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KYBERNETIKA — VOLUME 11 (1975), NUMBER 5 

Optimum Experimental Designs 
with a Lack of a Priori Information I 
Designs for the Estimation of a Finite-dimensional Set 
of Functional 

ANDREJ PAZMAN 

Designs of regression experiments with uncorrected observations are considered. The con­
tinuity of the observed "response function" is the only a priori information known by the expe­
rimenter. Optimum designs for estimating several linear functionals (parameters of the response 
function) are studied and an algorithm is proposed for computing such designs. An example is 
given. 

1. INTRODUCTION AND RESULTS 

The aim of this paper is to continue in the investigation of designs of infinite-
dimensional regression experiments with uncorrelated observations, which was 
begun in [3]. The set-up in the present paper is a special case of the one in [3] ; 
namely we shall suppose that 

i) the "set of regulating points" A is a compact metric space,* 

ii) the experimenter has a lack of a priori information about the form of the 
"response function" and he knows only that the response function is a conti­
nuous function in A. 

Let us denote by #" the Borel cr-algebra on A and by 0 the set of possible response 
functions, 0 will be the set of all continuous real functions defined in A* As described 
in [3], the experimenter observes the values of uncorrelated random variables Xe(a); 
ae A with the means 

EXe(a) = 9(a), 

* In Section 5 it is shown that we may suppose that A is a locally compact Hausdorff space, 
0 is the set of all functions defined in A which are zero outside a countable union of compact 
subsets of A and & is the Baire a-algebra. 



356 and the variances 
DXg(a) = 1 ; as A. 

(If DX9(-) is a continuous function in A, then the estimation and design problem 
may be transformed into an equivalent one with DX9(-) = 1, [3].) 

A design of the experiment is a probability measure t, on J*. For every F e J * , 
£(F) is proportional to the number of observations performed on the set F. Therefore 
we may say in a generalized set-up that the experimenter observes random variables 
Xg(F); F e SF, with the means and the covariances 

EXe(F) = J 9 d£ , cov [Xe(F), X9(F')] = {(F n F'). 

The aim of the experimenter is to estimate real functional defined on the set 0 by 
linear unbiased estimates with minimal variances. A (linear) estimate is here a set 
of random variable {Y8: 0 e 0} with Y9 in the span of the set {Xg(F) : F e J^} in the 
Hilbert space of random variables with finite variances. The estimate is an unbiased 
estimate for a functional g if g(8) = EY0 for every 9 6 0 . (For details see [3]). We 
shall say briefly that g is estimable if there is an unbiased linear estimate for g and 
we speak about the variance of g instead of the variance of the best linear estimate 
for a. 

In Part I optimal designs for the estimation of a finite-dimensional set of functional 
are studied. In Part II optimal designs for the estimation of the whole response 
function will be specified. In both parts it is a problem of an infinite-dimensional 
regression experiment since the dimension of 0 is infinite. 

It is proved in Section 2 that any functional which is estimable at least with respect 
to one design has the form 

g{6) = \0dv; 6e0 , 

where v is a finite generalized measure on (A, J^). There is a unique optimal design 
for estimating g and it is equal to (v+ + v~)l[v+(A) + v~(A)], where v = v+ — v~ 
is the Jordan decomposition of v (Lemma 3). 

If gu ..., gn are linearly independent functionals: gt(-) = J . duf; i = 1, 2 , . . . , n, 
then they always may be estimated simultaneously (under a suitably chosen design). 
We shall specify a complete class of decisions in the following decision problem 
(Theorem 4): The strategy space of the chance is the linear span <£ of {gu ..., g„}. 
The decision space of the experimenter is the set 3 of all designs which allow the 
simultaneous estimation of gu ..., g„. The loss of the experimenter is the variance of 
g e J*? under a design £e E. 



