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K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 6  

SPECTRUM-ORIENTED SOURCE CODING THEORY 

OTAKAR ŠEFL, IGOR VAJDA 

In this paper we present rigorous mathematical foundations of a source coding theory with 
spectral distances at the place of distortion measures. Such a theory is applicable e.g. in speech 
coding. We prove a new general joint source/channel coding theorem which is of theoretical 
as well as of practical importance. We also establish correctness of some frequently used con­
clusions and procedures for which semirigorous "proofs" are known to the authors only, or the 
rigorous proofs are too scattered in the literature. The theory presented in this paper is oriented 
not only to recipients of speech signals but to all users concerned about the spectral structure 
of signals rather than about signals as such. 

1. SPECTRAL DISTORTION FUNCTIONS 

This paper is a direct continuation of the paper [5], including the terminology 
and notation. That paper is assumed to be available to the reader of the present 
paper. In the present paper we restrict ourselves to continuous stationary ergodic 
information sources (W°, s/x, v) satisfying the condition (25) of [5]. 

It follows from Example 5 and Proposition 3 in [5] that there is a category of 
users interested in spectral distortion functions 

(1) dn{x, n); x e W , jteSR. 

Here 9W is the set of all wide-sense stationary sources (W", s/x, n) with positively 
definite covariance functions r„: {..., — 1,0,1,...} i-> U (i.e. all s x s matrices 
[.rft,k-j]> s =S 1, are positively definite) satisfying the condition 

(2) f KA < °°. 
4 = - o o 

and with spectral densities <p„: [—n, 7t] H+ [0, oo] defined by 

(3) <?>»= f r^e-*" 
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It is further assumed in (1) that 

(4) d,(x, n) = D(cpx, <?„), xeW, (i e 9TC , 

where cpx is the spectral density of x defined by (28) in [5] and D is a spectral distance, 
i.e. any mapping D: $ x <P i-> [0, oo), for 

(5) #- . {* „ : /»6 SOt}, 

such that, for any cp,\j/,cpe <P, 

(6) D(cp, «A) = 0 , D((p, xj/) = D((p, 0) + D(cp, \p) 

Correctness of the condition (4) follows from the next statement. 

Proposition 1. It holds cpxe<P for every x e W, n = 1. 

Proof. It follows from (28) in [5] that cpx is defined by (3) with \i formally replaced 
by x for rx given by (26) or (27). Clearly, (26) as well as (27) are positively definite 
and satisfy (2). • 

Example 1. Let Lx, 1 = a <, oo, be the linear set of all functions <p: [ — n, n] i-> 
t-> [— oo, oo] with finite norm 

|| || _ f (1/2- J l J H ^ d c o ) 1 ^ if l _ a < o o 
" 1" [ ess sup |<pj if a = oo , 

where ess sup is taken with respect to the rectangular probability distribution on 
[—n, Jt]. It follows from (2), (3) that, for every cp e <P, \<p(co)\ is bounded above by 
the left-hand term of (2) and, consequently, 

$ _ L a , l = a ^ o o . 

Therefore the mapping Bx; $ x <P H> [0, oo) defined for 1 <. a = oo by 

(7) Bx(cp,^)=\\cp-m 

is a spectral distance. In fact (7) is a metric on <P for it is symmetric and \\<p — ^ | „ = 0 
iff-(jo = \j/ a.s. which, in view of (2), (3), is equivalent to cp(co) = \l/(co) on [—n, %\. 

Example 2. By what precedes Example 5 in [5], every <p e $ is nonnegative. Let 
us consider a function/: [0, oo] h-> [0, 8] which satisfies the condition 

(8) f(x) = 0 iff x = 1 

and which is nonincreasing on [0, 1] and nondecreasing on [1, oo). Let for every 
<p, if/ e 0 

where 

("» l - { 7 « if x > 0 
if x = 0 . 
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It is easy to see that Df is a spectral distance provided 

(11) f(xy) = f(x) + f(y) for every 0 = x, y = oo . 

Indeed, the nonnegativity of/ together with (8) implies 

Df(q>, \ji) = 0 , <p,\j/e$. 

with the equality iff <p = i/r, and (11) implies the triangle inequality considered in (6). 
Since, further, the condition 

(12) f(ljx) = f(x) for every 0 = x = oo (with 1/0 = oo , l/oo = 0) 

obviously implies the symmetry 

(13) Df(q>, ij/) = Df(il/, <p), (p,\l/e$, 

it follows from here that if, in addition to (8), (9), / satisfies (12) then Df is a metric 
on $. An example of a function / satisfying (8), (9), (12) is 

fc(x) = c|ln x\, c > 0 (with |ln 0| = |ln oo| = oo) . 

