
Kybernetika

Ladislav Lukšan
Inexact trust region method for large sparse nonlinear least squares

Kybernetika, Vol. 29 (1993), No. 4, 305--324

Persistent URL: http://dml.cz/dmlcz/125630

Terms of use:
© Institute of Information Theory and Automation AS CR, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125630
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 29 (1 9 9 3) , N U M B E R 4, P A G E S 3 0 5 - 3 2 4

INEXACT TRUST REGION METHOD FOR
LARGE SPARSE NONLINEAR LEAST SQUARES

LADISLAV LUKSAN

The main purpose of this paper is to show that linear least squares methods based
on bidiagonalization, namely the LSQR algorithm, can be used for generation of trust
region path. This property is a basis for an inexact trust region method which uses the
LSQR algorithm for direction determination. This method is very efficient for large sparse
nonlinear least squares as it is supported by numerical experiments.

1. INTRODUCTION

Inexact trust region methods are frequently used for general large-scale uncon
strained minimization where we find the local minimizer x* £ Rn of the function
/ : R" —* R which has continuous second-order derivatives. A typical inexact trust
region method can be represented by the following algorithm.

Algori thm 1.1.

Data: 0 < ft < fa < 1 < 71 < 72, 0 < pi < p2 < 1, 0 < £2 < 1, 0 < A m a x .

Step I: Choose an initial point x £ Rn and an initial trust region bound 0 < A <
Am a x- Compute the value / := f(x) of the objective function / : Rn —> R
at the point x £ Rn.

Step 2: Compute the gradient g := g(x) of the objective function / : Rn —> R at
the point x £ Rn. U\\g\\ < e2 then stop, otherwise determine the matrix B
which is an approximation of the Hessian matrix of the objective function
/ : # " - * R at the point x £ Rn.

Step 3: Determine the current precision 0 < u> < 1 and compute the vector d £ Rn

so that

(a) ||rf|j < A

(b) \\d\\<A=>\\Bd + g\\<u\\g\\

(c) Q(rf)<- i | |5 | |min(| | r f | | , |H | / | !S | |)

where

306 L. LUKŠAN

Q(d)=^dTBd + dTg (1.1)

is a local quadratic approximation of the objective function / : Rn —* R.

Step 4: Set x+ := x + d. Compute the value /+ := f(x+) of the objective function
/ : Rn —* R at the point x+ £ Rn and the ratio

If p < Pi then compute the value A + using the quadratic interpolation
artri c o t and set

= Pi\\d\\ i f A + < A |
= /?2||d|| i f A + > / ? 2 |
= A+ otherwise.

If Pi < P < P2 then set A+ := A and A := min(A+, 72||d||). If p2 < p
then set A+ := max(A,7i||d||} and A := min(A+,72||c(||, A m a x) .

Step 5: If p < 0 then go to Step 3, otherwise set x := «c+, / := / + and go to
Step 2.

Inexact trust region methods have strong convergence properties (see [6], [7],
[8]). Even if they also work well for indefinite matrices, we confine our attention to
positive semidefinite case which appears in nonlinear least squares.

The most complicated part of Algorithm 1.1 is computation of the vector d £ Rn

satisfying the conditions (a), (b), (c). There exist three basic possibilities for positive
semidefinite case. First, the vector d £ Rn can be obtained as a solution of the
subproblem

d= argmin Q(d(X))
||d(A)||<A

which leads to the repeated solution of the equation (B + \I)d(\) + g = 0 for selected
values of A. This way gives well-convergent algorithms, especially in connection with
the Newton method, but for large number of variables, it is time consuming.

The second possibility, so-called dog-leg strategy, consists in computation of two
vectors di £ Rn and d2 £ Rn such that gTBgdx + \\g\\2g = 0 and Bd2 + g = 0. The
resulting vector d £ Rn is then obtained as d = \dx if ||di|| > A, d = d\ + X(d2 — d\)
if ||di|| < A < ||d2||, and d = ||d2|| if ||d2|| < A, where the scaling factor A > 0 is
chosen so that ||d|| = A. This way is more economical since the equation Bd2+g = 0
can be solved inaccurately (||B<!2 + g\\ < u\\g\\) by some iterative method.

The third possibility is very natural. The equation Bd + g = 0 is solved by some
iterative method which generates the vectors di £ Rn, i £ N, having the following
properties:

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 307

A) There exists an index k £ At, such that

| |fldt+!7| |<u||ff | |

for a given 0 < u < 1.

(B) The sequence Q(di), 1 < i < k, is decreasing, i.e.

Q(di+l) < Q(di)

for 1 < i < k.

(C) The sequence ||d,||, 1 < i < k, is increasing, i.e.

IK+1||> M

Q(Ml)<--\\g\\\\\di\

Q{di)^-2Ш

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

for 1 < i < k.

(D) It holds that

for 0 < A < 1, and

for 1 < i < k.

