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K Y B E R N E T I K A — V O L U M E 20 (1984), N U M B E R 3 

MOTIVATION, EXISTENCE AND EQUIVARIANCE 
OF D-ESTIMATORS 

IGOR VAJDA 

This is the first in a series of papers on O-estimators to be published in Kybernetika. D-estimators 
are minimizing/-divergence or properly modified/-divergence between theoretical and empirical 
probability. Suitable specifications of convex functions/yield either new promising estimators, 
or well-known estimators such as the MLE, or M-estimators, or various minimum distance esti­
mators, motivated so far quite diversely if motivated at all. The theory of £>-estimators can be 
considered as an alternative to the loss-function-based theory in a systematic development 
of asymptotic as well as non-asymptotic properties of wide classes of estimators. The present 
paper is devoted to motivation and examples of D-estimators and to non-asymptotic aspects 
of the theory such as existence, measurability, continuity, invariance, and equivariance of D-
estimators. 

1. PRELIMINARIES 

In this paper 9C denotes a Hausdorff topological space separable in the sense that 
it contains an at most countable dense subset. 3& denotes the Borel cr-algebra of subsets 
of 9C. Thus if, in particular, 3C is a discrete space then it is finite or countable and M = 
= exp 3,'. An identity mapping 3C -> SC is denoted by X, with additional indices when 
convenient. 

Sfi denotes the family of all probabilities on {SC, SB), SPe a subfamily of empirical 
probabilities Pn corresponding to the sample vectors x = (x1; ..., x„) e SCn as follows 

(1.1) Pn(E) = i £ l£(x() for Ee'M. 
n ; = i 

Obviously Pn is a mixture of empirical probabilities l{jeij with a total mass concentrated 
at xteSC (i.e. l,Xt)(E) = l£(x ;), EeSf) where the mixture is taken with a uniform 
weight distribution n~l. For a normed 9C we define subfamilies &f = {PeSP : 
: E,||X||' < co}, P = 0. 

By 0>e we denote parametric subfamilies {Pe : 6 e 0} of SP where it is supposed 
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that Pg 4= P$ for 0 =f= 0 e 0 and that 0 is a Hausdorff topological space. Measura-
bility on 0 is considered w.r.t. the Borel tr-algebra on 0 . The class exp 0 is considered 
to be a topological space with open sets expU for open U <- 0. In this topology all 
"disjoint points" of the subspace C(0) of compact subsets of 0 can be separated 
by disjoint open neighbourhoods of these points. We restrict ourselves to parameter 
spaces satisfying an axiom of continuous choice: There exists a continuous mapping 
T : C(<9) -> 0 with T(0*) e 0* for all 0 * e C(6>). For example, let 0 be a topological 
subspace of a finite product of ordered spaces with topologies induced by the respec­
tive orders (e.g. 0 c Rm) and let us consider a lexicographical order in 0 , i.e. the 
order defined first by the first-coordinate order, then by the second-coordinate oraer, 
etc. Then T(0*) = min 0 * is a continuous rule of choice on C(0). 

0 is said tf-compact if it can be covered by countably many compact sets 0 ( s ) c 0 . 
For any c-compact 0 we consider compact subsets 

(1.2) 0j = U ©(s) 

s = l 

tending to 0 as j -> oo in the usual set-theoretical sense. 

0 is said structural w.r.t. 9£ if (i) 0 is a group with elements 0 6 0 representing 
bijections \Q\:3C -+9£ such that [0] ^ = ^ , (ii) [ 0 ] = {[0] : 0 e 0 } is a group 
with [0] . [0] = [0] ([0]), (iii) the representation 0 -> [0] is a homomorphism 
between groups 0 and [ 0 ] , i.e. [00] = [0] . [0], and (iv) the mapping sending 
(0, 0) e 0 2 into 0 _ 1 0 e 0 is continuous. Here and in the sequel we consider product 
topologies on products of topological spaces. Since, by (iii), [ 0 ] _ 1 = [0_ 1] i all 
bijections [0] are J'-measurable. In what follows we exceptionally denote by [0] 
^"-measurable mappings (statistics) defined by 

(1.3) [0]W = (M(^),...,[0](x„)), x e f 

as well. For structural 0 we restrict ourselves to parametric families 3Pe = {Pg = 
= P [ 0 ] _ 1 : 0 E 0 } c 3P defined by parents P e # . 

A well known example which we shall frequently refer to is a location-scale para­
meter space 0 = R x (0, oo) which is structural w.r.t. the real line 9C = R under 
bijections [0] {x) = [/*, c] (x) = JX 4- ax, x e R, and under the associative multi­
plication 00 = {[i, a) {p., a) = {p. + o-/t, aa). The inverse element in R x (0, GO) is 
defined by {ji, a)^1 = { — jxja, ija) and the unit element e = (0, l). The location 
or scale parameter spaces 0 = R or 0 = (0, co) are obtained as subgroups R x {1} 
or {0} x (0, oo) of the group R x (0, oo) respectively. 

A class S = [Ex : x e 3£) is said sufficient for 3C if S c ^ , S generates 38, and 
P{EX) are ^-measurable for all P e SP. The intervals (- co, x) : x e R are sufficient 
for R and their products for Rk. Classes sufficient for product sample spaces of sto­
chastic processes can be shown to exist as well. The ^-measurable functions F{x) = 
= P{EX), G{x) = Q{EX), Fe{x) = P0{EX), F„{x) = P„{EX), called simply distribution 
functions (d.f.'s), will be used throughout this paper as characteristics of the corres-
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ponding probabilities P, Q, Pg, P„ whenever a sufficient class $ will be supposed on SC. 
A family 2Pe is' said 0-measurable if Pe(E) are measurable functions of 0 for all 

£ e $. Analogically we define a ©-continuous family SPe as well. 
By P, q, Pe, Pn, w w e denote Randon-Nikodym densities of P, Q, Pg, P„, W w.r.t. 

a dominating cr-finite measure A on (9C, &). Unless otherwise explicitly stated, on 
discrete SC we consider the counting A and on SC = Rk the Lebesgue X. \iSPe dominat­
ed by a cr-finite X is ©-measurable then pg(x) is a measurable function of (3 a.e. [A]. 
This can be proved as follows. Since SC is separable, there exists a net of finite or coun­
table decompositions 3U) :j = 1,2, ... sufficient for J1 in the sense that the cr-alge-
bras 3$U) are increasing and their union generates S&. Since X is a-finite, there exists 
at most countable decomposition 3 cz 38 of SC, P ( s ) e SP, and positive weights w(s) 

such that X = Y> ( s )P ( s ) and P(s)(£(s)) = 1 for some £ (s ) 6 3. If pu's) = Ep(s)(pB\@U)) 
on £ ( s ) and 0 elsewhere then, by a theorem of Levy (e.g. Theorem 2.8 in [12]), pu,s) -> 
-* pg a.s. [P (s)] asj-> co. Define pU) equal pu's) on £ ( s ) for every s. Since the 0-measur-
ability of ^ e implies that all p^ , s ) are measurable on 0 a.e. [A], pU) is measurable 
on 0 a.e. [A]. Since further 

(1.4) rfJ,) -> p8 a.e. [A] as j -*• oo , 

pe is measurable on 0 a.e. [A] too. • 

An estimator of a parameter from Q is defined as a mapping Tfrom a non-empty 
subset &>(T) c 0» into 0 . An estimator Tis said well-defined if ^ e c ^"(T) and if 
T(P„) as a function of x e SC" (cf. (1.1)) is ^"-measurable. While the first condition 
is purely practical, the second one is unavoidable for any probabilistic theory of esti­
mation since it enables to interpret T(P„) as a random variable defined on (SC", &", P"), 
P e 3P. To facilitate the requirement of ^"-measurabilily we accept in this paper 
the following convention. 

