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K Y B E R N E T I K A — V O L U M E 14 (1978), N U M B E R 2 

Optimal Control under Discrete Observation 
of Continuous Stochastic Systems 
with Time Delay 

JOZEF KOMORNIK 

The linear-quadratic problem is considered. The observations are supposed to be indirect and 
affected by noise. The solution of filtration and smoothing problems which is needed for the 
optimal control is given by a recursive system of deterministic differential equations. 

PRELIMINARIES 

We consider a system described by the linear stochastic differential equation with 
time delay 

(1) dx(t) = [A0(t) . x(t) + f At(t, T) . x(t + T) dT + A2(t) . x(t - h) + 

+ B(t). u(t)] dt + G(t). dw(t) for ( e [(0, T] 

with a deterministic bounded and measurable initial condition x0(r); T e [ ( 0 — h; f0] 
where: 

x(t) is the n-dimensional state vector of the system, 
u(t) is the p-dimensional control function, 
w(t) is the n-dimensional Wiener process with covariance / . t, 
A0, Au A2, B, G are matrix coefficients of appropriate types which are continuous 

in their domains. 

We suppose that we have an increasing sequence {tk}k=i c (r0, T) of observation 
times and that o-dimensional results of observations are described by the equations 

(2) z(tk) = Ck. x(tk) + ek 

where {Ck}k=l is a sequence of matrices of type q x n and {ek}k=1 is a sequence 
of independent normal random variables with zero mean and covariances Ek; k = 



= 1, e . . , m. Further we suppose that the random variables w(t) and ek are indepen- 103 
dent for any t e [t0, T] and k = 1, .. .,m. 

For t e [t0, T] we define a <r-algebra J% by 

y = | { f l , 0 } for ts\t0,t,), 

U{z( t j) ; ...,z(tk)} for te\tk,tk+1). 

The set of admissible control functions contains all nonanticipative (with respect 
to the system {^t}) functions satisfying the condition 

E\\u(t)\\2 d. < oo 

where ||. || stands for the Euclidean norm. 

Our aim is to minimize the loss function 

L(x0, u) = E \ c(s, x(s), u(s)) ás , 

where 

c(s, x(s), u(s)) = x'(s). Q,(s). x(s) + u'(s) . Q2(s). u(s) 

Qi(s); Q2(s) are continuous matrix functions with nonnegative definite and positive 
definite values, respectively. 

OPTIMAL CONTROL 

We can write the equation (l) in the simplified form 

(la) dx(t) = r í A(t, т ) . x(t + т) åџ(т) + B(t). w(ř)l dí + G(t) dw(t) 

where we put 

j- A0(t) for T = 0 , 

A(t, T) = Ax(f, T) for T E ( - / ; , 0 ) , 

v A2(t) for T = - h , 

and 

li(M) = X(M) + card (M n{-h, 0}) 

for any Lebesgue measurable subset M of [ — /?. 0] (1 is the standard Lebesgue 
measure). 



104 Let {^t}teit0,Ti be a nondecreasing system of a-algebras generated by observations. 
We put 

(3) X,(T) - E[x(t + x)l&t] X,(T) = x(t) - X,(T) . for - e [ - / . , 0 ] 

x(t) = x,(0) x(t) = x,(0) = x(t) - x(t) 

The following solution of the optimal control problem for any admissible observation 
rule was developed in [4] by methods similar to those used in [3] and [2]. 

Lemma. The optimal control is given by the formula 

(4) u(t) = K0(t) . x(t) + i Kl(t,x).xt(x)dx 

where 

(4a) K0(t) = - Q-2 \t). B'(t). W0(t); Kt(t, T) = - Q2 \t). B'(t). W,(t, x). 

The matrix functions W0(t); Wx(t, x) can be obtained as a part of the unique solution 
of the known system of three Riccati type equations (cf. [ l ] , [3]). 

FILTRATION 

To obtain the optimal control function we have to determine the function xt(x), 
te[t0,T];xe[ — h,O]. We return to the discrete observation case and put 

£fc(t) = E[x(t)j&lk] , r,k(t) = x(t) - ik(t) , 

Kk(t, s) = cov [r\k(t); r\k(s)] 

for k - 0 , 1 m ; t e[tk - h; tk+1] (where tm +1 = T). 

Further we put 

z(fk) = z(h) ~ Ck . ^v(tk); Fk = [Ck. nk.r(tk, tk). C'k + Ek]
 + 

Remark 1. Notice that for ts[tk;tk+l] k = 0,1, ...,m and T e [ - h , 0 ] the 
following equation holds 

x,(x) = £t(t + T) . 