The resulting vector d 6 Rn is then obtained as d = \d\ if | |di | | > A, d = d,- +
A(d i + 1 - di) if | |di| | < A < | | d t + i | | for some 1 < i < k, and d = ||d fc | | if ||dfc[| < A,
where the scaling factor A > 0 is chosen so that | |d| | = A.

Steihaug [8] has proved that all above conditions are satisfied for the conjugate
gradient method. Our main purpose is to prove that these conditions are also sat
isfied for more complicated iterative methods appearing in least squares solutions.

Consider the nonlinear least squares problem which is a special minimization
problem where the objective function / := Rn —* R has the form

/(-)== 5 £.?(*) (1.8)

and the functions /,• : Rn —+ R, 1 < i < ra, have continuous second-order derivatives.
Denote / = f(x), fi = fi(x), 1 < i < m and g = g(x), gi = gi(x), 1 < t < m, the
values and the gradients of the functions / : Rn —» R, fi : Rn —> R, 1 < i < m, at
the point x £ Rn respectively and set

A = A(x) =
flíW

6 = 6(з;) =
Л(-)

L /«(*)
Then

/ = \bтЬ , g = -Aтb ,

(1.9)

(1.10)

308

and if we denote x+ = x + d as a new vector of variables, we get after linearization

Therefore the optimal direction vector d* £ Rn can be obtained as a solution of the
linearized problem

d* = argmin |L4d-6 | | (1.11)
deR"

Since the function | |Ad —6|| is convex the vector d* 6 Rn is a solution of the problem
(1.11) if and only if

AT(Ad*-b) = 0 (1.12)

If we denote B = ATA and if we use (1.10), we get the equation Bd* +g = 0 which
is equivalent to (1.12). Therefore it suffices to substitute B •= ATA in Algorithm
1.1 to adapt it for nonlinear least squares. Especially the quadratic function (IT)
takes the form

Q(d) = -dTATAd - dTATb (1.13)

Using the substitution B = A A we can transform the conjugate gradient method
to solve the normal equation (1-12). The resulting method is the CGLS algorithm
(see [5] as an example) which is represented by the following iterative process

d0 = 0, r„ = 6, (1.14a)

vi = ATr0, 7i = I M | 2 (L14b)

pi = vi (1.14c)

and

Ui = APi, Si = \\UÍ\\2 (1.14d)

di = „i_j + ^-pi, r, = r._i - £«,- (1.14e)
"i <>i

vi+1 = ATn, 7 i + 1 = |K + 1 | | 2 (1.14f)

pi+1 = vi+1 + ^±pi (1.14g)
H

for i 6 N. As it was proved by Steihaug [8] for the CG method, the vectors di G Rn,
i e At, obtained by (1.14) satisfy the conditions (A), (B), (C), (D). The inequality

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 309

(1.3) has the form 7* < w27i since AT(Adk - b) = vj. and ||j4T(j4dfc - 6)||2 = jk by
(1.14f).

The CGLS algorithm is not the best one for linear least squares. Methods based
on bidiagonalization [1], [4], namely the LSQR algorithm proposed in [5], were proved
to be numerically more stable. In the next section we shall study properties of such
methods with regard to conditions (A), (B), (C), (D) which have to be satisfied.

2. BIDIAGONALIZATION AND LINEAR LEAST SQUARES

Consider the problem which consists in finding a vector d* 6 Rn such that

d* = argmin | |A(!-6 | | . (2.1)
deft"

Since the function ||yW— 6|| is convex, the vector d* £ Rn is a solution of the problem

(2.1)ifandonlyif AT(Ad*-b) = 0. (2.2)

The problem (2.1) can be solved iteratively using a bidiagonalization procedure
proposed in [1] and [4]. In this case

/?!«!= 6, (2.3a)

aiv1=ATu1, (2,3b)

and

/?,+!Ui+i = Avi - aiUi, (2.3c)

ai+ivi+1 = ATUi+i - Pi+iVi, (2.3d)

for i G N, where the right hand sides are assumed to be nonzero and the coefficients
on the left hand sides are chosen so that the corresponding vectors have unit norms.
If some right hand side becomes zero then we formally set both the coefficient and
the vector on the left hand side equal to zero and we stop the iterative process.
Namely if 6 = 0 or T4T6 = 0 we set j3\ = 0, u\ = 0 or a\ = 0, Vi = 0 respectively.

It can be easily proved by induction (see [1] and [4]) that for a. > 0, /?,• > 0,
1 < i < k, the vectors i/,- 6 Rn, 1 < i < k, are nonzero and mutually orthogonal and
the vectors u; £ Rm, 1 < i < k, have the same property.