Convention 1.1. If some criterion defines an estimate T(Q) as a point from a non­
empty set T(Q) c 0 , we assume T(Q) = x(T(Q)) for an arbitrary fixed extension 
of the above considered mapping T : C(0) -> 0 to the whole domain exp 0 — 0. 
Moreover, on structural 0 we restrict ourselves to the rules of continuous choice 
homogeneous in the following sense 

(1.5) T ( 0 0 * ) = 9 T ( 0 * ) for all 9 e 0, 0* e C(0). 

Notice that if the group multiplication by an arbitrary constant 6 e 0 preserves 
the above considered lexicographical order on 0 (this takes place e.g. in the location 
and scale case 0 = R x (0, co) <= R2) then T ( 0 * ) = min 0 * is homogeneous in the 
sense of (1.5). 
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2. /-DIVERGENCE AND ITS MODIFICATIONS 

Hereafter we denote by / a real valued function continuous and convex on (0, oo) 
which is strictly convex at 1 and / ( l ) = 0. As proved on pp. 7 6 - 7 7 in [23], the limits 

/ (0) = l im/ («) , 0/(oo) = l i m - ^ 

« | 0 uToc U 

under these assumptions exist in the extended real line and their sum 

(2-1) | | / | | = f ( 0 ) + 0/(co) 

is well-defined and positive. We say tha t / i s semibounded if | | / | | < oo. 
Tn accordance with Csiszar [5, 6] we define an/-divergence of probabilities P, Q e 

e 3" by*) 
(2.2) Df(P, Q) = E,qf(pjq) = EQf(p\q) for some k > P, Q 

where 0/(0/0) = 0 and 0/(u/0) = u 0/(co) for u > 0. By [6] the /-divergence 
is well-defined by (2.2) and it is independent of k. We next list some properties 
of/-divergences for references later. 

Lemma 2.1. 0 g Df(P, Q) ̂  | | / | | where the left equality holds iff P = Q and the 
right equality holds if (for ||/|( < oo iff) P JL Q. 

Proof. The left inequality including the sufficient condition P = Q for equality 
has been proved by Csiszar [5], the right inequality including the sufficient condition 
P 1 Q for equality has been proved by Vajda [21]. Both conditions have also been 
shown necessary there for / strictly convex on (0, oo). For / under consideration 
the necessity of P = Q easily follows from Lemma 1.1 in [6]. As to the necessity 
of P 1 Q, we refer to the proof given on pp. 8 9 - 9 0 in [23]. • 

Example 2.1. The function f(u) = u In u yields I-divergence 

(2.3) I(P, Q) = EQ(pjq) In (pjq) = EP In (pjq), \\f\\ = oo (cf. [10]). 

The functions/(w) = sign (l - a) (l — wa)/a, a e [0, l) u (l, co) with a limit f(u) = 
= — In u at a = 0 yield D*-divergences 

(2.4) D*(P, Q) = 
EQ(-ìn(pjq))=I(Q,P), 11/1 = CO , a = 0 
a-Ңl-E^q1-*), 1/1 - a ' 1 , a є (0, 1) 

a-ҶEлPУ-"-!), 1/1 = °o , a є (1, co) . 

*) The/-divergence has first been introduced by Cziszar in [5] and then, independently, by Ali 
and Slivey in J. Roy. Statist. Soc. Ser. B 28 (1966), 131-142. Perez in Kybernetika 3 (1967), 
1—21, found the first statistical application of this concept— an upper bound for the Bayes 
risk increase caused by a reduction of u-algebras figuring in a statistical decision problem. His 
Lemma 2.1 on p. 9 concerning a linearly constrained/-divergence minimum may be helpful 
in evaluating standard £>-estimates defined in (3.1) below provided ^ e satisfies the correspond­
ing linear constraint. 
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The function f(u) = |l — u*\1/x for a e (0, 1] and f(u) = ll - u\* for a e ( l , oo) 
yield ^-divergences 

qf'°, | j | | = 2 , a 6 (0,1] (cf.[3]) 
P~q\*<il-\ Ijll = oo, a 6 (I, co) (cf. [22]) . 

(2.5) f(P, Q) = / 
E, 

The /-divergence, the total variation x1, the ^-divergence, and the Hellinger distance 
yU2 _ 7)1/2 a r e Well-known in statistics. 

The next lemma has been proved by Csiszar [5]. 

Lemma 2.2. If V*, QM are restrictions of P, Q on a sub-a-algebra si <=. M, then 
DJP*, Q*) £ Df(P, Q) where the equality holds if si is sufficient for the family 
{P, Q) <=. 3f. 

Corollary 2.1. If si = {0, E, 9£ - E,SC)^m then Df(P*', Qf) = 
= df(P(E), Q(E)) g Df(P, Q), where 

d/u, v) = vf f-\ + (1 - P ) / ( ^ 5 ^ ) for (M, P) 6 [0, l ] 2 

with the same conventions as those considered in (2.2). 

The next three results can be found in Vajda [21]. 

Lemma 2.3. Df(P, Q) = sup Df(P^, Qf) provided the supremum extends over 

all algebras si generated by finite J'-measurable decompositions of 3C. 

Lemma 2.4. If {@SU) :j = 1, 2, ...} is a sequence of sub-c-algebras of Si with 
mU) a<Mu+l) and with J , ( 1 ) u ^ ( 2 ) u generating 3&, and if PU ) , QU) are restrictions 
of P, Q on 3SU), then Df(P

U), QU)) is a non-decreasing sequence with a limit 
Df(P, Q) as ;' -» oo. 

Lemma 2.5. The functions /*(«) or /*(«), equal + co on (2, oo) and equal 
uf((2-u)]u) or (2 - M)/(M/(2 - M)) respectively on [0 ,2] , are satisfying all 
conditions imposed on j in this paper and Df(P, Q) = Dft(Q, W) = £>//P, W) for 
jy = (P + Q)/2 e 0>. 

Lemma 2.6. Ifjc(u) = uf(lju) + C(M — l), c e K, then j c satisfies all conditions 
imposed on j in this paper and the jc-divergence is conjugated to an j-divergence 
in the sense Dfc(P, Q) = Df(Q, P) for every P, Q e 3P. Consequently, an j-divergence 
is symmetric if j = fe for some csR. 