More generally, if G is any subgroup of the multiplicative group (0, oo) then (8), (9), 
(12) are satisfied by 

U - ) = °° lcc(x) + lG(x)fc(x) 

where the products and the sum are assumed to be defined in accordance with the 
arithmetic of the extended real line (cf. e.g. § 0 in [1]). 

2. SOURCE CODING THEOREM FOR SPECTRAL DISTORTION 

The above introduced concepts and examples specify the basic conceptual frame­
work of the source coding theory presented in this paper. The basic step done above 
was the assumption that there are users who are satisfied when, instead of a message 
x e R", they obtain a wide-sense stationary information source p e 9JI with small 
distortion dn(x, /.) = D(q>x, <?„). This point deserves to be classified in more detail. 
In view of what was said in [5], we can restrict ourselves to x e B„ c W for which 
the covariance function rx is defined by (26) in [5]. It follows from the next pro­
position that, under the standard assumptions about source, and for arbitrary 
1 g a _ oo, the distortion d„(x, n) = Da(<px, <pj can be arbitrarily closely a p p r o x i ­
mated by Da(<px, <py), where y = (yu ..., yN) is a message from the iV-source (UN, 
s/H, /iN) and cpy is defined by (26)-(28) in [5] with n and x replaced by N and y. 
In other words, in spite of that a user's ear cannot hear the probability measure 
as such (if the user is a recipient of the speech signal x), it can hear iV-messages y 
produced by the iV-sources (UN, stfh', pN), N = 1, 2 , . . . , and, if N is large enough, 
then the user faces distortions Da(<px, <py) close to Da(cpx, q?^). 

Proposition 2. Let for /.e9Jl the source (R™, •^a',fi) be stationary ergodic, and 
let E > 0. Then there exists m = 1, N0 > m such that for every n> m, xeB„, 
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N > N0,1 g a g oo, 

HN({y e UN | Da(<px, <?>,) < Da(q>x, fi) + e}>l-e. 

Proof. Let e > 0, let m0 ^ 1 be such that for m > m0 

I V"-,k\ < ¥ 
\k\>m 

and let us consider arbitrary n > m > m0 and x e B„. It follows from Proposition 3 
in [5] and from the definition of cpy that there exists Nt >. m such that for every 
N >Nt 

HN(BN) > 1 - is 

and that, for ye BN <= UN, cpy(co) is defined by (28) and (26) in [5] with n, x replaced 
by N, y. Further, by the ergodic theorem it follows from (26) that there exists N0 ;> ^ 
such that for every N > N0 there exists CN e s/N such that 

/iN(CN) > 1 - \& 

and, for every y e C„, the function ry defined by (26) satisfies the inequality 

£ Vy.k ~ r^ < ¥ • 
k= -m 

It follows from here and from the definitions of q>y((o), <p„(a>) that if N > N0 and 
y e CN n BN, then for every — n <. co <. % 

\<py(co) - <JJM(O))| ^ is + X |r„iifc| < e . 
|fc|>m 

On the other hand, if N > N0 then 

VN(CN n Bff) > 1 - a . 

The rest of the proof is clear from (7). D 

Thus the distortion level Dj(<px, <p^) is practically achievable by the user provided 
he is equipped with a computer able to evaluate sufficiently long random messages 
y = (yu ...,yN) from sources ft e 9JI. In this area there is a potential source of user's 
discontent with the present source coding project. Namely, the question is whether 
the computer able to evaluate sufficiently long messages y in the real time covered 
by the signal x 6 W is not too expensive. Let t (in second) be the speech segment 
described by signals x e W (according to Markel and Gray Jr. [3], t is of order 10" 2 

second and n is of order 102; further, m is of order 10 and N is of order 102 too), 
and let us analyze the computer's performances required by the task above, under 
the assumption that pi is stationary Gaussian regular (then the assumptions of 
Proposition 1 hold). Let us assume that the computer's memory contains an iV-tuple 
of numbers — a realization of N i.i.d. random variables with zero means and variances 
a2 > 0. Then the computer is able to generate messages yeRN from the source 
HN at time t if its memory contains an N x N matrix and if it is able to perform N2 

multiplications and additions at time t (multiplication of an iV-vector by the N x N 
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matrix). These terms are at least problematic. If however \i is an autoregressive 
source (AR-source, see the definitions between Examples 4 and 5 in [5]) with para­
meters <j2 > 0, a e Am, then it suffices to keep in the computer memory two m-tuples 
of numbers (one is a realization of the random input m vector and the other is a), 
and to perform (m + 1) JV operations of multiplication and addition at time, t, 
as required by (19) in [5], These terms are fully acceptable for most users. 