The iterative process (2.3) can be written in the matrix form

Ui+l(plel)=b, (2.4a)

AV = Ui+1Bi, (2.4b)

ATUi+l = VBj + ai+m+tej^, (2.4c)

310

for i G N, where V. = [t»i,...,-«.] G Rnxi, V?V{ = I, Ui+1 = [uu...,ui+i] G
Rnx(i+i)t a n d

BІ =

« 1 , 0, . .., 0

ß2, «2, • .., 0

o, ß2, • . . , 0

o, 0, . . . , a
o, 0, . .-, ß

(2.5)

If a,- > 0, Pi > 0, 1 < i < k, then the lower bidiagonal matrices Bi G R<-i+^xi,
1 < i < k, have full column rank. If /?,-+i > 0 then Ui+iUs+i = I. In the other
case Ui+i = [U,-,0], Bi = [Lj, 0]T, where £,- G ft'x' is a nonsingular square lower
bidiagonal matrix, and (2.4) can be rewritten in the form

Uiißteг) = Ь, (2.6a)

AV = UÍLÍ, (2.6b)

(2.6c) ATUi = ViLj + ai+1 vi+lej+l,

for i G N, where v, = [« i , . . . , u,-] G •ftnx,') UTUi = / .
Together with the iterative process (2.3) we consider the sequence of vectors

di G Rn, 1 < i < k, such that

di = argmin | |Лd—6| | .
dţЩV,)

(2.7)

L e m m a 2.1. Consider the iterative process (2.3) with a,- > 0, /?,• > 0, 1 < i < k
Let di G JR", 1 < i < k, be the sequence of vectors defined by (2.7). Then, fo]
1 < i < k

where

di = VУІ (2.8а)

аrgmin \\Biy-ßiei\
y%R'

(2.8b)

If /?,+! = 0 (it can be satisfied only for i = k) then \\Adi — b\\ = 0.

P r o o f . If d G Tl(Vi) then necessarily d = Vty for some y G Rl. If A'+i > 0 then

\\Ad-b\\ = \\AViy-b\\ = \\Ui+t{Biy-!Stei)\\ = \\BiV - ftcifl,

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 311

by (2.4a) and (2.4b), since Uj+1Ui+\ = I, so that (2.7) is equivalent to (2.8b). If
Pi+1 = 0 then

||.4rf - 6|| = IL4V.J, - 6|| = \\Ui{Liy - f3\ex)\\ = 0,

by (2.6a) and (2.6b), since the lower bidiagonal square matrix Li is nonsingular and,
therefore, there exists a solution r)i £ R' of the equation L,y = /3\e\. •

Corollary 2 .1 . Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k,

di = ViVi (2.9a)

where

yi=alpi{BjBi)-
le\. (2.9b)

P r o o f . Since the function \\Biy — fi\e\\\ is convex, the vector j/j £ R' is a
solution of the problem (2.8b) if and only if LiJ{Biy — f3\e.\) = 0. Because the lower
bidiagonal matrices S,- £ R('+1)X'I 1 < i < fc, have full column rank, we can write
m = (3\{BjBi)~lBje\ which together with Bje\ = axe\ (see (2.5)) gives (2.9b). •

T h e o r e m 2 .1 . Consider the iterative process (2.3) and sequence of vectors (2.7).
Then either d* = 0 is a solution of the problem (2.1) or there exists an index k <n
such that d* = dk £ TZ{Vk) is a solution of the problem (2.1) and, moreover, a; > 0,
Pi > 0 for 1 < i < k.

P r o o f . If either b = 0 or ATb = 0 then d* = 0 is a trivial solution of the problem
(2.1). In this case either 0\ = 0 or a\ = 0 . Suppose now that a; > 0, /?,- > 0 for
1 < i < k < n. If k = n then 7?.(Vn) = Rn since the vectors v., 1 < i < n, are
nonzero and mutually orthogonal. Therefore

dn = argmin \\Ad- b\\ = argmin ||A<* - 6|| = d*
d£n(Vn) d£Rn

is a solution of the problem (2.1). If k < n and /3k+\ = 0 then \\Adk — b\\ = 0 by
Lemma 2.1 so that d* = dk is a solution of the problem (2.1). If k < n and ak+\ = 0
then ATUk+\ = VkB

T by (2.4c) so that

AT{Adk -b) = AT{AVkVk -b) = ATUk+\{Bkyk - fte,) = VkB
T{BkVk - fta) = 0,

by (2.4a) and (2.4b), since Bj{Bkyk -/3\e\) = 0 by (2.8b), and d* = dk is a solution
of the problem (2.1) by (2.2). Q

Theorem 2.1 shows that c** = c*,- is a solution of the problem (2.1) whenever a,+i = 0
or /3{+\ = 0. The next lemma gives an important estimation in case a,+i > 0 and
A-+i > o.