Proof. For c = 0 this statement follows from (1.13) in [6]. Its extension to c + 0 
is clear from (2.2). • 

Lemma 2.1. If S°0, Qe are 0-measurable and IF is a probability on 0 then E^Pfl, 
EwQge0> and EwDf(P0, Qe) ^ Df(EwPe, EwQe). 
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Proof. It is easy to verify that $(w, v) = uf(ujv) is convex in the domain (u, v) e 
e [0. oo)2 c R2. The inequality of Lemma 2.7 then follows from Jensen's inequality. 
The rest is clear. • 

In the next lemma L^ denotes a lower envelope of a class !F of functions defined 
on [0, 1]. The lower envelope is defined on [0, l ] by the condition that it is a convex 
function satisfying 

(2.6) Lp(u) £ infj(u) for u e [0, 1] 
fe& 

and dominating any other convex function satisfying (2.6). 

Lemma 2.8. It holds 

-v . . / , ) ( ~ ^ ) = DAp> e ) = m a x {/(°)' 0 / (00)} . X\P, Q) 

where f0(u) = (l + « ) / ( ( l - «)/(l + «)), / t ( « ) = (1 - u ) / ( ( l + «)/(l - «)) for 
u e [0, 1]. If j 0 = j ! then / (0) = 0j(oo) = | | / | /2 and the lower as well as the upper 
bound is attainable in the domain &. 

Proof. It is easy to verify that both / - are convex on [0, 1] so that 

rt.)s('-.») + ./ffl-(1
2ft ;\\l\. 

Hence 

(2.7) /•(«) = 2 max {j(0), 0/(oo)} u for ue [0, 1] . 

Further, by Lemma 2.5 and (2.2), (2.5), 

X\P, Q) = 2 E^|p* - 1| , Df(P, Q) = Ewf*(p«), p., = ~ e TO, 2] 
dlr 

where PV,/,,. are defined in Lemma 2.5. Define on (3£, 3%, W)r.\.'s 

U -- | -„ - 1 | , V = / 0 ( U ) l { P i < 1 ) + / . ( U ) l { p > g l } . 
It holds 

(2.8) E^U = - ^ - - - £ 2 , E^V = Df(P, Q) (cf. Lemma 2.5) 

and 

0 g U ^ 1 , L(/0,/l}(U) ^ V ^ 2 max {/(0), 0/(oo)} U 

(cf. the definition of i-{/0,/i) and (2.7)). Since the set of all points (u, v) e R2 such that 

0 ^ u S 1 . £{/„/,}(«) ^ » ^ 2 max {/(0), 0/(oo)} u 

is convex in R2, the point 

Er(U, V) = (E„I/, EWV) = (z»(P, 6)/2, £ / ( P Q)) e R2 (cf. (2.8)) 
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belongs to this set too which means that the desired inequalities hold. As to the 
attainability of bounds represented by these inequalities, ifj0 = ft then L(/0iSl} = 
= /o . /o( l ) = 2-/(0) = 2.0j(cx_) > 0, and V = /0(U) on (9£, a, W). Sincej0 is convex 
withj0(0) = 0, any point (u0, v0) of the convex subset of R2 defined by 

0 _ « _ 1 , jo(«) = V = j0(l) u 

is a convex combination of finitely many points (u,f0(u)). Therefore (u0, v0) = 
= BWo(U, V) for some W0 e 0>, i.e. 

(u0,v0)=(^^,Df(P0,Q0? 

for some P0, Q0 e 0>. This proves that ifj0 = fu then the bounds are attainable. D 

Example 2.2. For j(u) = |l - ua |1/a and a e (0, 1) we get from Lemma 2.8 attain­
able bounds 

(2.9) •(, + m&y (, _ mssff s f{P, & s _< , . e) (c, M). 
The lower bound (2.9) is for a = \ sharper than a bound used for the Hellinger 
distance y}i2{P, Q) by Le Cam [ l l ] . Analogically the functions f(u) = (1 — ua)/a + 
+ (w — l)/2 for a e (0, l) yield attainable bounds 

(2,o) [i _ (i + m&y-'-> (i _ m&y^-n s 

g a D*(P, Q) =
 X ( f ' Q ) . 

These bounds follow, however, from inequality (23) in [20] too. 

Lemma 2.8 together with the next complementary result proved in [21] are useful 
for comparisons of topologies in 0> which /-divergences give rise to. 

Lemma 2.9. If 

Lf(u)= inf Df(P,Q), U»= sup Df(P, Q) 
xHP,Q) = 2u xHP,Q) = 2v 

then Lf(u) is a convex increasing function on [0, 1] with Lf(0) = 0. If ||j|| = GO 
then Uf(v) = co unless v = 0 when it is zero. 

Remark 2.1. An old idea expressed already on p. 224 of [21] is to use Df(P, 0) 
as a global measure of differences between probabilities P(E), Q(E) on _$ in a minimum 
distance estimation. There is however an obstacle to this project. Namely, Df(P, P_) = 
= ||/| | on © whenever 0>e 1 3P@ so that T(P„) = 0 for all minimum divergence 
estimators T. At the same time the undesirable singularity SPe 1 3P0 takes place 
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whenever 3Pe contains nonatomic probabilities, e.g. in as frequent problems as 
estimation of location and scale or estimation of parameters of stochastic processes. 

This difficulty becomes quite comprehensible from the point of view of interpreta­
tion of theoretical probability in Kolmogorov's theory. According to this interpreta­
tion, the numbers ES(E) approximate the observed proportions P„(E) on a subclass 
S <= 38 of "observable" events. Thus, for any global measure D(P, Q) of differences 
between P(E), Q(E) on the class $ of observable events E, Pg is the better model 
of a reality represented by P„, the smaller is the quantity D(Pe, P„). (Estimators 
minimizing such a quantity are considered well-motivated in this paper). 

If the global measure D is specified as an/-divergence Df, then D(P, Q) measu­
res differences between P(E), Q(E) on 3fl, i.e. i = 38 and all events from 38 are 
considered observable. When 08 permits families SPQ singular with the whole family 
3Pe, then this specification obviously leads to a contradiction with what is considered 
"observable" and, consequently, "simple " (e.g. the support S0 of 3P0 as a comple­
ment of an infinite set dense in 9C is hardly observable). The specification D(P, Q) = 
= Df(P, Q) is thus justified only if 38 is simple in the sense that the underlying topo­
logical space 9C is discrete. In all other cases (including, of course, the previous one) 
Lemma 2.3 suggests to replace the above considered specification by D(P, Q) = 
= Df(P,^ 0s"), for a fixed algebra sd generated by a class $ c 38 of sufficiently 
simple "observable" events. 