Definition, a. Random vectors x ; of dimension nh i = 1, . . . , p are called jointly 
Gaussian if the joined random variable 

(xi,i> • • •. x l j m i , x 2 i l , . . . , x2i„2, . . ., XPi, . . ., XPnp) 

is Gaussian. 



b. A measurable n-dimensional stochastic process x(f); t e [t', t"] is called Gaussian 195 
if any p = 1, 2, . . . and s_, .. ., sP e [.', t"] the random variables x(s_), . . . , x(sP) 
are jointly Gaussian. 

Proposition 1. a. The functions <__(f), fulfil on [tk, tk+l] the differential equation 

(5) ^ = f ° A(t, T) . ,„(f + T) dn(z) + B(f). u(t) 
df J-» 

with the initial condition 

(5a) {_(.) = {___(_) + _„(s) for fc __ 1 ; s e [f„ - h; f„] 

and 

(5b) .o(s) = x0(s) for s e [ f0 - h; t0] , 

where 

(6) Ak(s) = £[M„_1(s)/f(f„)] _- jt_(_. f„) . C_. F„[z(f„) - C_. «.__(.•_)] • 

b) The functions tjk(t) fulfil on [f„; f t + 1] the differential equation 

(7) d^„(f) = J f A(f, T) . r,k(t + T) d/.(t)l df + G(f) dw(f) 

with the initial condition 

(7a)' n„(s) = .„_ ,(s) - _„(s) for fc __ 1; s 6 [f„ - /,; f„] 

(7b) 7o(s) = 0 for se[t0 - h; t0] . 

Proof. The solution x(f) of equation ( l) can be expressed in the form (cf. [5]) 

(8) x(t) = f Y(t, tk, T) . x(tk + T) d^o(i) + [' X(t, s). B(s). u(s) ds + 
J - f t J tk 

+ J X(t, s). G(s) dw(s) 
Ji« 

where X(t, s) is the matrix solution of the equation 

(lb) M - i i . = f° A(t, T) . X(t + T, s) d/i(T) 
Sf J _,, 

subject to the initial conditions X(t, t) = I, X(t, s) = 0 for t < s. The function 



106 Y(t, tk, T) is defined for t e [tk, T]; x e [-h, 0] by 

N f X(t, tk) for x = 0 , 
Y(t, tk,x) = \ y J 

lX(t, tk + x + h).A2(tk + x + h) + 
rx + h 

+ X(t, tk + s). Aj(tk + s, x - s)ds for xe[-h, 0] . 

The measure /t0 is defined on a Lebesgue measurable subsets of [ — h, 0] by 

H0(M) = X(M) + card (M n {0}) = /A(M) - card (M n {-/j}). 

Taking the conditional expectation with respect to fFt we get for t e [tk; tk+l~\ 

(9a) 4 ( 0 = f° F(f, f„ T) . ^ ( . t + T) d / to(r) + f' X(r, s ) . B(s). M(s) ds 
J -h J tk 

(notice that u(s) is !Ftk measurable for se [tk; tk+1)), and 

(9b) r,k(t) = f ° Y(t, tk, x). r,k(tk + x) dfi0(x) + f' X(t, s). G(s) dvv(s). 
J-h J tk 

Differentiating (9a) and (9b) we obtain equations (5) and (7). We can rewrite (9b) 
in the form 

Vk(t) = yk(t) + vk(t) te[tk;tk+l], 

where 

(9c) yk(t) = f Y(t,tk,x),h(tk + x)dfi0(x) 

and 

(9d) vk(t)= {' X(t,s).G(s)dw(s). 

Considering the stochastic integral on the right-hand side of (9d) as a limit of the 
integral sums in the sense of the mean square (cf. [2], ch, 3) we deduce that the sto
chastic process vk(t), t e [tk, tk+,] is Gaussian (cf. [6]. ch. XIII). From (9b) and (7b) 
we get 

»/o(0 = 0 for t E [t0 - h; t0] 

rio(t) = »o(0 f o r te[to;ti], 

hence the process t]0(t) is Gaussian on [f0 - h; tt~]. Suppose that for k ^ 1 the pro
cess ^ - ^ O is Gaussian on [tk - h; tk"}. For k = 1, te [r. - h; ti] we have 

Ut) = E[x(t)\^tl] = E[x(0|Z(tO] = E[(^o(0 + »?o(0)/2('i)] = 

= Ax(t) + Z0(t). 