312 L. LUKSAN

Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k,

\\AT{Adi - 6)|| = ai+1pi+1\vjdi\. (2.10)

P r o o f . Let ai+1 > 0 and /? i+1 > 0. Then using (2.4a) and (2.4c) we get

AT{Adi-b) = AT{AVm-b) = ATUi+1{Biyi-(J1e1) =

= {VBj + ai+1vi+1ej+1){piyi - ftcj) =

= ai+1vi+1eJ+1{Biyi - fax) = ai+lf3i+lvi+1ej\ji

since Bj(Bm - faex) = 0 by (2.8b), eJ+1Bi = /3i+leJ by (2.5), and eT
+1e,- = 0.

But V;TV; = / and, therefore, Vjrdi = Vt
TViyi = m so that ejy{ = eTV-Trf; =

vjdi which together with ||w t+i|| = 1 gives (2.10). If ai+1 = 0 or (5i+1 = 0 then
\\AT{Adi-b)\\ = 0 by Theorem 2.1. •

Now we shall study properties of the vectors d{ E i?n , 1 < i < fc, defined by (2.7).
We shall use the notation (1.13).

Lemma 2.3. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k,

1

r
Q{di) = -l-a\f3leTCie1 (2.11)

and

|K-||2 = alUleJChi (2.12)

where

d = {BjBi)-1. (2.13)

P r o o f . Using (1.13) and (2.8a) we can write

Q(di) = \yJVTATAViVi - yJVTATb

which together with (2.4a), (2.4b) and (2.9b) gives

Q{di) = \yjBjUT
+1Ui+1 Biyi - yjBjuJ+1b = \yJBjBiyi - piyjBjei =

= \alfieJCiBjBidei - a'fiejde, = ~\a\H\e
TCiei

since Bjei = a%e\ by (2.5). Similarly we get

¥i\\2 = yJVTVyi = yjyi = a2 /?1
2(C ie1)TQ e i = a\fS\eTChx

since VTVi = / and the matrix (2.13) is symmetric. •

Inexact Trust Region Method tor Large Sparse Nonlinear Least Squares 313

Lemma 2.4. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k,

(2.14) _ [C. + a? + 1 / ?^ l 7 t + 1 C.e .e?C i , -a.+ 1 /? .+i7i+io iei
G i + 1 - [-ai+\(3i+\li+xeJCi, 7i+i

where

Ti+i = "?+i+/^2-<iftV-^

P r o o f . Using (2.5) we can write

> 0 (2.15)

fli
rS. =

* i , ft. 0, . . ,
0, a2, Ã , ...

L 0, 0, 0,

o, 0

o, 0

a,-, ft+1 j

r al+fá, a2/?2,
a2p2, a\ + Pl

0,

C*3/?3,

a3/?3, «§ + /?!,

0, 0,

a\, 0,
ft, <*2,

0, &,

0, 0,
0, 0,

, o
, 0
, 0

, «? + #+.

Therefore

fíT pí _ [I^i, a.+ift+iei
e ^ B i + 1 " [ai+\l3i+\ej, a? + 1 + /??+2

(2.16)

Since the matrix BT+xBi+x is nonsingular, it suffices to prove that Bj+xBi+xCi+\ = I
for matrices (2.14) and (2 A 6), which leads to straightforward computations. D

Lemma 2 .5 . Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k,

eJCfeteJCiet > 0 (2.17)

P r o o f . (By induction): Since both matrices Ci and C\ are positive definite we
have e^Ciei > 0 and e^Cj^i > 0 so that eJC\exeJC\ex > 0. Suppose that (2.17)
holds for some i < k. Then, using (2.14), we get

eJCi+\ei+\ = -a .+ 1 /? í + 17i+ 1e^ 'C.e.

314

and

eJCf+1ei+1 = -ej(d + ahl^+iJi+lCieieJCi)(ai+1pi+\yi+1Ciei) -

-eJ(ai+1f3i+1yf+1Ciei) =

= -ai+1pi+1yi+i(eJCfei + a2
+l[Jf+lJi+1eJCieieJCfei +

+yi+1eJCiei).

Therefore

eJCf+1et+1eJCi+1el+1 = a2
+lPf+lyf+1(eJCfeieJCiei + yi+1(fJClei)

2 +

+<*l+1f]f+iyi+i(eJCei)
2eJCfet).

But eJCfeieJCiei > 0 by inductive assumption, 7i+i > 0 from positive definiteness
of the matrix Ci+i, and eJCfei > 0 from positive definiteness of the matrix Cf.
This together with a,-+i > 0 and A+i > 0 gives ejCf+1ei+1eJCi+1ei+1 > 0. •

Theorem 2 .2 . Consider the iterative process (2.3) and the sequence of vectors
(2.7). Let k be the index from Theorem 2.1. Then, for 1 < i < k,

Q(di+1) < Q(di) (2.18)

and

||rf.+i|| > 11*11. (2.19)