The most elementary case is & = \E\ for a fixed event E e 38. In this case we get 
from Corollary 2.1 and Lemma 2.1 

. Df(Pf, Pf) = df(Pe(E), P„(E)) < | |/1 a.s. [P"e] , n = 1, 2, ... 

even if 3Pe 1 3P0 on 38. This strict inequality remains to be preserved even by a mean 
divergence 

EWg df(Pe(Ex), P„(EX)) = EWg df(Fg, F„) for Wg = Pe 

where the mean is taken over particular /-divergences df(Pe(Ex), P„(EX)) yielded 
by events E = Ex from a class & = \EX : x e 9C\. If $ is sufficient for 9C, then the 
mean divergence exists (cf. Sec. 1) and it represents similarities between theoretical 
model Pg and a reality P„ more objectively than any of the particular /-divergences. 
This motivates the following definition. 

Let there is a class $ = \EX : x e f j sufficient for 9C. A weakf-divergence of pro­
babilities P, Q e & is defined by 

(2.11) WDf(P, Q) = Ew df(F, G) (cf. Section 1 and Corollary 2.1) 

where IF is a measure on (9C, 38) called weight, possibly depending on P, Q. It is 
convenient to consider weights factorized as follows 

(2.12) W(E) = (p(F(x), G(x))dW (in symbols W = <pW), 

where W is a factorweight and cp(u, v), (u, v) e [0, l ] 2 , a measurable factorfunction. 
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Example 2.3. If SC = R, Ex = ( - oo, x) for x e R and the total weight W(R) = 1 
is concentrated at the x which maximizes | T ( x ) - G ( x ) | , then WX

1(P,Q) = 
= sup |T(x) — G(x)| is the Kolmogorov-Smirnov distance. The factorization 
(p(u, v) = v(l - v) or v(l — v)Ju(l — u) yields a generalized Cramer-von Mises or 
Anderson-Darling distance 

WX
2(P, Q) = EW(F - Gf or Wf(P, Q) - Ew J j — ^ ] 

(F - G) 

respectively (usual versions are yield by W= P). Extensions of both distances 
to 3C = Rk is straightforward. Extensions to infinite product spaces are possible too. 

Notice that replacing q in EQf(pJq) of (2.2) by another density w — dWjdX, one 
can avoid the difficulties mentioned in Remark 2.1 too. This motivates the following 
definition. 

A directed f-divergence of probabilities P, Q e 3? with a directing measure W 
on (3C, £%) possibly depending on P and Q is defined by 

(2.13) Df(P,Q\W)=E,qf(pJw)=EQf(p\w) A>P,Q,W, 

where conventions 0/(0/0) = 0 and (for j(0) = oo) 0/(0/w) = w lim e/(e) 
are added to those considered in (2.2). c i° 

Example 2.3. The directing density w(x) = p(x) |x — E p z | _ 1 on 3£ — fi yields 
the directed /^-divergences 

D(P,Q\W)- < x a - 1 ( E f i | ^ _ E p X |« _ x ) a e ( l > ^ 

for all P,Qe0>!. 

3. STANDARD D-ESTIMATORS 

Let 0>Q be a family of probabilities on a sample space (3C, £§). A mapping 
T : SP(T) -+ 0 defined by the criterion (for the definition of Df(P9, Q) see (2.2)) 

(3.1) T(Q) minimizes DQ(9) = Df(Pg, Q) on 6 

is called standard D-estimator with projection family SP0 and symbolically denoted 

T = SPe\Df. 

Suppose that {x} e ^ for all x e 3C. By (2.2) 

DPn(e) = Ifll if Pe(Sn) = 0 , 

DP„(e) = IPnf(PeJPn) + 0/(oo) P9(9C - S„) if Pe(Sn) € (0, l) , 
s„ 

DPn(0) = IPnf(Pe!p„) if Pe(Sn)=l, 
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where, here and in the sequel, S„ denotes the support of Pn and where pe(x) = 
— Pe({x}), p„(x) = P„({x}) for x e S„. We see from here that if 3S is "complicated" 
in the sense that 9£ is uncountable and {x} e l , x e f , then a non-triviality condition 
Pe(Sn) > 0 for some 8 e 0 cannot be satisfied by many P„ e SPe. If moreover 38 
admits families 3Pe continuous in the sense Pe({x}) = 0 for all x e X and 8 e 0 , 
then this condition is satisfied for none P„ e 0>e- Indeed, it is necessary to restrict 
the standard D-estimators to projection families 0>Q supported by discrete 9E as 
proposed in Remark 2.1 above. 

The following theorem and its corollary have been proved in [25]. 

Theorem 3.1. Let 3P@ be a ©-continuous family on a discrete 9£. If for each sample 
x either DPn(6) is constant on 0, or 0(x) = {8 e 0 : DPn(8) < GO} is compact, 
or 0(x) is (T-compact and 

DPn(9) < infHminfDpJ^-) 
<0J> / - C O 

for some B e 0(x) and Bj e 0(x) - 0j (cf. (1.2)), then T= S>e\Df is well defined. 

Corollary 3.1. Let SP@ be a ©-continuous family on a discrete 9C <=- R, let S9 

be supports of Pe&3PQ, let | / | | < co, 0 - R, and let 0 n [ - j , j ] be compact for 
allnaturalsj > j 0 . If there exists j \ > j 0 such that for all j > j 1 either 0 — [— j,j] = 
— 0, or lim Pej(x) = 0 for all x e S£ and Bje 0 — [—j,j], or [—sf, Sj~\ n S0j = 0 

]-* CO 

for all 8j€0 - [~ j , j] and some sequence Sj | co, then T = 3PQ\Df is well-defined. 

D 

If f\Sg is infinite then Oj(co) < co is necessary for the non-triviality of T = 3Pe\Df 
e 

even under restriction to discrete SCs. Analogically, if S„ exceeds (JSe andj(O) = co 
e 

then T(P„) = 0 so thatj(O) < co is necessary for robustness of standard estimators 
T = 0>e\Df w.r.t. the support modifying contaminations J 0 = (1 — e) 3Pg + s^f0. 
Only the standard D-estimators with | / | < co are simultaneously non4rivial and 
robust in the stated sense. This explains the semiboundedness considered in Corollary 
3.1. 

Example 3.1. The usual projection families 3Pe such as binomial, Poisson, uniform 
etc. are satisfying the conditions of Corollary 3.1 so that all T = 3fi

0\Df with ||j|| < co 
are well-defined. If 0 = [0, 1] and 

IMW) = i[i + <KUM - UM\. (̂{o}) = i - ^({i}). • 
where 0O , ©i denote the sets of rational and irrational numbers, then we get 
a ©-discontinuous family 3Pe. It is easy to see that for all T & 3P&\Df with this 3P9 

it holds T(P„) =1= 0 iff the sample mean x belongs to [^, 1] (in which case T(P„) = 
= {2x - 1} so that T(P„) = 2x - 1), i.e. none T = 0>e\Df is well-defined. D 
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Example 3.2. Let us consider T= 00\D° (cf. (2.4)) with / («) = - l n w , | / | | = 
= / (0) = oo, i.e. without the robustness property considered above. By (3.1), T(Q) 
maximizes EQlnp f l whenever the entropy H(Q) = — EQ lng is finite. If we denote 
by T the MLE with projection family 0>& under consideration then obviously 
T(Q) = T(Q) for all Qe0> with H(Q) < oo. In particular, T(Pn) = T(Pn) for all 
P„ e 0e. Thus for finite 9£ the standard D°-estimator is the well-known MLE. 

