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K Y B E R N E T I K A - V O L U M E 24 (1988), N U M B E R 5 

ON THE CONSISTENCY OF A LEAST SQUARES 
IDENTIFICATION PROCEDURE* 

PETR MANDL, TYRONE E. DUNCAN, BOZENNA PASIK-DUNCAN 

Conditions for the convergence of parameter estimates to the true value applicable in self-
tuning control models are presented. Persistent excitation property is proved by control theory 
methods. 

1. INTRODUCTION 

The paper deals with random processes the trajectory of which fulfills 

(1) dXt =f(a)Xtdt + Utdt + dWt, t^O. 

In (1) W = {Wt, t ;> 0} is the ^-dimensional Wiener process with incremental variance 
matrix h, 

dWtdWt' = hdt. 

Prime denotes the transposition. U = {Ut, t 7z 0} is a random process nonanticipative 
with respect to W. f(a) denotes an n x ^-matrix of the form 

j(«) = j o + «7 i + ••• + « " / , , « = (al,...,am)'eUm. 

jo,/i, •••>/,„ a r e given matrices, a is a parameter the true value a0 of which is to be 
estimated from the observation of X and U. 

The paper continues the research of parameter estimation in linear systems initiated 
in [2], [5], and shows that the applications of control theory methods to the con­
sistency problems presented in [4] can be developed to obtain explicit results. The 
methods were extended in [1] to embrace the estimates of the drift parameters. 

The least squares estimate of a0 on the basis of {Xt, t ^ T}, {U„ t ^ T) is denoted 
by a*. It is defined as follows. Let / be a nonnegative definite symmetric matrix. 
Heuristically a* is the minimizer of the quadratic functional 

(2) \l (X, - j(a) X, - Ut)' l(X, - /(a) X, - Ut) dt, 

* This research has been partially supported by the U.S. National Science Foundation 
Grant ECS-8403286-A01. 
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where Xt denotes the derivative of X, which in fact does not exist. To improve this 
we substract from (2) 

H X',IX, dt 

which does not depend on a and rewrite the remaining terms as 

(3) \T
0 (/(a) X, + [/.)' l(f(a) X, + U,) df - 2 J'J (/(a) X, + U,)' I AX,. 

Equating the derivatives of (3) with respect to a' to 0 one obtains the linear system 
of equations 

(4) I Jo X'f'JfjX dt aT
j = j 0

T X'j;i(dX -f0Xdt-Udt), i = 1, . . . , m , 
j 

for a*1, ..., a*m. We remark that (4) is a recursive estimation procedure (see [I]). 
The estimator a* is consistent if a* -> a0 in probability. It is strongly consistent 

if a* -> a„ almost surely (abbreviated a.s.). 

2. STATEMENT AND PROOF OF RESULTS 

Lemma 1. Let g be an n x w-matrix. If 

(5) - f \Xt\
2dt, T> 0 , 

IJo 

is bounded in probability (respectively a.s.), then 

1 rT 

(6) lim - X'tg' dWt = 0 in prob. (respectively a.s.). 
r-oo TJ0 

Proof. Introduce 
VT = HX'g'hgXdt. 

The following equation is satisfied 

\lX'g'dW=irVT, 

where {i^s, s ^ 0} is a Wiener process. Let (5) be bounded in probability. Choose 
£ > 0 and find Kz such that 

P(VTjT £ Ke) > 1 - e , T > 0 . 
Then 

(7) P ( - # > T > £ ) S £ + 2 P ( sup irs > sT) = £ + 4$(-eTlJ(K rT)) , 
\T J sgKcT 

where $(y) is the standardized normal distribution function. The last term in (7) 
tends to 0 as T-> co, which proves (6) in probability. 