In Theorem 5 there is a proof of the existence and uniqueness of a design which 
minimalizes the determinant of the covariance matrix D of gu ...,gn under some 
restrinctions on gu ..., g„. In Theorem 6 the convergence of an iterative procedure 
for computing this optimum design is proved. The obtained algorithm allows the 
computation of optimum designs for an arbitrary finite-dimensional set of functionals 
G. It is sufficient to take a maximal linearly independent subset of G, gu...,g„ 
and to compute the design which minimalizes the determinant of the covariance 
matrix of gu ..., g„: det D. The ordering of designs according to the det D does not 
depend on the choice of the maximal linearly independent set in G (Lemma 7). 
The optimum design is computed in an illustrative example at the end of the paper 
(the estimation of four trigonometric coefficients of a continuous function defined 
in <0, 2 J I » . 

2. THE COMPARISON OF DESIGNS AND THE COMPLETE 
CLASS THEOREM 

We shall use the following statements discused in [3]: 

1. A functional g(~) on 0 is estimable under a design £, iff there is an / e L2(A, !F, i;) 
such that 

(1) g(9) = ffli d£ ; 8e0. 

2. The covariance of two functionals gt(-), g2(
n) which are estimated under £ 

is equal to 

(2) ooy,(g1,g2)= f(Pe<i) ( IV 2 ) <« , 

where Pe is the projection of L2(A, 2F, £,) onto the closure of 0 in L2(A, J~, £). 
If v is a finite generalized measure on (A, 3F), we denote by v +, v~ the components 

of the Jordan decomposition of v and by v the measure v = (v+ + iT)/[u+(A) + 
+ v-(A)]. 

Lemma 1. A functional g defined on 0 is estimable under at least one design £ 
iff there is a finite generalized measure D defined on (A, £~) and such that 

(3) g(9) = J 0 dv ; 0 e 0 . 

Proof. If (l) is true for some £,, we take v(F) = JF / d£; F e J~. We have 
[o+(A) + o~(A)Y ^ J/2 d£ < oo. If (3) is true for some finite generalized measure v, 



358 consider the design v. Evidently 

= ľ ø ^ d ӣ ; ØE 
dӣ 

and dvjdv is bounded on A; dvjdv e L2(A, J5", v). 
Using a known result from the measure theory [1, § 56], we remark here that g 

is estimable under at least one design iff it can be expressed as a difference of two 
positive linear functionals on 0. 

Lemma 2. The covariance of two functionals gu g2 which are estimated under the 
design £ is equal to 

do, 
(4) cov í(a1 ,a2)= P | df, 

dí 

where DJ., u2
 a r e t n e generalized measures associated with gu g2 according to Lemma 1. 

Proof. From (2) it follows that it is sufficient to prove that 0 is dense 
in L2(A, OF, £). Any Borel probability measure on a metric space is regular [2, II, l j . 
That means, to F e J5" and to s > 0 we may find an open (closed) set U => F (C e F) 
such that £(U — C) < e. Further we may find a continuous function 0e which is 
zero on Uc and is equal to one on C and such that 0 = 0e(a) <, 1; ae A. 
Therefore 

| X r - 0 . 1 2 = f | * F - 0 j 2 d £ < £ . -4-
Hence 0 is dense in the set {%F : F e &} and therefore also in L2(A, !F, f). • 

Lemma 3. Let g be an estimable functional. Then 

(5) min var,. g = var5 g = [u+(A) + u~(A)]2 , 

i 
where v is the generalized measure associated with g. v is the unique design which 
minimalizes var̂  g. 

Proof. For any design £ we may write 

var? g = J ^ J d£ = [u+(A) + v~(A)Y j ^ J d£ > 

£ [v+(A) + v~(A)Y [ j | d<J = [,+(A) + tT(A)]2 , 

where the equality occurs iff do/d£ = 1 a.e. [{]. • 



Consider a set gu ..., g„ of functional 

g/e) = (0 do, ; 6e& , i = 1, 2,..., n Һ( ) = ľö du; ; 

They are simultaneously estimable under the design 

1 v -
n i = i 

as follows from (l). If £ is a design and gt,..., g„ are estimable under £,, we denote 
by D(£) the covariance matrix of g,, ..., g„. According to (4) we may write 

(6) DS) = ]>«/, ^ d C ; U - - 1 , . . . , » , 
d£ 

where 

/ = ; i = 1, ..., п, 
dÇ 

and where C is a design such that £ ~ x. 
Evidently det D 4= 0 iff g.,..., g„ are hnearly independent. We take a fixed ( 

such that dC/dx is bounded and we denote byjz/ the minimal a-algebra which ensures 
the measurability of/., ...,j„. 