The first estimators ever labelled as "minimum distance estimators" have been the 
standard D restimators with °I = {0, 1, ..., k) and f(u) = (1 - uf (Cramer [7] 
and Neyman [15]), f(u) = (1 - u)2\u, f(u) = u In u (Rao [17, 18]). The general / 
has been introduced by Vajda [23]. Efficiency of estimators from this class has been 
studied by Vosvrda [26] under the same conditions on 3C and 0e as considered by 
Rao. According to [26] all T = 0>0\Df wi th/"( l ) 4= 0 are efficient and if, moreover, 
2/"(l) + / '"(l) = 0 then also efficient in a second order sense introduced by Rao 
[17]. 

4. WEAK D-ESTIMATORS 

Let 0e be a family of probabilities and iV& a family of weights on a sample space 
(3C, iM) and let a class 8 = {Ex : x e 3C] be sufficient for %. A mapping T: 0>(T) -+ 0 
defined by the criterion (for the definition of WgDf(Fe, G) see (2.11)) 

(4.1) T(Q) minimizes DQ(d) = We Df(Fe, G) on 0 

is called weak D-estimator with projection family 0>0 and family of weights W0 

and symbolically denoted T = 0e\iV' 0 Df. If 0 is structural then we write simply 
PjW Df for parents P, W of 0>0, "W 0, with IF replaced by <pW whenever convenient 
(cf. (2.12)). 

The next theorem and its corollary have been proved in [25] (the expression 
l£(x) denotes l£(xi) + • • • + 1E(X„); connected means that 0, 0 are the only open 
and at the same time closed subsets of 0 ) . 

Theorem 4.1. Let 0 be a structural connected space with P[0] (Ex) = P(E[8](x)) 
o n ^ x f and with a continuous mapping sending (6, x) into [d] (x). Let <P(u, v) = 
= df(u, v) (p(u, v) be bounded on [0, l ] 2 and W({x : lEx(x) * lEx(x)}) - 0 as 
x -+ x in X". Then the compactness of 0 implies the continuity of T = Pj(pWDf 

on X" and the cr-compactness of 0 together with the conditions 

DPn(B(x)) < inf lim inf DPn(6j) 

for some 6(x)e0,xef„c %' and BjB0 - 07- (cf. (1.2)), and 

t({x:iJWW)*iJ[e](i))})^o 
uniformly on 0 as x -+ x in £"", imply the continuity of Ton 3£n. 
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Corollary 4.1. The estimates of location T = P\(pW~xx, a e [ l , oo) with factor-
functions cp(u, v) = [v(l - vj]"'1!^"'1 + (1 - v)'"1] and factorweights W-4 A 
satisfying condition 

# ( ( - o o , E_1(i)) W((F-\{), oo)) * 0 for E(x) = P ( ( - o o , x)) , 

are well-defined in the sense that they are continuous on 9£n for all n under consider­
ation. 

Note that if the first condition of Theorem 4.1 concerning W holds and [0] : 
: 9C -> 3£ is continuous uniformly for all 9 e 0, then the second condition concerning 
W holds too. It is also to be noted that for all weak D-estimators of location and scale 
all conditions of Theorem 4.1 concerning 0 hold. 

Example 4.1. It can be shown that if, in addition to what has been supposed 
concerning q> and W in Corollary 4.1, sup |x| w(x) < oo, then all weak ^-estimators 
of location and-scale (M, S) = PjcpWx*, ae [ l , oo), are well-defined with estimates 
(M(P„), S(Pn)) continuous on 9£n = S" - Hn, where Hn = {x e R": xt = . . . = x„}. 
For x form the hyperplane Hn, (M, S)(Pn) = {T(l{0))} x (0, oo) c W x (0, oo), 
where Tis the corresponding weak ^-estimator of location considered in Corollary 
4.1 and 1{0} e 3Pe has been defined in Section 1. 

The method of minimum distance estimation, first outlined by Cramer and Ney-
man (see Sec. 3) and by Wolfowitz [27], has been revived as an alternative to MLE 's 
after the point of view of robustness has been introduced into statistics by Huber [8]. 
A weak x'-estimator of location has been studied by Rao et al. [19] and later by 
Parr and Schucany [16] together with some weak ^-estimators. Weak %2-estimators 
of location have been more systematically studied by Millar [13] and Boos [4]. 
Some weak ^-estimators w i th discrete projection families have been studied 
even earlier (see Mood et al. [14]). The concepts of weak /-divergence and weak 
D-estimator have been in a general form introduced by Vajda [23, 25] (cf. also [24]). 

5. DIRECTED D-ESTIMATORS 

Let SP0 be a family of probabilities and iV'0 a family of measures on a sample 
space (9C, @). A mapping T: 0>(T) -> 0 defined by the criterion (for the definition 
of Df(Pe, Q | W) see (2.13)) 

(5.1) T(Q) minimizes DQ(0) = Df(Pe, Q \ W) on 0 

is called directed D-estimator with projection family 0>0 and family of directing 
measures iVe and symbolically denoted T = SPQ^QJDJ. Since we shall mainly 
consider one-measure classes if0 = {W}, we shall usually write SPe\W\Df or simply 
P\W\Df for a parent P of 3f0 when 0 is structural. 

Remark 5.1. Df(Pe, Q | W) as a formal generalization of the /-divergence cannot 
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in general be considered as a quantity the minimization of which yields well-motivated 
estimators. Indeed, one can meet within this class estimators with quite curious 
properties. This is in particular true for many M-estimators of location with loss 
functions M(x) = f(\x)\ yielded by the directing parent density w(x) = p(x)\x\~l 

(any convex M symmetric about 0 is in this class). If we restrict to projection parents 
P with EPX = 0 then the directed D"-estimate T(Q) minimizes ~~Q\X — 9\~ if a e 
e (1, GO) (cf. Example 2.3) while it maximizes (!) EQ\X - 6\~ for a, e (0, l). It is there­
fore very important to be able to characterize directing measures and functions / 
yielding well-motivated directed D-estimators. This is the aim of the next our con­
siderations. 

Let A = {Q}U) :j = 1, 2, . . .} be a net of countable decompositions of SCsufficient 
for <% in the sense specified in Section 1 and let SSU) be a sub-cr-algzbra of 2& generated 
by S>U). 