The alternative with a.s. converegence is proved directly using the strong law 
of large numbers for iV. • 
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Proposition 1. Let the matrices 

(8) y/lfly/h, i = l,...,m, 

be linearly independent where Jl, y/h is the symmetric square root of / and of h, 
respectively. If 

(9) iC(\X,\2 + \Ut\
2)dt, T > 0 , 

' J o 

is bounded in probability (respectively a.s.), and 

(10) lim \XT\2\T = 0 in prob. (respectively a.s.), 
r-oo 

then 

(11) lima* = a0 in prob. (respectively a.s.). 
r->oo 

Proof. Inserting (1) with a = a0 into (4) we get 

E \l X'f'iVjX dt(aV - 4) - il X'f'tl dW, 
j 

and hence 

(12) E i ['XT VjX dt(aV - «0) (a*^' - a0) = £ i f X'f'tl dW(aV - a 0 ) . 
y rjo i TJo 

To investigate the left-hand side of (12) take ix E IRm, \p\ = 1, and denote 

(B) pto-I>Vf/.. i(p) = Mifo)-
Consequently, 

E i f *'/;//,* d? ̂ y = i f x' ?(M) x d/. 
•J ' J o ^ J o 

Set / = f(a0). It can be assumed that / is a stable matrix because without loss 
of generality it can be replaced by / — al where J is the unit matrix. Introduce 
the quadratic functional 

(14) QT(n) = J0
r X' q(n) Xdt + c J0

r |U |2 dt 

where c > 0. Consider U as a control process and QT(n) as a cost functional. The 
minimum of EQr over all U nonanticipative is obtained by solving a Riccati equation 
whose limiting form as T-> oo is 

(15) wf + f'w- c~lw2 + q(ii) = 0 

where vv is nonnegative definite. It follows then 

(16) inf {2x'w(/x + u) + x' q(fi) x + c\u\2} = 0 , x e W . 

From (1) and (16) applying the ltd formula to JJ d(X'wX) it follows that 

(17) QT(n) - Ttrace (hw) + X'TwXT ^ 2 JJ X'w dW. 
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Setting v = c 1 w we get from (15) 

vf + f'v - v2 + c~l q(n) = 0 . 

From here it follows that 

(18) v ~ c-1'1 yfq{n) , c - > 0 + . 

Because of the linear independence of (8), Jh q(fi) Jh is nonzero, and hence 
Jh q(n)1/Ar is nonzero. Consequently, 

inf trace (h Jq(n)) = inf trace (Jh Jq(fi) Jh) > 0 . 
M-l W = l 

From (18) we deduce that 
trace (hv) >. r/Jc , 

or 

(19) trace (hw) > r Jc, 

where r > 0 is independent of /z and c, |/.| = 1, c < 1. 
Let (9) be bounded in probability and let (10) hold in probability. Applying Lemma 

1 to the integral in (17) we obtain using (10) and (19) that for <5 > 0 

(20) lim P (- QT(n) ž r J c - ó \ = l . 

Using (20) we shall estimate the left-hand side of (12). 
Let e > 0. Find K, such that 

(21) P(- f (\X\2 + \U\2)dt£Kt\ Z 1 -E, T>0. 

Then 

(22) P f j i f X'(9(/<) - q(v)) X dt g !<?(/<) - «j(») | * , , 0, v e r j ^ l - £ . 

Further fixoO such that 

(23) r Jc - cKe - 3(5 > 0 . 

Next choose a finite set nk, k = I, ...,N,\fik\ — 1, such that 

(24) inf \q(n) - q(iik)\ Ks g S whenever |ju| = 1 . 
k 

By virtue of (20) for T> T0 

P [ - QT(H>) k r Jc - 8, i = 1, . . . , N\ > 1 - £ , 

and hence from (14), (21) (23) 

P [ - f X'9(ft,)X*t § 2<5,/= I,...,.*/) fc 1 - 2 e . 
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(22) and (24) imply the persistent excitation condition (see [3]) 

(25) P (- | X' q(n) X dt^ 8\p\2, p. e Um\ ^ 1 - 2e . 

Consequently, 

(26) P fe ^Cx'fllfjX dt(uV - a0) («? - 4) ^ <%* - a 0 |A S| 1 - 2e . 

Regarding the right-hand side of (12) we have by Lemma 1 for T > T0 

iWrl?"™)2)"2^')^-'-
and hence 

(27) P(X T [TX'ftl dW(4> - a') < <52|a* - a0\\ > 1 - e . 

From (12), (26), (27) it follows that 

Pfltx* - a0] < <5) ^ 1 - 3e, T > T0 . 