For k ^ 2 the Gaussian random variables t]k-1(t); t s \tk — h; tk] and 

z(tk) = z(ft) - E\z(tk)lz(tl), ..., z fo . . ) ] = Q . %_!(.*) + efc 

are independent of z(<.1), . . . , z (^_ t ) . Thus for t e \tk - h; tk] we have 

£ M 0 / ^ J = £[(4-i(0 + ^- i (0) /^J = 

= 4-i(0 + %-iWM'i) . • • -, -fo-i). z(t*)] = 

= C*-i(t) + £[%-l(t)/^rfe-J + E[^-1(t)/2(t0] = 4- i (0 + 4 ( 0 -

Hence for fc ̂  1 equations (5a) and (7a) 

tiu(t) = >/t-i(0 - I%*-i(0/z(t*)]; 

4(0 = 4-i(t) + %*-i( tM t*)] ; t e [t* - h; tj ; 

result from the assumption that the process t]k_1(t) is Gaussian. Equation (6) 

^) s %-. (W = 
= cov [!fc_..(0. z(ft)] {cov [ z ( 0 , z (^ ) ]} - 1 . z(tk) = 

= -.^(f, tk) .Ck.Fk. \z(tk) - Ck . &_.(.»)] 

results from the normal correlation theorem (cf. [6], ch. XIII). The stochastic process 
t]k(t); t e \tk — h, tk] is Gaussian according to equations (7a) and (6). Considering 
the integral on the right-hand side of (9c) as a limit of integral sums we conclude 
that the stochastic process yk(t); t e \tk, tk+1] is Gaussian and independent of vk(s); 
s e \tk, tk + 1]. Therefore the stochastic process t]k(t) = yk(t) + vk(t); te\tk — h, tk + 1] 
is Gaussian. 

Proposition 2. Functions nk(t, s) fulfil for s, t e\tk; tk + 1] the following system 
of differential equations 

(10a) *BM = f ° A(t, T) . nk(t + T, t) d^(x) + f° nk(t, t + x). A'(t, x) d^(x) + 
dt J -h J-„ 

+ G(0.G'(0, 

(lob) M ^ = r° 4 f ; T ) . ^ + T)S)dAi(T) 

^ J - f t 

with the initial conditions 

(10c) nk(t, s) = nk-t(t, s) - n.-^t, tk) .C'k.Fk.Ck. nk_t(tk, s); 
t, se\tk- h; tk] 



108 Proof. Formula (10b) follows immediately from (7). To obtain (10a) we make 
use of (7) and the modification of Ito formula for differentiating a composed function 
(cf. [3]). Let k = 0, 1, . . . . The random variables 

>/*(0 = »/fc-i(0 - £[>/*-i(0/f('*)] ' e _* ~ h; tk) 

are independent of z(tk) and of Ak(s) = nk(s, tk). Ck. Fk . z(tk); se[tk — h, tk~\. 
Hence 

nk(t, s) = £ [ ^ ( 0 . flits)] = -[(ffc-xW - 4 ( 0 ) • *»(-)] = 

= £[%_ x (0 • if»(s)] = -[f/fc-xW • T*-i(s)] -

- £ [ ( % (0 + 4 ( 0 ) • - i(-)] = *_-i(*. s) - £ [ 4 ( 0 • - _ - ) ] ' -

= %-i( t . s) - 7ifc-i(f, h) .C'k.Fk.Ck. Tti-^s; O 

and formula (10c) holds. 

Remark 2. Formula (4) for optimal control can be rewritten in the form 

(11) u(t) = f K(t, T) . Ut + T) d^0(T), for t e [tk, fk+1] 

where 

fi^o(0 for T = 0 , 

( ._.( . , -) for TG [- / i , 0) 

and K0 and K t are given by (4a). 

Equation (5) can then be transformed into the form 

( 1 2 ) ML _ f ° ^ t) . £fc(. + T) <J/I(T) for . e [tk; tk + l] 
dt J_ h 

where 

Ac(t, T) = A(f, T) + B(t). K(t, T) 

Remark 3. The system of equations (10) does not depend on results of observations 
and can be solved in advance. The linear form of these equations enables us to use 
contraction mapping arguments for proving uniqueness of the solution nk(t, s). 

Remark 4. From equations (12) and (8) we obtain 

(13) 4 ( 0 = f Yc(t, tk, T) . Zk(tk + T) d/i0(r) = k _ . ( 0 + 4 ( 0 



where <___! is the unique prolongation on [j___, /_ + 1 ] of the solution £___ of equation 109 

(12) with the initial condition 

____(-); se[*___ - h; r___] 

and 

4 ( 0 = Г ľ c ( џ t , т ) . Л ( ( t + t ) d . 0 ( t ) 

is the solution on [tk; r_ + 1 ] of (12) with the initial condition J_(s); s e [«_ - k; f_] 

given by equation (6). 

Substituting (13) into ( l l ) we get 

(14) «(0 = f K(t, T) . £___(. + T) d/i0(r) + f K(t, T) _1_(. + t) d/.0(-) = 

= «»__(*) + 5_(0 
where ____(0 would be the optimal control without the new information from 

observation z(tk) and 8k(t) is the correction caused by this information. 

(Received March 29, 1977.) 
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