Hence the above considered source coding model, described by a stationary ergodic 
source (R°°, stT*3, v), by a fixed natural number m, and by distortion functions da, 
n > m, defined by (4) using a spectral distance D, is completed by the subset 31 c 901 
of available codebook elements, where 31 is the set of all AR-sources ^teSR with 
parameters (<r2, a) e (0, oo) x Am which can in principle be used to encode the source 
n-messages x e R" for all n > m. The following identities are used in the sequel 

(14) n = (<r2, a), 31 = (0, oo) x Am . 

The source coding theory based on these concepts and assumptions is called spectrum 
oriented source coding theory. 

Let us consider an arbitrary fixed spectral distance Df and, for all natural, n, 
a codebook C„ c 31 containing 1 < ||C„|] < oo AR-models n = (a2, a). Let Fln: 
R" i-* C„ be a mapping defined by 

Df((px, (pFl,r,w) = m i n DA<Px, <?/.)' xeW. 
peC„ 

By definition, Eln is an optimum coding of source n-messages x e R" into the code-
book C„ under the spectral distance Df. In accordance with (4), we denote 

(15) dn(x, C„) = Df(cpx, <pFi m W ) , * e R". 

Proposition 3. For every natural n, the functions Flt„(x) and dn(x, C„) are .im­
measurable on R". 

Proof. It suffices to prove that, for every natural n and every p e 31, the function 
Df(<px,<p^) is ^"-measurable on R". It follows from (26) —(28) in [5] that <px(co) 
is s/n ® Ji-measurable on R" x [-ft, it], where 2ft denotes the <j-algebra of Borel 
subsets of [ — it, %]. Further, by (3), <pM(o>) is ̂ -measurable on [ —TC, 7t]. Consequently, 
in view of the piecewise monotonicity of/ assumed in Example 2, 

f(<Px(co)\ 

WM/ 
is s4n (g) 38 measurable on R" x [—TC, TC]. The desired assertion now follows from 
26C in Halmos [1] and from (9). Q 

Let us return to the function (15) describing the least achievable distortion of 
source n-messages by a codebook C„. The average distortion of the n-source (R", 
•s^"> vn) by the codebook C„ is defined as follows 

,̂v(C„) = Jr^,C„)dv„W. 
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Let, as in [5], 

R(C„) = - l o g 2 | c , | | = 0 

be the information rate of the codebook C„ and let 

C„(R) = {C„ <= 311 R(C„) g R} , R ^ 0 , 

<5„jV(R) = inf K,V(C„) | C„ e Cn(R)} , R = 0 , 

<5V(R) = lim inf <5„jV(R) , R = 0 . 

The function <5V(R), R = 0, is called distortion-rate function of the source (R™, 
s/x, v). A distortion-rate function <5V(R) is said regular if for every R = 0 there 
exist codebooks C„ e C„(R), n = 1, 2, . . . and a constant y 2; 0 such that 

(16) <5V(R) = lim d,JC„) , 

(П) max ЯЛ>,,,, ęЏ2) й У . 
Џl,Џ2ЄC„ 

If the function / figuring in the spectral distance Df is decreasing on [0, 1] and 
increasing on [1, oo) and if TO = 1 and ST̂  <= 31 is the set of all first-order AR-
sources (a2, a x ) such that 

Bj = <T2 ^ 1/fii , | a i | g 1 - £2 , 

where 0 < et, s2 < 1 are arbitrary fixed, then (17) holds for all codebooks Cn e 31^ 
Let us now consider a nonanticipating communication channel 

(18) ((A?, J /?) , (Pz\ze Af), (Af, s/?)) 

with input constraints (A1>nejstf" | n = 1,2,...) and with a capacity C ^ 0 (cf. 
(12) in [5]). We shall describe a joint source/channel coding and decoding scheme 
for an arbitrary source (W°, stf™, v) under consideration. Let n be an arbitrary 
natural number and C„ 

Ь E Ь-EBЧ 

a codebook from Cn(R), R ^ 0, containing not more elements than Aln (such a code-
book exists for at least one R = 0, namely for R = 0). Let F2t„ be a Cn-coder, i.e. 
a one-to-one mapping from C„ into Aljn and put 

PB(*) = P 2 , B ( P i » ) , * e R " , 

where P t „ is the optimum coder of source n-messages into the codebook C„ defined 

earlier in this paper. Thus each source n-message * e R" is transmitted as an admissible 

codeword Fn(x) e Aln through the channel (18) and received as an output n-message 
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b 6 A"2 (cf. the diagram). The output message is random, distributed in accordance 
with the probability measure P„,F„(*.) on (A"2, s4n

2) (cf. [5]). Let 

F„(R") = {F„(x) |x e R"} 

and let G„ be the B„-decoder for B„ = F„(R") <= Alitt defined in [5]. In this case 
Gn(b) e F„(R") is a random image of the channel input Fn(x) at the output of the 
channel and 