Note that <5 in (23) can be chosen arbitrarily small. The validity of (11) in probability 

is thus established. 

The boundedness of (9) and the validity of (10) almost surely implies 

PÍ l iminf i QT(fi)ž rjc\ = 1. 

Moreover T > T0 can be added to the events whose probabilities are computed 
starting with (21) and ending with 

P(|a* - a0\ < 5, T> T0) ^ 1 - 3s , 

which proves the validity of (l 1) almost surely. • 

Assume next that h is singular, 0 < rank h = s < n. Renumbering the coordinates 
if necessary h can be expressed as 

íh00 h01\ 

*-(^;:. .)-(»0 .* ') . 
where rank h00 = s. The same partitioning will be used also for the blocks of other 
matrices. Recall the definition (13) of p(p), q(p). 

Proposition 2. The implication of Proposition 1 remains valid if 

(28) rank p\p) < rank p(p) , p. e lRm . 

Proof. Write X° = (X], ...,XS)', similarly for U°, W°, and set V, = 
= (Xs+1,..., X"t)'. From (l) it follows 

dX° = f00X° dt + j 0 1 V, dt +U°dt + dW° , t £ 0 . 
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Consider U° and Vas control processes and proceed as in the proof of Proposition 1. 
It holds 

X'q(n)X = X°'q00(p)X° + 2V q(n)10X° + V'qu(M)V. 
Note that 

q00 = (p°)'p0, q^ = (p^p\ q11 = (p1)'p1. 

Without loss of generality it can be assumed that q11 is nonsingular, i.e., p1 has 
linearly independent columns. Otherwise the dimension of V could be reduced. 
Moreover, let h00 = I, and l e t / 0 0 be a stable matrix. 

Introduce the functional 

Q r = H(X0'q00X° + 2V'q10X° + V'quV)dt + c JJ ( |U | 2 + |V | 2 )d t \ 

We shall demonstrate the analogues of (17) and (19). The rest of the proof follows 
that of Proposition 1. Writing x, u instead if x° u° we replace (16) by 

(29) inf {2x'w(/00x + f0]v + u) + x'q00x + 

+ 2v'q10x + v'qllv + c(\u\2 + \v\2)} = 0 . 

The minimum of the expression in braces is attained for 

u = -c-'wx, - = -(cl + q11)-1 ( ( / 0 1 ) ' w + q10)x. 

Inserting these values into (29) we obtain 

(30) x'(2w/00 - c-'w2 + q00 - wf01(cl + q11)-1 (f01)' w -

- 2wf01(cl + q11)-1 q10 - q01(cl + g 1 1 )" 1 q10 -

-cq01(cl + q11r2(q10 + 2(f01)'w))x = 0. 

From here we conclude that the asymptotic behaviour of c"1™ as c -> 0+ depends 
on the matrix 

(31) ? 0 0 - « 0 1 ( « u ) " V ° -
From 

inf|p°x + ph\2 = x V ° - g 0 1 ^ 1 1 ) " 1 * 1 0 ) * 

it is seen that (28) implies that (31) is a nonzero matrix. Consequently, 

inf trace 0 ° ° 0 ) - « 0 1 0) « " 0 ) ^ <?,00)) > 0 . 

From this inequality and from (30) it follows that 

trace (w) ^ r y/c 

with r > 0. This inequality with the inequality 

<2r0) - T trace (w) + X°'wX°T ^ 2 J J X°'w dW 

enables us to continue as in the proof of Proposition 1. • 
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Example. A self-tuning control model is described by the equation 

dX, = /(a0) X, dt + k(a*) X, dt + dWt, t ^ 0 , 

where fc(a) are given feedback gain matrices. Assume that 

Jf = {fc(a), a e Um} 

is a bounded set and that the following Liapunov type assumption (see [5]) is fulfilled. 

There exists a symmetric matrix z > 0 such that 

(32) z(f + gk) + (f + gk)' z + I ^ 0 , k e OUT . 

The inequalities denote positive definiteness and negative semidefiniteness, respect­

ively. (32) implies (9), (10) and Propositions 1, 2 give sufficient condition for the 

self-tuning property. 

(Received February 12, 1988.) 
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