Theorem 4. Let £ be a design such that gt, ..., g„ are estimable under <J. Then there 
is a design \i such that 

a) v,{F) = 0; i = 1, 2,..., n iff /z(F) = 0, 

b) d/i/d( is an j/-measurable function, 

c) fl1;..., fl„ are estimable under the design /x, 

d) the matrix £»(<J) - £>(/*) is nonnegative definite. 

Proof. We have £ <4 £ since o. <? <!;; i = I,..., n. Further d£/d<l; is integrable 
with respect to ( since (du,/d<j)2 and therefore also (dC/d<j;)2 are integrable with 
respect to £,. 

Denote 

•Ai = =414 
the conditional mean of d(/d<i; with respect to ( under the condition that the algebra 
stf is given. We may decompose £ : £ = £0 + £u where <̂0 ~ C and ^ ± ( (the 
Lebesgue theorem of measure theory [1]). 
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360 Denote 

<l>2 = E . 

and define the design /x by 

(7) n(F) = f ^ 2 dCJUA) ; F e 2F . 

Evidently 

Thus using (6) we obtain for any numbers au ..., a„: 

£ ^D.XDa^ ą E«.L E 

dC 
Sł 

= Ec^S^J ^ j / a ^ I ^ . l ^ ) ^ 
Evidently du;/d^t = (du;/dC) (dC/d/i); i = 1, ..., n, are ^/-measurable functions. 

If 0i(F) = 0; . = 1,..., n, then C(E) = 0 and, according to (7) also fi(F) = 0. Q 
Theorem 4 implies that the set of designs which have the properties a, b, is a com­

plete class in the decision problem mentioned in the introduction. Indeed it is suf­

ficient to realize that £ a,D,7(£)ay is the variance of #(•) = ]T a,flf(*) under the 

design £,. l,J = 1 1 = 1 

3. DESIGNS MINIMALIZING THE DETERMINANT 
OF THE COVARIANCE MATRIX 

The ordering of designs according to the determinant of D(£) is a criterion of 
optimality in the discussed decision problem. The importance of this criterion has 
been discussed many times; also in [3]. 

Theorem 5. Let a,,...,an be linearly independent estimable functionals on 0. 
Let us suppose that the a-algebra si is a finite algebra. 

There is a unique design /i such that 

min det £>(£) = det D(p) , 
4 



where the minimum is taken over the set of all designs under which the functionals 
gx,...,gn are estimable. \i is the unique design which has the properties a, b, of 
Theorem 4 and which is the solution of the equation 

(8) M 2 ( B ) = 1 ivi(B)vj(B){D~^)}iJ 
n .,y=i 

for every atom B of the algebra s4'. 

Proof. We shall suppose in the proof, without restrictions on generality that 
£ = x. We shall use the following notation. 38 is the set of all atoms of s4 which have 
a positive measure x. E is the set of all designs £ such that £, ~ x and that dcj/dx is 
an j^-measurable function. 

Designs from S are uniquely determined by their values on 0$. E0 is the set of all 
designs which minimalize det D(-). 5 . is the set of all designs from S which are the 
solution of (8). According to Theorem 4, S 0 e_ S. 

1) We shall prove first that S 0 #= 0. Denote 

K = {{a(B)}Bem : a(B) e R, a(B) S: 0, £ a(B) = 1} . 
Be2S 

i_ is a compact set in a Euclidean space and it is the closure of S. The function det £>(•) 
is continuous on S as it is evident from the expression 

(,) Dlj(0 = I"iJM_; „ . , „, e . s 
Bel« (J(_i) 

which follows from (6). We may extend det £)(•) on K taking det £>(•) = oo on the 
boundary of K. The extension is continuous, since lim V_ £~ (_?) = co implies 

n~»°o BeiJS 

lim det D(^) = oo. Therefore the infinum of det _)(•) is attained on K and trivially 

it is finite. Hence it is attained on S. 