/* = F2i„ G„(b) e C„ 

is a "message" delivered to the user instead of x e R". Thus 

d„(x, F2-„ Gn(b)) - D(<px, <pF-c„(ft)) 

is a random spectral distortion of x and 

Bn(x) - f^ d„(x, F2-,„ G.(A)) dP„,Fn(l)(6) 

is an expected distortion of x, corresponding to the codebook, C„, C„-coder F2,„ 
and F„(R")-decoder G„. The average expected distortion 

3„(C„,F2,„,G„)= fA„3„(x)dv„(x) 
is a relevant spectral-distance-based distortion of the n-source (Rn, sttn, vn) for the 
user. This distortion is called simply output distortion of the source under considera­
tion (at the output of the channel under consideration). It is easy to see that the 
following identity holds 

(19) K(C„, F2i„, G„) = £ P„,F2,„(# (G; \F2in(n))) frriM D(9x, <p„) dv„(x) . 
H,fieC„ 

Theorem 1. Let us consider a stationary ergodic source (R00, s4m, v) with a regular 
distortion-rate function SV(R), R >. 0, defined by means of a spectral distance Df, 
and a nonanticipating communication channel (17) with a capacity C > 0. Then 
for every £ > 0 there exists a natural number n0 such that for all n > n0 there exist 
a codebook C„ c 31, a C„-coder F 2 n and an F„(C„)-decoder G„ such that the output 
distortion satisfies the inequality 

S„(C„, F 2 „, G„) <. <5V(C - ) + 8 , where <5V(C - ) = lim ^V(R) . 
R|C 

Proof. (I) By definition, 5V(R) is nonincreasing in the domain R = 0. Therefore, 
for given C and s, there exists 0 < R < C such that 

dv(C -) < dv(R) < 8V(C - ) + i s . 

(II) It follows from the regularity property (16) that there exists natural n1 such that, 
for all n > nx, one can find a codebook Cn in C„(R) with the property 

d„,v(Cn) < 5V(R) + ^e 

i.e., in view of (I), with the property 

d„iV(C„) < dv(C - ) + fe . 
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(III) Let 7 be the number figuring in the regularity property (17). It follows from 
the definition of capacity C and from the inequality 0 < R < C that there exists 
«0 > /.j such that, for every n > n0, there exists a C„-coder F2n and an F2n(Cn)-
decoder G„ for which 

IV2,„<A)(G;\F2M) > - - .,+<,* x i ;• l2ec»• 

3(7 + 5V(C - ) + e) 

Therefore, for every p. e C„, 
Z IJ

n,f2,„(fl)(Gn-1(I7
2,n(/t))) < -zr-.r' r ~ i • 

uac„ 3(7 + <5V(C - ) + e) 

(IV) It follows from (19) 

3„(cn, ^2,,, G.) < #f (1) + #T(2) 
where 

<*(1) == E k i o o ->(«?«. ^)dvB(x) = 
/-sC„ 

= J,„ d„(*, C„) dvB(x) = d„<v(Cn) < 5V(C -) + fe (cf. (II)) 

and 

'(-) = S P^^ni^iM) Jfr;„(fl) !>(<?«, <P„) d v„« = 
/<,fl6C„ 

= Z ( Z ->-.F,„W)(G„- ' ( F 2 » ) ) J V - w D(<px, «,„) dvn(x)) . 
fleC„ neCn 

Since for every n,iueCn 

iftitMi D(<P*> <P*) dv»("c) = J*Titf) -K^w 'Pfl) dv»W + JiTiW) IX^fl. V-) dv«W = 

= jFrioo ->(<?«, O dv-(*) + wJlriM. 
it follows from (III) and from the definition of F. <n 

[ Z JjTioD *>(<?«. <P„) dv„W + 7] = 
3(7 + <5V(C - ) + e) fltc; 

Hence, by (II), 

*?(2)<|«. 

This, together with the above established upper bound to S(l) implies 

*f (1) + S(2) < 5V(C - ) + e . • 
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3. EVALUATION OF PARAMETERS OF AR-MODELS 

In the rest of this paper we restrict ourselves to spectral distances D: $ x $ t-* 
h-> [0, oo] (cf. (5), (66) with the following property: for every (p„e <P there exists 
H* = (o2, a) e (0, oo) x Am such that 

D((p„, (pj _ Dfa, cpj , fi0 6 (0, oo) x Am , 
iff 
(20) r^k = r^k, k = 0,...,m. 