Suppose that a cr-finite W dominates SPe and let WU), &>U) be restrictions of W, 
SPQ on SSU) and 0>U) extensions of 3PU) back to 0S with Randon-Nikodym densities 
dPU)\d If identical with pU) = dPU)\dWU). In accordance with Remark 2.1, a directed 
D-estimator T = 0>

e\if@\Df is said well-motivated if for some net A the correspond­
ing standard D-estimators T0'' _ SP{y)\Df tend to T in the sense that 

(5-2) lim TU)(Pn) = Te,(P„) 
j-^co 

for all compact 0 * c 0 and all x e f " with mutually distinct coordinates xu ..., x„, 

where T0, denotes the points of nvnima of Df(Pg, Q) on 0* <=. 0. 
A measure W on (3C, 83) is said equiuniform if there exists a net A of the above 

described properties such that, for every;', Wis constant on all sets from &U). For 
example, the Lebesque measure X or any W = X is equiuniform on 9C = V$k (on a more 
general locally compact group 9C one can take a Haar measure W). 

Theorem 5.1. All directed D-estimators T= &>g\W}D~, a e (0, l), with 3PS domi­
nated by an equiuniform cr-finite If are well motivated. 

Proof. (I) Fix a e (0, l) and x e T' with mutually distinct coordinates, p u t / ( H ) = 
= (l — u~)}a (cf. (2.4)), and denote by Dif the disjoint events of QiU) containing 
coordinates x{, i = 1 , . . . , n. By (2.2) 

->X-*5°. -V) = 1 ~~-r- f / ( i W - J ^ - 0 dW+p^ ~ U DU)o/(co). ' 
i=lnW(DiJ)JDij V \nW(DiJ)) i-i 

Taking into account 

(5.3) 0/(oo) = 0 , f(uv) = v~f(u) + f(v) for u, v l> 0 , 

together with the assumption W(DU) = W(Dlj) we get 
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= (n W(DU)Y I _ J _ f / ( o)} dW + f(nW(Du)) 
^nW(DiJ)jDij

J{Pe) W(Dnj) 

It follows from here that ^ ' ( p j is a set of parameters minimizing 

« i - i IY(Z);j.) J f l j . 

(II) Since If is a-finite, it is easy to see that p'g
J) defined in Section 1 coincides a.e. 

[W\\ with pg
J> defined here provided X = W. Hence it follows from (1.4) and from the 

continuity of / that f(ptf') -*f(pe) a.e. [W]. Since pg
J)(x) = pl

9
J)(x,) on Du, the just 

established result yields 

^ | / ( r f ° ) d »Y = MJ)(x,)) - . /(^(x,.)) 

for all x ; 6 # except a set of JY-measure zero. Therefore 

M - M « ) = - tf(Pe(xi)) = -P„/(ft) a.e. \W>\\ 
n ; = i 

and, consequently, 

D^ ^ EPJ(Pe) a.s. [ J*] . 

Combining this convergence with the result proved in (I) and taking into account 
the compactness of 0 * we see that (5.2) holds. • 

Note that a particular variant of this theorem with SS = R and W = I on R has 
first been proved in [24]. 

In an attempt to extend this proof to other functions / we find the following two 
properties indispensable: (i) | |/ | | < oo, (ii) a functional equation/(Mu) = (p(v)ft(u) + 
+ f2(v) is required to be satisfied in the domain u, v > 0 by some 4>,ft,f2 (cf.(5.3)). It is 
easy to see that (ii) holds only if / I ( M ) = f2(u) = f(u) for u > 0. Further, by Aczel 
[ l ] , all continuous solutions / , <P of the equation / ( « , v) = $(v) f(u) + f(v) with 
/ ( l ) = 0 are of the form <P(v) = vx, ae R, / (« ) = c(u) (l - u") for a =1= 0 and 
f(u) = c In u for a = 0. Therefore the only functions admissible in the proof are 
those considered in Theorem 5.1 (/(«) for a ^ 1 does not satisfy assumptions of 
Section 1; the limit values a = 0, a = 1 are analyzed separately below). This 
conclusion is still not a proof that the only well-motivated directed ^-estimators 
are the Da-estimators but it provides certain evidence in favour of such a conjecture. 
In any case this problem deserves a deeper attention. 

Hereafter we denote the well-motivated D-estimators T = 0>e\W\D* with &>0 <£ W 
briefly by Tx = 8?0]\ W. If & is structural and P is a parent of 0>e then we shall write 
simply Tx = ?// Winstead of Tx = &e}]W. 

Since the functions DPn(6) = EP n(-ln pg) or DPJ6) = EPn(L - pg) are the limits 
of the function a - 1 EPn(l — px) as a f 0 or a f 1 respectively, it holds for the sets 
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of parameters T°(P„), Tr(P„) minimizing these two functions 

lira T%.(P„) = Te.(P„), lim T%.(P„) = T0t(P„) 
«|0 a l l 

for every compact 0 * and every P„ e 3Pe. Hence, if W\s equiuniform then the limits 
T° = &0\\W, T1 = &B\\W of the well-motivated estimators Ta = ^0//lV, a 6 (0, 1), 
are well-motivated too. 

Thus in what follows all estimators Ta = ^0jjW, a e [0 ,1] , with equiuniform W 
will be considered well-motivated. Remind that, by (2.4) and (5.1), Tx is a mapping 
0>(T) -» 0 defined by 

*-(«)—°M-<Kp;f ;f:'o » « » " - - 5 ' 
Theorem 5.2. Let us consider estimators T* = 3P0\\W, ae [0, 1], with projection 

densities pe(x) continuous on 0 x SC. (a) If 0 is compact, then the estimates TX(P„) 
are continuous on T\ (b) If 0 is a-compact, if pe(x) are continuous on 3C uniformly 
for all 9 e 0, and if lim p0.(x) = 0 for all x e # and 0, e 0 - 0 , (cf. (1.2)), then T2 

is well-defined and the estimates TX(P„) are continuous on S"0 u int (St"" — S",), 
where S0 = (J {x e #" : pg(x) > 0} is an open support of SPe and int denotes the 
interior. 0 

Proof, (a) Since all functions 

, . /ux a e ( 0 , 1] 

are continuous on (0, co), the functions 

DPn(0) - i f g(Pe(xi)) 
n ;=i 

are continuous on 0 x 9Cn. Therefore, if 0 is compact, then TX(P„) is non-empty 
and Tx : SC" -> C(0) is continuous. Consequently (cf. Convention 1.1), TX(P„) = 
= T(7~*(P„)) is continuous on 3C". 

(b) If x e $"" - Sg, then Z)Pn(0) is constant on 0 (either 0 or - co) so that TX(P„) = 
= 0 for all a e [0 ,1] . Hence TX(P„) = x(0) is constant on 9£" - S"9. If x e S"0 then 

M»)><°
 fot "e(o

n
i] 

^nV ' \ - co for a = 0 . 
Since by assumptions 

* - - > « , ( « , ) - < ° [0t a e ( ° n
J ] for all O , e 0 - 0 , , 

,-»«, 'A J/ \ -oo for a = 0 J J 

TX(P„) c 0 n c 0 , for all sufficiently large j . Thus the continuity of DPJ6) in part (a) 
of the proof implies that TX(P^ is non-empty compact. Analogically as in the proof 
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of Theorem 4.1 in [25], the uniform continuity of pe(x) on <X w.r.t. 6e 0 yields 
the continuity of Tx: X" -* C(&) so that the continuity of Ta(P„) = T(Ta(P„)) on S"0 

follows from Convention 1.1. • 

Corollary 5.1. Let p = dP\dl be continuous on R with a support S <= R. All 
estimators of location and scale Ta = (Ma, Sa) = P]]X, a e [0,1] , with projection 
subgroups 0e = R x [e, e"1] of the group R x (0, oo), e e (0 , 1), are well-defined 
and the estimates TX(P„) are continuous on 5" u (int (R" - S") c R". 