2) We shall prove that S 0 c_ 3r. Take fie 30, £e 3 and consider the design 

cj* = ac; + (1 - a) p . 

Evidently cj" e S for a e (0 — e, 1>, where e is the min {n(B) : B e _?}. Using a known 
formula of the matrix theory we obtain 

d l n d e t g ( g ' ) = T r D _ 1 ( f ) dD(T) ^ 

da da 



362 where the derivative exists and is continuous for a e (0 — e, 1>. Since fi maximalizes 
the function In det D(-), we obtain by a simple computation 

d ln det D(ÇX) = iíf*f»?w-}«. 
вm (г,/-i џ2(B) J 

for every _ e S. Therefore /i is the solution of (8). 

3) We shall use the notation 

(10) cp(a,i)= t ^(a)^(a)\^(a)\ DT.1^); aeA,ieE. 
tj-i dx dx \_d£ J 

For every e > 0 we may consider a two-person game re = (S£, S£, H). Here the 
strategy space is S£ = {£ : _ e E, £(B) __ B, B e 38}; it is a compact convex set in 
a Euclidean space. The pay-off function H is 

(11) H(Z,n) = TvD-1(t;)D(ri); _, r, e S . 

It is continuous on S, x S„ concave in <* and convex in n, as it follows from (9). 
Therefore if S£ =t= 0 , the game T, has a value 9e and the players have optimal strate­
gies _„ ne. 

Take jxe E0 and take e > 0 such that \i e S£. Then « e Es for every <5 : 0 < 5 < e. 
Tr D'^fi) D(n) is the sum and det D_1(n) D(n) is the product of the eigenvalues 
of the matrix D~l(n) D(n). Therefore using the inequality between the arithmetic 
and the geometric means we obtain 

Therefore 9, = inf Tr D-'(//) D(n) _t n = Tr D_ 1(&) Z>(&) = ',. Thus n is the 

value of r a , n is an optimal strategy of Player I, and according to (12) every optimal 
strategy of Player II is in SQ; this is true for <5 = min {ji(B) :BBM}. 

4) We shall prove that 3X is a one-point subset of S0 . Tak A e S t , jxe E0 and 
find e > 0 so that A, /z e S£. Then for every <5 < s we may write 9a > Tr D -1(A) . 
. D(n5) = M - , A) (dl/d,;/)2 d/?, = /./[dA/d-.,]2 dij, = n[J(dA/df,,) d ^ ] 2 = n = 9d. The 
equality J(dA/d^a)

2 d ^ = [_(dAJdns) dns]
2 implies dXJdnd = 1 a.e. _ns_. Thus A is 

the unique strategy of Player II in the game F}. Therefore $« is a one-point set. 
According to part 3 of the proof we have le E0. • 



Theorem 5 allows to construct an algorithm for an iterative computation of the 363 
desing \x minimalizing det £)(•). Let us denote by U the mapping 

(13) (Un) (F) - f VW- , i?)/"] d>/; F e 2F 

which will be defined for every finite measure ^ on (A, 3F) and q>(a, ?j) is given by the 
expression (10). If the algebra si is finite we obtain the following formula, equivalent 
to (13): 

(14) (Ur,) (B) = f i i tut(B) DJ.\n) ^ B J ' * , B e @ 

where £)(>/) is given by (9). 
We shall denote by W the set of finite measures: W = {JJ : ̂ |^(A) e E}. 

Theorem 6. Let us suppose that the algebra si is finite and let £ be a design: £ e S. 
Then 

a) U mapps W into W and p is the unique fixed point of U in W. More­
over (U"£) (A) = 1 for every n = 1,2,... with equality iff £ = /j. 

b) 

( 1 5 ) --- [(CT-g) (B) -- A<-B)]- ^ 2 [ 1 _ ( . n = = 1 2 ) 

Be8 / J ( B ) 

c) The sequence {U"l;}™=1 has a subsequence which converges to fx. 