It is easy to see that, for every 1 < a. < oo and m = 1, 

%^) = ( E k , t - t w i r 
k=-m 

is a spectral distance possessing the desired property. It can be shown (cf. Vajda 
[6]), that Df(q>, ̂ defined by (9) for 

f(x) = - l n x + x - 1 

(which is not satisfying (11)) is a spectral distance possessing the desired property 
too, uniformly for all m _ 1. A great advantage of distances with this property 
consists in that the minimum spectral distance AR-models of order m for signals 
xeW, n > m, depen only on the first m + 1 covariances rx>0,..., rxm defined 
by (26), (27) in [5]. Moreover, it follows from (20) and from what follows (24) in [5] 
that the parameters fi* = (cr2, a) of the minimum distance AR-models are defined 
uniquely by these covariances. The rest of this paper is devoted to mathematical 
methods of obtaining the corresponding minimum distance parameters fi* = 
= (a2, a) e (0, oo) x Am defined by the condition (20) for arbitrary wide-sense 
stationary sources fi e 9K. For simplicity we write simply r instead of r„. We prefer 
terminology of stochastic processes considered before Example 5 in [5] for the 
methods below are close to the problems of prediction of wide-sense stationary 
processes. 

Let us consider a probability space (Q, £f, P) and let 2tf be the set of all real 
valued random variablesX defined on this space with EX = 0, EX2 < oo. The ran­
dom variables X, Ye tf with E(Z — Y)2 = 0 are considered identical. Let us 
define in the usual manner addition and multiplication by a real number in 2% and 
let < •, • > be a scalar product defined on #? by 

<_\ Y> = E(ZY) . 

Then, as well known, ^f is a Hilbert space with the norm 

\X\ = <Z, X)1'2 = (EX2)1'2 , X e MT . 

A random process 3C = (X„ | n = 0, ± 1 , . . . ) in the Hilbert space Jf is wide-
sense stationary iff there is a function r = (r„ | n = 0, ± 1 , . . . ) , called covariance 
function of 3C, such that, for all k, j = 0, + 1 , . . . . 

\Xk,Xk) = r0, \Xk,Xfy = rt_y = rf_k 
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(cf. the definitions in Example 1 in [5]). We restrict ourselves to wide-sense stationary 
processes 3C from Jf with spectral densities (p(oS) positive everywhere on [—TC/2, TC/2]. 
As shown at the end of Example 1 in [5], this implies that all (n x n)-matrices 
[r y_ t] are strictly positively definite). 

By J?n,m> n = m = 1 » w e denote the linear span of X„_m, —, __"„_t in jsf and 
by Xn\m the projection of X„ on M'n<m. As well known from the theory of Hilbert 
spaces, this projection is uniquely characterized by the condition 

(21) \\Xn - *„%|| = min \\X„ - Y|| . 

It follows from the definition of _C„,m that X^m can be written in the form 

(22) x;lm=-fay>x„.j. 
. = 1 

By (21), X*i„ is the best, in the sense of norm, of all estimates 

. = i 

of X„. Interpreting the subscript as a time, we call X^m an optimum linear one-step 

prediction of the sequence X„-m,..,,__„_. (in the sequel simply prediction, or pre­

diction of order m). 

By the definition of orthogonal projection, the error 

(23) K\m = X« - - - i , = *,, + I ajm)X„-j 

must be perpendicular to 2tf„\m, i.e. to the basis {X„_m,..., X„_j}. This leads to the 
equations 

(£^m,Xn^ky = 0 , k = 1, . . . , m . 

equivalent to 

(24) rfc + f a f V ; = 0 , fc = 1, ..., m . 
J = I 

The norm of the error is given by 

(25) lK]m\\2 = <X„ + f a^Xn_j, X„y = r0 + £ aJ-V, . 
. - i . = i 

Analogically as above, the orthogonal projection _?"_,„_ !,„, of X„_m_j on f̂n,m 

(a backward prediction of order m) is given by 

(26) *,T-m_i|„= - f ^ m X - . 
. = i 

where the coefficients 2><m> may be expressed in term of a solution of (24) as follows 

(27) - J " ' - - £ ? . - . , , j = l , . . . ,m. 

467 



It follows from here for the backward prediction error 

(28) K _ m - i , J 2 = <X„_m_1 + £4mX_m_1+i ,Xn_m_1> = ||*+_||- . 

The optimum forward as well as backward prediction of order m is thus described 
by a solution a^,.... a^ of the equations (24). Since, by assumption, the (m + 1) x 
x (m + l)-matrix [rfc_/] of these equations is positively definite, the solution 

a(™\ ...jam"' is unique. We shall describe a recursive algorithm for evaluation of 
this solution first published by V. Levinson in 1948 and later modified by several 
authors (cf. Markel and Gray [3]). 

Let us replace the basis X„_m , . . . , J-"„_i in 3^„,m by an orthogonal basis V„_m,... 
..., V„_x using the well-known Gram-Schmidt orthogonalization. We get 

V„-i-X.-i 

V„_,[ = X„_, -ScfV„_ / , fc = 2,3,..., 

where 

c<*> _ _ <*- -» V-J> 

\\y»-sf 
(since 3C is stationary, cj4) is independent of n). 