Example 5.1. A general MLE is defined by a projection family &e dominated 
by some (directing) tr-finite measure If on a sample space (SC, 3d). It follows from 
(5.4) that this MLE coincides with T° = 3P@\\W. The T° is the only member of the 
family Ta = 0>e]]W, a e [0 ,1] , independent of IT in the sense that, if T° = &e\\W, 
w, w = dW, dW\dX for some X $> W, W, and EQ In (w\w) < oo, then Q e 3P(T°) n 
n 0>(t°) and T°(Q) = T°(Q) (thus, in particular, T°(P„) = T°(P„) on 3T a.s. \3P%\). 
The dependence of the rest of this family on IT vanishes when & becomes structural 
since there is usually a unique directing W satisfying the equivariance conditions 
of Theorem 6.3 below. This IT is usually the Lebesque or Haar measure producing 
at the same time well-motivated variants of Ta, a 4= 0, (cf. Theorem 5.1). 

Example 5.2. It is well known that the location and scale estimator T° = (M°, S°) = 
= No (0,l)]\X is the sample mean-sample deviation 

(5.5) (M°(6), S°(Q)) = (EQX, [EQ(X - EQX)2f'2) for Qe 0>(T°) - 0>2 . 

It is also well known that the estimator of location T° = P\\X with doubly exponen­
tial P is the sample median 

(5.6) T\Q) = G~\\) for Q e 0>(T) = 9 . 

The estimator of location T1 = No(0, l)\\X is the "mean likelihood" estimator 
of [2] while T1 with projection parent density 

(5.7) pW = f l ( - . / 2 > i , 2 )W ( l -4x 2 ) 

is the "skipped mean" of Huber [9]. 

Example 5.3. Ta = No(0, \)\\X with a € (0-1,0-3) are highly recommended esti­
mators of location. They are good from the point of view of both efficiency and 
robustness because their sensitivity curves quite closely approximate the curves 
of estimators A 17 —A 25 and AMT which emerged as most promising robust 
estimators of location from the extensive experimental study [2]. 

The estimators Ta = ^©///t, a e [0 ,1] , with projection families 3?e on R have 
first been introduced in [23] and first motivated in the sense of Theorem 5.1 in [24]. 
The general Ta = 0>e\jWvie have introduced in [25] but Theorem 5.1 is first proved 
here. 
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6. 1NVARIANCE AND EQUIVARIANCE OF D-ESTIMATORS 

We shall establish an invariance of D-estimators T: 3P(T) -> 0 with projection 
families 3P0 defined by a minimization specified in (3.1) or (4.1) or (5.1) and by the 
Convention 1.1. 

Theorem 6.1. Let t be a mapping from 0 into a parameter space © and let T: 
: 3P(T) -> 0 be a D-estimator of 9 = t(8) defined by the criterion 

t(Q) minimizes DQ(9) = inf DQ(0) on 0 . 
0 E t - ! ( S ) 

Then 0>(T) <= SP(T) and f (0) = t(T^S)) for Q e SP(T). 

Proof. The equivariance of MLE's T with projection SP0 < A and its proof 
given by Zehna [28] remain unchanged if the domain SPe of these estimators is ex­
tended to SP(T) c 0> provided the functions DPn(9) = EPn(-\n pg) minimized by 
T(P„), Pne&>a, in [28] are replaced by DQ(0) = E Q ( - lnp e ) minimized by T(Q), 
Q e 3P(T). Sines this modified proof employs no specific properties of functions 
EQ( —In pg) it can bs applied to arbitrary functions DQ(0), in particular to those 
figuring in (3.1), (4.1), or (5.1) respectively. We avoid reproduction of details here. 

D 

Corollary 6.1. D-estimators are invariant w.r.t. 1-1 reparametrizations t : 0 -> 0 
of projection families 3PB in the sense that if Tis a D-estimator with projection family 
&e = {Pe = P,-HS) -3P0-.Q-&) then 3P(f) = SP(T) and T(Q) = t(T(Q)) for any 
QzSP(T). 

In the rest of this section we suppose that 0 is structural on 9C. An estimator 
T:^>(T)->0 of a structural parameter is said equivariant if 3P(T) [0] = 
= {Q[0] : Q 6 3P(T)} c SP(T) and (for the notation [0], 0"1 see Sec. 1) 

(6.1) T(Q[Q\) = Q~XT(Q) for all Qe3P(T), 0 e 0 . 

For estimators of location or scale M or S, (6.1) takes on the following form 

(6.2) M ( e [ M ] ) = A l ^ or S(Q[», a]) = SM 
a a 

respectively (cf. the identity [fi, a ] " 1 (M(Q), S(Q)) = ((M(Q) - n)]a, S(Q)ja) 
following from the definition of [^, c ] " 1 = [(/(, cr)^1] in Ssction l). If (6.2) holds, 
M or S are said location-scale equivariant. M is location equivariant of S is scale 
equivariant if (6.2) holds with a = 1 or fi = 0 respectively. 

Theorem 6.2. If a family S = {Ex : j e i j sufficient for SC satisfies the condition 
[0] (Ex) = Em(x) for all x e SC, 9 e 0, then all weak D-estimators T = P]<pWDf of 
8 e 0 are equivariant. 

Proof. Analogically as in part (I) of the proof of Theorem 4.1 in [25], the assump-
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tion of Theorem 6.2 implies 

DQ(6) = E^ df(F, G[8]) <p(F, G[S]) for all 9 e 0 

where DQ is the function defined in (4.1) and G[9] is a d.f. of Q[8] e 3P. Therefore, 
for any fixed 6 e 0 , 

DQm(9) = DQ(96) for all 9e0 . 

We see from here that DQ(9) attains its minimum on © at some 0* iff DQm(9) attains 
its minimum on 0 at 9~19^ which implies T(Q[6] = 6~1T(Q). Since this is true 
for any 9 e 0, it is obvious that Q e 0>(T) iff Q[9] e &>(T) for all Be 0 and, moreover, 
by (1.5) 

T(Q[9] = r(T(Q[9])) = - ( f T ^ O , ) ) = 0 - ^ ( 7 ( 6 ) ) = r 1 T(6) 

for all 0 e 0 . Q 

Theorem 6.3. If »f[0] <g If, if the Jacobians J(6) = dW[9]]dW are constant 
on 3C for all 0 e 0, and if J (00) = J(0) J(0) for all 6, 9 e 0, then all directed ^-es t i ­
mators Tx = Pj]W, a e [0, 1], of 9 e 0 are equivariant. 