P r o o f . Using (2.14) we get

e^a+iei = eT(C',. + a?+1/?2+lT.+lC-.e.eTc-.)ei =

= eJCiSl + a2
+1^r+17i+i(e1

rCiei)2 > e ^ e ,

since ai+1 > 0, /?,+i > 0 by the assumption, yi+1 > 0 from positive definiteness of
the matrix Ci+i, and (e^Qe,)2 > 0 by Lemma 2.5. This together with (2.11) gives
Q(di+1) < Q(di). Similarly using (2.14) we get

eJCf+1ex = ej(d + al+rff+ai+rCideJCi)^ + (a^pi^y^ejdei)2 =

= efCfet + 2a2
i+1pf+1yi+1eJCfeieJCiei +

+^+1Pt+1yf+1(eJCiei)
2eJCfei+a2

+1pf+1yf+1(eJCie,)2 >

> eJCfe,

since ai+i > 0, A+i > 0 by the assumption, 7,+ 1 > 0 from positive definiteness
of the matrix C + i , ejcfet > 0 from positive definiteness of the matrix Cf, and
(eJCid)2 > 0, eJCfaeJdei > 0 by Lemma 2.5. This together with (2.12) gives
IK+l||2>ll*l|2- D

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 315

T h e o r e m 2.3. Let the assumptions of Theorem 2.2 be satisfied. Then

Q(Xd\)<-\\\ATb\\ HAdiH,

forO< A < 1, and

Q(di) < -
I «
2|iA^ir

(2.20)

(2.21)

for 1 < i < k.

P r o o f . The equalities (2.11) and (2.12) imply

Q(d\) = ~\a\p\eTC\e\ = -\a\fiyfeJCfa = -\\\ATb\\ \\d\\\

since from (2.3a) and (2.3b) AT6 = a\(3\V\ follows, which together with ||vj.|| = 1
gives \\ATb\\ = a\p\. But the function (1.13) is convex and Q(0) = 0 so that (2.20)
holds for 0 < A < 1. Furthermore using (2.3c) we can write

/?! = (Av\ - a\U\)T(Av\ - a\U\) = vj AT Av\ - a\

since ||«i[| = 1 and vjATu\ = a\\\v\\\2 = a\ (see (2.3b)). Therefore

a\ + Pl = vTATAv\ < \\ATA\\ \\v\f = | |A T ^| | .

Now, if we use (2.11) and (2.15), we get

Q(d\) = -Uf3MCie\= l °^?

2 " i r i v l w l " ~ 2a\ + f3?-

which together with (2.18) gives (2.21).

<_iJИт &H2

2 \\ATA\\

We have proved that the vectors d; G Rn, 1 < i < k, defined by (2.7) satisfy the
conditions (A), (B), (C), (D) stated in Section 1. This fact will be used in the next
section for construction of an inexact trust region algorithm. It remains to derive
simple recurrence relations for the vectors di € Rn, 1 < i < k.

The most widely used iterative method for linear least squares is the LSQR algo
rithm proposed in [5]. This algorithm uses orthogonal matrices Qi, 1 < i < k, such
that

where

IÍBÍ =
RІ

••\ ř
Vi+\

(2.22)

RІ =

Pì, 0-2, 0, . ., 0 " m
o, P2, ^з, • ., 0

, ìц =
m

o, o, o, . • •, Pi m

(2.23)

316 L. LUKSAN

At the same time Qit 1 < i < k, are products of Givens plane rotations and Ri G
/?**', 1 < i < k, are regular square upper bidiagonal matrices. The iterative process
for computing elements of both the matrices Ri, 1 < i < k, and the vectors hi,
1 < i < k, has the form

p1=a1, Tj^fa (2.24a)

and

Pi = yJpJ+fl+i, ct = ^, si = ^±, (2.24b)

Pi+i = Cfa.+i, o-j+i = s{ai+1, (2.24c)

Vi = ci7]i, ,Vi+i = SiVi (2-24d)

for 1 < i < k (see [5] for detailed description).
The values pi > 0 and ?/,-, 1 < i < k, can be used in estimation (2.10).

Lemma 2.6. Let the assumptions of Lemma 2.1 be satisfied and let pi > 0 and
T]i, I < i < k, are the values generated by (2.24). Then, for 1 < i < k,

| | A T (M - 6) | | = a i + i A - + 1 — ' (2.25)

Pi

P r o o f . Using (2.8) and (2.22) we can write

di = Viyi (2.26a)

where
RiVi = hi (2.26b)

Then

vjdi = vJViRJlhi = ejRr1^ = -ejhi = ^
Pi Pi

which together with (2.10) gives (2.25). O

Recurrence relations for the vectors di G Rn, 1 < i < k, can be derived from
(2.26). We do not give this derivation here because it is fully contained in [5]. The
resulting formulas have the form

d0 = 0, (2.27a)

Pi=vu (2.27b)

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 317

and

d, = d,_1 + ^ -p i j (2.27c)
Pi

p , + 1 = vt+i - ^±ip<, (2.27d)
Pi

for 1 < i < k. Note that, in contrast with the CGSL method (1.14), the coefficients
Vi/Pii 1 < t < &, in (2.27c) are not all positive (they alternate signs).