Proposition 4. It holds for every fc > 1 

K-k = &n-k\h-\ 

i.e. <^„~_fe|i_i, fe = 1, . . . , m, with _?-,_i[o = ^n-i> is an orthogonal basis in ^f„,m. 

Proof. The expression 

lcfVn.j 
j=\ 

is, by definition, an orthogonal projection of X„_k on jP„tk so that the stated equality 
holds. The rest is clear. • 

It follows from Proposition 4 that X^m as a projection of X„ on tf„|m can be 
represented as follows 

(29) x:im = tkjV„.j. 
. 7 = 1 

Proposition 5. If _?,̂ 0 = Xt then it holds for every m >, 1 

Xn\m = Xn\m-\ + fe«/(T-m|m~l 

® n\m = ®n\m—\ — km&„ — m|m— i 

where fcm satisfies the equation 

(30) <K\m-\, Xn-m> ~ km^-mlm-l , *n-m> = 0 . 

Proof. If m = 1 then assertion follows directly from the definition and assump-
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tions. Let m > 1. It follows from (29) 

*n+m = __ kjVn-J + kmVn_m = _?„.,„-! + k
mVn-m 

_ _ 1 

where, by Proposition 4, V„_m = £^~m\m-i so that the first identity holds. The second 
identity follows from the first one and from (23). The equation for fcm follows from 
the second identity and from the last identity preceding (24). Q 

Analogically as V„_ _, . . . , V„_m, the sequence 

Wl = __„_„, ff2 = /„ + - - 1 + 1 , 1 > . . . ) ^ m = /+_ ! , » - ! 

is an orthogonal basis of 3^„>m too and the backward prediction can be written 
as follows 

*n--m-l|m = I W -
J = l 

The next statement is then an analogy to Proposition 5. 

Proposition 6. If _?,*0 = Z ; then it holds for every m _; 1 

^_-m-llm = ^n-m-l |m-l + <V + - l |m- l 

<^n-m-l|m = <^-m-l|m-l — <Vn-l |m-l 
and 
(31) / m = fem . 

Proof. The first two identities follow in a similar manner as the first two identities 
of Proposition 5. The same applies to the following analogy of (30) 

(32) < / . "__- i | . - i ,X_- i> - '<Z_- i ,—_,* . -_> = 0 . 

Using the obvious identities (hereafter we assume that the sum is zero if the summation 
domain is empty) 

/ _ - . - „ . - , = *„-- ,- , +m>_4n-1,X.-m-.+/ 
_ = 1 

/.+-n_-i = *»-i +wE_.m-1)-r.-1_. 
. = i 

valid for all m __ 1 one obtains 

</_-_.-i,_,-i,.__-_> = rm + m >]„f- 1 ) r m - J . _, </„+,m__,_.-.-,> 
. = i 

and 

</+-l|„_l, _:„-!> = r0 +mE4m-1V, = </._B,m_i, _._--> • 
. = 1 

It follows from here and from (30), (32) that (31) holds and that, moreover, fcm 

satisfies the equation 

(33) r0 + £ _ ? " " % - fem(rm +"___."""I- , . , ) = 0 . Q 
_=i ; = i 
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Theorem 2. (Levinson recursive formula). For every m ^ 1 there is a unique 
solution fc_ of the equation (33) and it satisfies the relations 

«Lm) = -K, if m ^ 1 . 

af > = af-1* - kma%r/y, j - 1,..., m - 1, if m > l . 

Proof. (I) The solution of (33) may not be unique only if 

i = i 
in which case it must be 

t.+'lV'VO' 
J ' = l 

These two equations together with the equations (24) for af"1},..., a^Ti1' contradict 
the assumption that the (m + 1) x (m + l)-matrix [rfc_/J is positively definite. 
(II) It holds for every m ^ 1 

^ m = - E 4 m X - ; 
(a[i)X„ if m = 1 

"lm~1 l-taf-^X^j if m > l . 
J = I 

Inserting these expressions into the first identity of Proposition 5 and comparing 
the left and right sides one obtains the desired relations. 

The Levinson recursive formula yields the following Levinson algorithm for evalua­
tion of the solution af^,..., a^") of equation (24) in m >. 1 steps: 
Step 1: Compute fcx = rt\r0 and put a[l) = — kv 

Step s > 1: Compute 

ro + l V ' S ' 
fc i_i 

and put 

af = a<s-J) - k^:P , j = 1, ..., s - 1, as
s) = - k s . 

End if s = m. 