Proof. It is easy to see that 

(6.3) pe(X)=J(9-1)P([e]-1(x)) for Pe = W l , pm& 
dW dW 

Thus it holds for DQ figuring in (5.4) and for g defined in part (a) of the proof 
of Theorem 5.2 

DQ(9) = EQ g(J(9~ -) p([9] -' (xj) = EQm g(J(6~') p(x)) for all 9 e 0 . 

Therefore the multiplicativity of J yields for any fixed 0 e 0 

Dam(S) = EQm g(J(9~l) P(x)) = EQ[eg] a ^ " 1 ) " 1 J((99)~x
 P(x)). 

Since obviously J(d~l)~1 = c e (0, oo) on 9C for the fixed 0 e 0, it follows 

D {5)_/a(c)DQ(99) if a 6 (0,1] arcje/ (°'^ 
D<*''W)-\g(c) + Da(e8) if a = 0 W h e r e * W 6 \ « . 

We see from here that DQ(9) attains its maximum on 0 at some 9* iff DQm(9) attains 
its maximum on 0 at ( T 1 ^ which implies Ta(Q[0]) = 0" 1 Fa(e)-The rest is the 
same as in the proof of Theorem 6.2. 

Corollary 6.2. Let us consider the parameter of location and scale 8 = (ii, a)i e R x 
x (0, oo). (a) The assumption of Theorem 6.2 holds for intervals Ex = ( - c o , x) on 
I = ff so that all weak Z)-estimators of locations and/or scale T ^ Pjj(pWDf are 
location and/or scale equivariant respectively, (b) The assumptions of Theorem 
6.3 hold iff Wis the Lebesgue measure (or a constant multiple of it) so that all directed 
/^-estimators of location and/or scale Ta — T//A, a e [0 ,1] , are location and/or 
scale equivariant respectively. 
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It is easy to verify from the definition that if M is a location equivariant estimator 
of location with 0>(M) [0, <r] <= 0>(M) for all a (S is scale equivariant estimator 
of scale with 0>(S) [fi, 1) <= 0>(S) for all jti) and T is a location-scale equivariant 
estimator of scale with 0>(T) c ^ ( M ) (of location with < (̂T) e= 0>(S)), then afactori-
zed variant MT of M(S r of S) defined by 

(6.4) MT(Q) = M(Q[0, T(Q)J) T(Q) (ST(Q) = S(Q[T(Q), 1])) 

is location-scale equivariant estimator of location with 0(MT) = 0>(M) (of scale 
with 0>(ST) = 0>(S)). 

(Received September 9, 1983.) 

R E F E R E N C E S  

[I] J. Aczel: Lectures on Functional Equations and Their Applications. Academic Press, 
New York 1966. 

[2] D. F . Andrews, P. J. Bickel, R. R. Hampel, P. J. Huber, W. H. Rogers and J. W. Tukey: 
Robust Estimates of Location. Princeton Univ. Press, Princeton, N. J. 1972. 

[3] D. E. Boekee: The Z)/-information of order s. In: Trans. 8th Prague Conf. on Inform. 
Theory, etc., Vol. C, Academia, Prague 1979, 55—68. 

[4] D. D. Boos: Minimum distance estimators for location and goodness of fit. J. Amer. Statist. 
Assoc. 76 (1981), 663—670. 

[5] I. Csiszar: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den 
Beweis der Ergodizttat von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 
Ser. A S (1963), 85 -108 . 

[6] I. Csiszar: Information-type measures of difference of probability distributions and indirect 
observations. Studia Sci. Math. Hungar. 2, (1967) 209—318. 

[7] H. Cramer: Mathematical Methods of Statistics. Princeton Univ. Press, Princeton, N. J. 
1946. 

[8] P. I. Huber: Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964), 
7 3 - 1 0 1 . 

[9] P. I. Huber: Robust statistics: a review. Ann. Math. Statist. 43 (1972), 1041—1067. 
[10] S. Kullback and R. A. Leibler: On information and sufficiency. Ann. Math. Statist. 22 

(1951), 7 9 - 8 6 . 
[II] L. Le Cam: On the information contained in additional observations. Ann. Statist. 2 (1974), 

630-649. 
[12] R. S. Lipcer and A. N. Sirjaev: Statistics of Random Processes (in Russian). Nauka, Moscow 

1974. 
[13] P. W. Millar: Robust estimation via minimum distance methods. Z. Wahrsch. verw. Gebiete 

55 (1981), 7 3 - 8 9 . 
[14] A. M. Mood, F. A. Graybill and D. C. Boes: Introduction to the Theory of Statistics. 

McGraw-Hill, New York 1963. 
[15] J. Neyman: Contributions to the theory of ^2-test. In: Proc. 1st Berkeley Symp. on Math. 

Statist., etc., Univ. of Calif. Press, Berkeley 1949, 239—273. 
[16] W. C. Parr and W. R. Schucany: Minimum distance and robust estimation. J. Amer. Statist. 

Assoc. 75 (1980), 616-624. 
[17] C. R. Rao: Asymptotic efficiency and limiting information. In: Proc. 4th Berkeley Symp. 

on Math. Statist., etc., Vol. 1, Univ. of Calif. Press, Berkeley 1961, 531—546. 
[18] C. R. Rao: Criteria of estimation in large samples. Sankhya 25 (1963), 189—206. 

207 



[19] P. V. Rao et al.: Estimation of shift and center of symmetry based on Kolmogorov-Smirnov 
statistic Ann. Statist. 3 (1975), 862-873. 

[20] I. Vajda: Limit theorems for total variation of Cartesian product measures. Studia Sci. 
Math. Hungar. 6 (1971), 317-333. 

[21] I. Vajda: On the/-divergence and singularity of probability measures. Period. Math. Hungar. 
2 (1972), 223-234. 

[22] I. Vajda: ^-divergence and generalized Fisher information. In: Trans. 6th Prague Conf. 
on Inform. Theory, etc., Academia, Prague 1973, 873 — 886. 

[23] I. Vajda: Theory of Information and Statistical Decision (in Slovak), Alfa, Bratislava 1981. 
[24] I. Vajda: A new general approach to minimum distance estimation In: Trans. 9th Prague 

Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. 
[25] I. Vajda: Minimum divergence principle in statistical estimation. Statistics and Decisions 

(submitted). 
[26] M. Vosvrda: On second order efficiency of minimum divergence estimators. In: Trans. 

9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. 
[27] J. Wolfowitz: The minimum distance method. Ann. Math. Statist. 28 (1957), 75—88. 
[28] P. W. Zehna: Invariance of maximum likelihood estimation. Ann. Math. Statist. 37 (1966), 

755. 

Ing. Igor Vajda, CSc, Ustav teorie informace a automatizace CSAV (Institute of Information 
Theory and Automation — Czechoslovak Academy of Sciences), Pod voddrenskou vezi 4, 
182 08 Prague 8. Czechoslovakia. 

208 


		webmaster@dml.cz
	2012-06-05T12:35:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