3. INEXACT TRUST REGION METHOD FOR NONLINEAR LEAST SQUARES

Now we are in a position to describe complete inexact trust region method which is
a combination of Algorithm 1.1 together with the LSQR algorithm investigated in
Section 2.

Algorithm 3 .1 .

Data: 0 < /?i < /?2 < 1 < 71 < 72, 0 < px < p2 < 1, 0 < ei < e2 < 1, 0 < n < 1,
0 < Wmax < 1, 0 < Am a x , k1eN,i1£N

Step I: Choose an initial point x 6 Rn. Compute the values ft := ft(x) of the
functions /,• : Rn —* R, 1 < i < m, at the point x £ Rn. Determine the
vector b £ Rm using (1.9). Compute the value / := f(x) of the objective
function / : Rn -> R by (1.10). Set A := 0 and r := (n) 1 !" . Set k := 1.

Step 2: Compute the gradients #, := gi(x) of the functions /,• : Rn —• R, 1 < i <
m, at the point x £ Rn. Determine the matrix A 6 Rm*n using (1.9).
Compute the gradient g := g(x) of the objective function / : Rn —* R by
(1+0). If either / < £1 or \\g\\ < £2 then stop, otherwise set £ := 1.

Step 3: If A = 0 then set A := min(| | f f | |
3/ | |^l|2 ,4// | |ff | | , A m a x) . Set u :=

min(\/||ff||,'rfc,a;max). Compute the vector d G Rn by the following sub-
algorithm:

Step 3.1: Set d := 0. Compute /? := ||6|| and u := b//3. Compute a := \\g\\/P
and v := — #/|ifir||. Set p := a, rj := /? and p := t;. Set i := 1.

Step 3.2: Compute /? := \\Av - au\\. If /? = 0 then go to Step 3.3, otherwise
set u := (Av - au)//3. Compute a := \\ATu - /3v\\. If a = 0 then go
to Step 3.3, otherwise set v := (ATu - (3v)/a.

Step 3.3: Compute p := \/p2 + /?2, c = p/p, s = /?/p and t? = ct?. If ||"' +
(?//p)p|| > A then determine 0 < A < 1 so that \\d + A(ty/p)p|| = A,
set d := d + X(r]/p)p and go to Step 4. Otherwise set d := d + (r)/p)p-

Step 3.4: If either i = n + 3 or a/?M//? < w\\g\\ then go to Step 4, otherwise
compute p := ca, a := sa, t? := —srj and set p := v - (cr/p)p- Set
i : = » ' + ! and go to Step 3.2.

318

Step 4: Set x+ := x + d. Compute the values / + := fi(x+) of the functions
/,• : Rn —» R, 1 < i < m, at the point a;+ £ # n . Determine the vector
b+ £ Rm using (1.9). Compute the value / + := / (*+) of the objective
function / : Rn — R by (1.10). Compute the value Q(d) by (1.13)
and set p := (/+ - f)/Q(d). When p < p\ then compute a := (/+ -
f)/dTg, p := 1/(2(1 - a)) and set A := /3\\\d\\ if /? < A , A := /?||d||
if A < /? < ft, A := /?2||d|| if A < /?• When P\ < p < p2 then set
A := min(A,72||rf||). When p2 < p then compute A := max(A,71||rf||)
and set A := min(A,72 | |d||, A m a x) .

Step 5: If p < 0 and £ > £\ then stop (too many reductions). If p < 0 and £ < £\
then set £ := £ + 1 and go to Step 3. If /? > 0 and fc > k\ then stop (too
many iterations). If p > 0 and k < k\ then set x := x+, b := b+, f; = / + ,
set fc := A; + 1 and go to Step 2.

The maximum number of iterations k\ £ N serves as an alternative termination
criterion in the case when the convergence is too slow. The maximum number of
reductions £\ £ N serves as a safeguard against possible infinite cycle which can
arise for large residual problems when present round-off errors do not allow us to
obtain a solution with the required gradient norm (\\g\\ < e2).

We suppose, in the subsequent considerations, that all computations were per
formed accurately and that k\ = £\ = oo. Furthermore we denote

m

g(x) = J2fi(x)gi(x) (3.1)
i = \

and

G(x) = f2gi(x)gJ(x) + JTfi(z)Gi(x) (3.2)
!=1 .=1

the gradient and the Hessian matrix of the objective function (1.8) respectively.