The parameters fc,,..., fcm defined by equations (33) and satisfying the identities 

(34) fcs= -a^s ), s = 1, . . . ,m, 

are called coefficients of reflexion. We shall present a direct method of evaluation 
of these coefficients, not requiring to evaluate simultaneously the vectors a(is),... 
..., af for s = 1,..., m. The authors of this method are Le Roux and Gueguen [2]. 

The method is based on the following two propositions. 
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Proposition 7. If _*„+„ = X„ then it holds for every n ^ m ^ 1 

\\SU2 = {l-km)\K\m-.\\2. 

Proof. By the repeated use of the second identity in Proposition 5 one obtains 

K\m = ^ j m - l ~ l<m<^„_-m|m-1 = 

= <»„|m-2 — fcm-l^n-m+llm-2 — ^m^n-m\m-l = ••• = X„ — fc1_"n_1|0 — . . . 

••• - M7-m|m-l 

Since, as proved above, -?"_i|o>..., <̂ „~_m|m_i are mutually orthogonal, it holds 

KV-^f l 2 = __^2IK-y„-il!2-
. = 1 

Using the obvious identity 

« • , *n> = <<*,<*> = K-B2 

one obtains 

IKV-^|2 = W2-IKiJ2> 
W2-«<mI2 = Efc2K-,u-ir. 

. = 1 

Replacing m by m — 1 one obtains 

W2-Wm-lI2 = MK-.,.-lI2. 
. = 1 

Substracting this equality from the preceding one and using (28) one obtains the 
desired relation. Q 

Proposition 8. For every n ^ m ^ 1 it holds 

tJt* r N = I ° i f !' = 1 ' • • ' m 

V " " " " J ' ; l<<f„+
|m-i,*,.-.> - fem<^m_1,Xn_m+J.> if j > m . 

Proof. The assertion for j = 1,.... m follows from the definition of _°̂ Jm. Inserting 
into the left hand from the second identity of Proposition 5 one obtains 

(35) <<f„+
lm, __._,> = <_•„%,, xn_,.> - *»<___.„,,,__, Z„_,.> . 

The second right hand term can be rewritten as follows 

</,-_,.-_,__-,> = <Xn_m +mSa5™-1>Z„_w+„ _.__,,> = 
i=i 

= rM_,.+m>_; a f - 1 ^ ^ . , = <X„ + 2aJ - _ 1 X-i . - f_ - + y> -

i= i i= i 

= (&n\m-l,Xn-m + )> • 

Substituting this into (35) we obtain the desired result. • 
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- f e -

Let us denote for brevity 
e,u-<*&-!.X..j>, s = l , 

where < j 0 = Xa. Clearly, es!o <*» l -_ j , - i | a . The following Le Roux-Gueguen algo­
rithm for evaluation of reflection coefficients, ku...,km in m = I steps follows 
directly from the definition of es\j and from Propositions 7 and 8. 

Step s = 1: Put for every; « s , . . . , m 

if s = 1 
if s > 1 

if s = 1 
fc,_i)2es_1|0 if s > 1 

and compute 

fc, = ^ . 
e.|0 

£nd if s = m. 

The next theorem explains how are the above considered results related to the 
problem formulated at the beginning of the present part of this paper. 

Theorem 3. Let (X„ | n = 0, +1 , . . . ) be a wide-sense stationary process with 
a positively definite covariance function (r„ | n = 0, + 1 , . . . ) and let us consider 
the optimum predictor of order m = 1 for this process, i.e. the solution (a(m),..., aj^0) 
of equations (24). Then the following assertions holds: 

(i) a(m) = (aim),..., a^) belongs to the set Am of all vectors a = (a1(..., a,„) e Rm 

such that the complex polynomials 

a(X) = 1 + axX~x + ... + amX~m 

have all roots inside the unit circle and the quantity 

(36) - * - r 0 + £_$•>-, 
7 = 1 

is positive. 
(ii) The AR-process with parameters \i = (am, a(m)) defined in (i) is the unique 

AR-process of order m with covariances (r^^, ..., r^m) equal to ( r 0 , . . . , r„). 

Proof. Theorem of Schur-Cohn (see e.g. Prouza [4]) says that for every m > 1 
and a = (alt..., am)e Um the polynomial 

Q(X) = (Xm + a^"-1 + ... + am) 

has all roots inside the unit circle iff it holds |am)| < 1 and the polynomial 

X-1[Q(X)-amQ(X~i)XmJ 

of degree m - 1 has all roots inside the unit circle. We shall prove the present 
Theorem in two steps. 
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(I) L e t l ^s<i m. It holds 

<^-s ,s-1 ,Xn_s> = ||^_s|s_1||2 = | |< s _ 1 | | 2 

(cf. the stationarity assumption). Further it follows from the Schwartz inequality 
that the expression |<-3„"ljs, _-„_s>| attains maximum equal to ||<?_j-fl2 for Xn_s = 
= <?„*s. Since the last equality contradicts the positive definiteness assumption, 
it holds 

<<is-i>*"-s><IKV.l2-
Therefore it follows from (30), (34) 

(37) \as
s)\ = |fc,| < 1 , s = 1, . . . , m . 