Proof, a) Take ^ e Wand denote J7 = n\n(A). We have 

(16) (I/,) (A) = -"-(A) f[<K% i/)/«]1/2 d* g 

g^2(A)^|(«p(.^/n)^J/2 = ̂ 'V) 

with equality iff r\ = \i. Denote 

[ I » -11/2 

- Y, vlB) Qu vj(B) ' w h e r e Qv = E °lB) °AB)- F r o m (14) w e obtain 
n i,j=l J Bei» 

(17) (Ur,)(B)> [mm r{B)Y'*c 
Beat 



Therefore min n(B) < c2 implies min (Un) (B) > min n(B), and min n(B) > c2 

Bem BegS BeSS BeOS 

implies min (Un) (B) > c2 > 0. It follows that U mapps Winto W. 
Bees 

From the inequality (16) it follows 

(18) (U%)(A) < [(U"^£)(A)Y>2 < ... < [t(A)r2" = 1 

with equality iff £ = ji. Theorem 5 implies that n is the fixed point of U. On the 
other hand if X e W, and UA = X then 

KA)=z i i m*mm = i Tr D-.w ̂  = t, 
Bei» n i,j = i /1(B) n 

i.e. A e S. But, according to Theorem 5, f.i is the unique fixed point of U in a. 

b) From the proof of Theorem 5 it follows 

K <?) *• • f ^ ! (£)' d"=^Tr ?"w %) s "(A) • 
Therefore 

Bs^ /i(B) Be» /i(B) 

^ 2 [ 1 - ( U " 0 ( A ) ] . 

c) Denote <5 = min {c, min £(B)} > 0, and C = {n : n e W, min n(#) = <5}. A c -
BeM Bern 

cording to (17) U"£, e C; n = 0,1,2,.... The set of all limit points of {U"<J}*=1 is 
nonvoid and compact, since C is compact. Denote by S the minimal convex set 
containing all limit points of {U"£,}™= j . It is also compact and, according to the Brawer 
fixed point theorem, 5 contains a fixed point of the mapping U. Part a) of Theorem 6 

N N 

implies that \x e S. Therefore fi = V, a,̂ ,-, where a, > 0, £ a, = 1 and £u ...,£N are 
i = i t = i 

limit points of {£/"£}£,.. It follows that ^ ( A ) = ... = £N(A) = 1. Hence (17) and 
(18) imply {. = . . . = ^ = /i. D 

The design /. is computed if we start by an arbitrary £e S and compute subsequently 
U%, U2£„ etc. At each step we compute (U"£_) (A) = £ (U"£) (B), which is always 

BeS8 

less than one. If (U"<^) (A) is near to one, then, according (15), U"£, is "almost" the 
optimum design JX. Part c) of Theorem 6 ensures that this is always attained by 
a finite number of steps. 



4. OPTIMUM DESIGNS FOR ARBITRARY FINITE-DIMENSIONAL 
SETS OF FUNCTIONALS 

Let G be a set of linear functionals and X(G) the linear span of G; we consider 
the case of =5?(G) being finite-dimensional. Denote by gu ..., g„; hu ..., hn two maxi­
mal linearly independent subsets of i f (G). 

Lemma 7. gu ..., gn are estimable under { iff every o e G is estimable under £. 
For any two designs {, r\ allowing the simultaneous estimability of .§?(G) we have 

______ _ det D\_) 

det £>%u) ~~ det D"(n) ' 

where D9; Dh are the covariance matrices of gu ..., gn; hu ..., hn. 

Proof. Take g = £a ; f l ,e C. If vu ..., vn are the generalized measures associated 

with g,,..., gn then du^/di; e L2(A, ^£); i = 1, ..., n imply y^a;(di),/d^)eL2(A, J^, {) 

and the first statement follows from (l). 