Theo rem 3.1. Let the functions f, : Rn -* R, 1 < i < m, have continuous
second-order derivatives and let there exist constants C\ > 0, C2 > 0, C3 > 0 so
that | / . (*) | < C\, \\gi(x)\\ < C2, \\Gi(x)\\ < C3, 1 < i < n, for all x £ Rn. Let
xk £ R", k € N, be the sequence generated by the Algorithm 3.1. Then

lim inf \\g(xk)\\ = 0 (3.3)
fc-+oo

P r o o f . From (1.9) we have

m m

\\A\x)A(x)\\ <J2\\gi(x)97(z)\\ = D l ^ H 2 -- m°l

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares

and (3.2) implies

319

HoOOH < \\AT(x)A(x)\\ + 5>(-)G.(-) <

< mCl + J T \fi(x)\ \\Gi(x)\\ < m(Cl + CiC3)
1 = 1

Therefore both matrices B(x) = AT(x)A(x) and G(x) are bounded from above so
that (3.3) holds (see [6], [7], [8]). a

Theo rem 3.2. Let the assumptions of Theorem 3+ be satisfied with

lim xk = x*

Let the matrix A(x*) has full column rank and

m

£/.(x*)G,(s*) = 0
1 = 1

Then the rate of convergence of the sequence xk 6 Rn, k £ At is superlinear.

P r o o f . We have to prove that

and

lim uik = 0

.m \\(G(xk)-A
T(xk)A(xk))dk\\=Q

lim

(3.4)

(3.5)

(3.6)

(3.7)

since these conditions are sufficient for the superlinear rate of convergence if the
matrix G(x*) is positive definite (see [6], [7], [8]). But u>k —• 0 since 0 < uk < \\g(xk)\\
in Step 3 of Algorithm 3.1 and g(xk) ~* 0 by (3.3) and (3.4). From (3.2) we get

\\(G(xk)-A
T(xk)A(xk))dk\

\\dk\\ E/.(*-)<*(**)
and continuity assumptions imply

m m

lim ^2fi(xk)G(xk) = 5>(.-*)<-M-.')
" " ^ j = i t = i

which together with (3.5) gives (3.7). The matrix o(.c*) is positive definite since

m m

GK) = Y,9i(**)9?(**) + J3/i(.-*)G,(.-») = AT(x*)A(x*)
i = i i = i

by (3.2) and (3.5) and since the matrix A(x*) has full column rank. £

320

4. COMPUTATIONAL EXPERIMENTS

In this section we present results of a comparative study of three trust region methods
for nonlinear least squares: the exact trust region method with the double dog-leg
step (DDLS) subalgorithm proposed in [3], the inexact trust region method with
the CGLS subalgorithm described in Section 1 and the inexact trust region method
with the LSQR subalgorithm studied in Section 2. All these trust region methods
were realized by algorithms which differ from Algorithm 3.1 only in Steps 3.1-3.4
(Algorithm 3.1 uses the LSQR subalgorithm).

Algorithm 3.1 contains several parameters. We have used the values /?i = 0.05,
fa = 0.75, 7i = 2, 72 = 106, pi = 0.1, p2 = 0.9, ex = 10~16, e2 = 10 - 8 , n = 10"3,
wmax = 0.4, A m a x = 103, &i = 500, l\ = 20 in all numerical experiments.

All test results were obtained by means of the 9 problems given in the Appendix.
All these problems were considered with 100 variables. Therefore a sparse matrix
technology was used (for instance the DDLS subalgorithm contained a sparse Choles-
ki factorization procedure). Summary results for all problems are given in Table 1.
Rows of this table correspond to individual problems and columns correspond to
selected algorithms (DDLS, CGLS, LSQR). The results are presented in the form
IT-1F-IG (P) where IT is number of iterations IF is number of different points at
which the values fi(x), 1 < i < m, were computed, IG is number of different points
at which the gradients gt(x), 1 < i < m, were computed and (P) is the logarithm of
the obtained gradient norm.

Numerical results contained in Table 1 show that the LSQR algorithm is most effi
cient, measured by both numbers of iterations and numbers of functions evaluations,
in comparison with other tested algorithms.

Table 1.

n=100 DDLS CGLS LSQR

1
2
3
4
5
6
7

• 8

9
10

218-221-219 (-11)
166-180-167 (-8)

13-14-14 (-8)
29-60-30 (-7)

5-6-6 (-14)
5-6-6 (-10)

25-61-26 (-4)
15-17-16 (-8)

69-108-70 (-6)
405-458-406 (-6)

135-150-136 (-8)
152-188-153 (-11)

17-18-18 (-8)
199-230-200 (-7)

9-10-10 (-10)
10-11-11 (-10)

38-69-39 (-4)
15-16-16 (-8)
53-80-54 (-6)
26-61-27 (-7)

117-121-118 (-11)
111-131-112 (-7)

14-15-15 (-8)
81-109-82 (-6)

6-7-7 (-8)
8-9-9 (-13)

38-72-39 (-4)
15-16-16 (-8)
50-71-51 (-6)
28-66-29 (-7)

£ 950-1131-960 654-833-664 468-617-478

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 321

A P P E N D I X

Our test problems consist in searching local minimum of the objective function

n-)-4 £/-(*)
fc=i

from the starting point x. We suppose n is even. We use functions div (integer
division) and mod (remainder after integer division).