The assertion (i) of Theorem 3 holds if m = 1. Indeed, by the Levinson algorithm, 

a[l) = - r . / r o , <x2 = r0 - r\\r0 

and the rest is clear from the positive definiteness of the matrix 

[::::]. 
It thus suffices to prove that (i) holds for m > 1 under the assumptions that it holds 
for m — 1 2: 1. Let us denote for every s ^ 1 

QS(X) -. (Xs + aW'1 + ... + as
s)). 

It holds 

#XJL)-X-(UX). 

Thus, by assumption, Qm-i(X) has all roots inside the unit circle and we need to 
prove the same for Qm(X). It follows from the second relation in Proposition 5 

JmXX) = «<—«(_.) - kmrm «*"->(_/..) 
i.e. 

Qm(X) = XQm-i(X) ~ kmX"-1Qm-i(lll). 

Inserting 1/A at the place of A we get 

QjljX) = X-iQ^ljX) - kJ.-^Q^X) . 

Multiplying this equality by kmXm and adding it to the former equality we obtain 

(1 - (aim))2) fim_.(A) = X-\Qm(X) - F&QJQLJA)] 

It follows from here, from the assumption above and from (37) that all assumptions 
of the Schurr-Cohn theorem hold. Consequently, all roots of Qm(X) are inside the unit 
circle. The assumption om = 0, analogically as in the proof of Theorem 2, contradicts 
the assumption that r is positively definite. This completes the proof of assertion (i). 

(II) Let us consider an AR-process with parameters \i = (am, a(m)). By the Levin-
son recursive formula, a(m) uniquely determines the set of vectors {a(m~1), a (m-2 ) , ... 
...,a[1)} as well as the set {km,km-u ...,k1) of reflection coefficients. It follows 
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from here and from the Levinson algorithm that a(m) uniquely determines the ratios 

(38) r_/ro,...,r_7r0 

of coefficients of the equations (24) (i.e., up to the multiplicative factor r0, there 
is a one-to-one correspondence between coefficients ru...,rm and solutions a(m) 

of those equations). The factor r0 > 0 is uniquely determined by the ratios (38) 
and am > 0 from the equation (36). Hence there is a one-to-one relation between 
parameters p. = (am, a(m)) of the AR-processes and coefficients r0,ru...,rm of 
equations (24) and (36) used to define these parameters. Since the covariances 
rv,o> rp,u •••> rn,m °f the AR-process with parameters JX = (am, a(m)) are satisfying 
formaly the same equations as (24) and (36), i.e. 

*m = r,,o + _ > r V ; (cf.(23)in[5]) 
y = i 

r. .* + __ ajm\,k-j = 0 , k = 1, . . . , m (cf. (24) in [5]) , 

it holds 

(>».o>'">',.._) = (ro, .•••»••)• 

The uniqueness of the AR-process with this property follows from the one-to-one 
relation between parameters fi and covariances (r^O, •••, rM>m) of the AR-processes 
with parameters established before Example 5 in [5]. Q 

It follows from the two algorithms proved above and from Theorem 3 that the 
following assertion holds. 

Corollary. For every m __ 1 there is a one-to-one relation between any two of the 
following three vectors: 

(i) positively definite covariances ( r 0 , . . . , rm), 

(ii) reflection coefficients (ku ..., km) e ((-1, 0) u (0, l))m and am e (0, oo), 

(iii) autoregressive parameters (am, a(m)) e (0, oo) x Am. 

The relation between covariances and reflection coefficients is recursively described 
by the Le Roux-Gueguen algorithm (forward and backward), and the simultaneous 
recursive evaluation of reflexion coefficients and autoregressive parameters for given 
covariances is described by the Levinson algorithm. Simultaneous recursive evaluation 
of reflexion coefficients and covariances for given autoregressive parameters (am, a(m)) 
in 2m steps is described by the following algorithm: 

Step s > 0: Put fcm_s = — a(m_s) and compute 

n(ni-s) , r. ^(m-s) 
aO--.-D_-.__ +k am_s_ , . . . , m _ s _ i . 

If s = m - 2 then step t = 1; Put Qy = fc_. 

474 



Step t > 1: Compute 

i + z V % 
y=i /c. 

If t = m then step t = m + 1: Compute 

r o = » ' 

i + E4mЧ-
У = l 

Гj = r0ø_,, j = 1, . . . , m . 
Eиd. 

R E F E R E N C E S 
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