40
50
40
60
50
40
50
60
50
60
50
60
60
60

90
100
100
110
120

Table 2. Median statistic.

m
10
10
20
10
10
20
30
20
10
30
10
20
40
30
20
40
30
50
40
50
60

110

610

1065
355
710

1620

1215
810

1820

1365

2525

2020

2775

3630

14-93

9:95
2009
15-06
10-11
19:99
1503
2495
20012
2502
30-14

7:56
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recommendable for practical purposes. Popularity of the Student’s t-test and easy
accessibility of rich tables of ¢-distribution makes Tg-test worth of attention. This is
confirmed also by the fact that in the last version of SPSS package of statistical
programs presented during the conference COMPSTAT 84 t-transformation was
quoted between new and recommendable procedures.

APPENDIX — Durstenfeld’s algorithm

procedure SHUFFLE (a, n, random).
value N; integer N; real procedure RANDOM;
integer array A4;
begin
integer I, J; real B
for [:= Nstep—luntil2do
begin J : = entier (/ RANDOM + 1);
B:= A(I); AU):= A(J); A(J):= B;
end loop i ’
end SHUFFLE
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