There is a non-singular n x n matrix J such that 

9i(e) = tJiM9); Oe0, / = ! , . . . , « . 
y = i 

Using (6) we obtain 

/>»({) = / D*({) J • 

Therefore det D*({) = (det J)2 det D''(< )̂. • 

5. REMARKS ABOUT DESIGNS ON LOCALLY COMPACT 
HAUSDORFF SPACES 

In most applications it is sufficient to suppose that A is a compact metric space. 

However, we may repeat all the statements of Sections 2 - 4 if: 

i) A is a locally compact Hausdorff space, 

ii) if 0 is the set of all functions continuous in A each of which is zero ouside 
a compact subset of A (the same is obtained if 0 is the set of all functions 
which are continuous and each of which is zero outside a countable union of 
compact subsets of A), and 



iii) if a design is a probability (Baire) measure on the minimal cr-algebra which 
ensures the measurability of every 6 e 0 (the Baire cr-algebra). 

To prove this the following statements, taken from [1, chapt. 10], have to be used: 

A) If C c A is compact, F c A is closed and C n F = 0 , then there is a conti­
nuous function / : f(a) e <0, 1>; a e A, f(a) = 1 for a 6 C, / ( a ) = 0 for a e F. 

B) If C is a compact Baire set, then there is a decreasing sequence of open sets 
{U„}n°°=1 such that 

a) C = fl Un. 
n = i 

b) There is a compact set C0 such that U! c C0. 

C) Every Baire measure t; is regular, that means to every e > 0 and every Baire 
set F we may find a compact Baire set C c F and an open set U •=> F such that 
S(U -F)<e. 

The statements A, B, C imply that 0 is dense in L2(A, 2F, £) (as in Lemma 2), 
where J* is now the Baire cr-algebra. Any other statement depends on the topology 
of A, on the set 0 and on the cr-algebra #" only through Lemma 2. 

Example. Take A — <0, 2K). Any 6 e 0 may be expressed by a trigonometric 
series 

6(a) = Y,ai c o s ia + .E <̂« s i n ia • 
; = i ; = i 

Suppose that the experimenter will estimate the truncated series 

8(a) = a0 + ax cos a + /?t sin a + /?2 sin 2a . 

An optimum design is thus the design which gives a minimum for the determinant 
of the covariance matrix of the functionals 

g0(6) = f "e(x) dx , 

{2* 
0.(0) = sin x . 6(x) dx , 

Í>2JI 

92(8) = cos x . 6(x) dx , 

Í
2n 

sin 2x . 6(x) dx 



For computational reasons we have divided <0, 2n> into 50 intervals Iu ..., / 5 0 of 367 

equal length, and we have computed in fact the optimum designs for the functionals 

0,(0) = fh , .(x)0(-)dx; i = 0 , 1 , 2 , 3 , 

where 

50 50 f 

l-oO) = !*,.(•)> M O - Z sin xdx. *,,(•), 
«-- ' - i j / , 

50 f 50 f> 

A a ( 0 - Z cos x d x . * , , ( • ) , fc3(-)-Z sin 2 x d x . * , , ( • ) . 
« - ' J / i l = 1 J / , 

We started with the design <̂  : <?(/,) = i*/l275; i = 1, 2, . . . , 50. The sequence 

( U 0 ( A ) , . . . , (U20£)(A) was increasing and the sequence det £(<*), . . . , det D(U20£) 

was decreasing. The computed optimum design is 

//(/.) =0-0173, M(I2) =0 ,0181 , fi{l3) =0 ,0195, 

//(/4> = 0,0206, M(I5) = 0,0217, //(/6) = 0,0224, 

//(/7) = 0,0226, /i(/8) = 0,0221, /.(/9) = 0,0212, 

M(I io) = 0,0199, / / ( / „ ) = 0,0186, /i(/12) = 0,0176, 

//(/13) = 0,0173, 

and it is periodic: n(B) = n(B + s/2). 

The author thanks Mrs M. Bognarova for performing the computations in the example. 

(Received February 25, 1975.) 
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