Problem 1. Chained Rosenbrock function.
m = 2 (n - l) , t'-=div(.s + 1.2)

/*(.-) = 10(.e? - xi+l), A;-odd
fk(x) = a?j — 1, k — even

xt = -1 .2 , ^ - o d d

xi = 1.0, I— even

Problem 2. Chained Wood function.

m = 3 (n - 2) , i = 2 diw(k + 5, 6) - 1

/ . , (*)= 10(.r? - ar.+i), mod(*,6) = -

/fc(x) = .5i-l, mod(fc,6) = 2

/*(*) = >/90(x? + 2 - . - . + 3)) mod(fc,6) = 3

/fc(.c) = Xi+2 - 1, mod(fe, 6) = 4

fk(x) = VT6 (sc.+i + a;i+3 - 2), mod(fc, 6) = 5

/fc(x) = (xi+i - .-,-+3)/>/l0) mod(fc, 6) = 0

xi = - 3 , ^ - o d d , e<4

xt = - 2 , J? - odd , £ > 4

if = —1, ^ —even, ^ > 4

xt = 0, ^ - even, ^ < 4

Problem 3. Chained Powell singular function.

m = 2 (n - 2) , i = 2 div(fc + 3,4) - 1

/.,(*) = *• + 10x,+x, mod(fc,4) = 1

fk(x) = VE (xi+2 - xi+3), mod(k, 4) = 2

fK(x) = (x i + i - 2ar1+2)2, mod(fc, 4) = 3

fk(x) = v/10 (.?,• - a-i+3)2, mod(fc,4) = 0

322 L. LUKŠAN

xi = 3, mod(£,4) = l

xг = - 1 , mod(f,4) = 2

xг = 0, mod(£,4) = 3

xг = 1, mod(€,4) = 0

Problem 4. Chained Cragg and Levy function

m = 5 (n - 2) / 2 , ѓ = 2 div(A; + 4,5) - 1

fk(x) = (exp(xí) - xi+i)
2, mod(jľ,5) = 1

fk(x) = Ю(xi+l-xi+2)
3, mod(&,5) = 2

f (т\ _ s i n 2 (x , + 2 - x i + 3)
Jk\Xl ~ c o s Ҷ r , + 2 - x , + 3) ' mod(Â;,5) = 3

fk(x)=xf, mod(&,5) = 4

fк(x) = xi+3- 1, mod(&, 5) = 0

xг = l, 1=1

xг=2, l>\

Problem 5. Generalized Broyden tridiagonal function.

m = n, XQ = 0, i „ + i = 0

fk(x) = (3 - 2a;fc) a;* + 1 - Zi_i - xk+i

xi = -l, £>\

Problem 6. Generalized Broyden banded function.

m = n, k\ = max(l,& — 5), k2 = min(n, k + 1)
k2

fk(x) = (2 + hx2)xk + l+J2Xj(l + Xj)
j '=fci

Z< = - 1 , ^ > 1

Problem 7. Extended Freudenstein and Roth function.

m = 2 (n - l) , i = div(jb + l ,2)

fk(x) = a:,- + z i + i ((5 - a;i+i)a;i+1 - 2) - 13 , k - odd

fk(x) = xi + xi+x((\ + x i + i)a; i + i - 14) - 29, fc - even

xi = 0.5, £ <n

xt = - 2 , ^ = n

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 323

Problem 8. Wright and Holt zero residual problem (n is multiple of 4).

ra = 5n, i = mod(k,n/2) + l, j = i + n/2

0 = 1 , k< ra/2

a = 2, k > ra/2

6 = 5 - div(jfc, ra/4)

c = mod(fc, 5) + 1

/„(*) = (*?--JT

_« = sin2(£)

Problem 9. Toint quadratic merging problem.

ra = 3 (n - 2) , i = 2 div(fc + 5,6) - 1

/*(*) = Xi + 3_ i + i (xi+ 2 - 1) + x?+3 - 1, mod(£, 6) = 1

fk(x) = (Xi + _ i + 1) 2 + (_ i+2 - l) 2 - *.+3 - 3, mod(fc, 6) = 2

fk(x) = _.~i+i - xi+2xi+3, mod(fc, 6) = 3

fk(x) = 2_,_,+2 + *,+ 1*i+3 - 3, mod(fc, 6) = 4

fk(x) = (_,• + xi+1 + xi+2 + xi+3)
2 + (*i - l) 2 , mod(fc, 6) = 5

fk(x) = _ , _ i + 1 x i + 2 _ i + 3 + (xi+z - l) 2 - 1, mod(fc, 6) = 0

it = 5, £>l

Problem 10 .

ra = 2 n - l , i = div(ik + l,2)

fk(x) = 4 - exp(_.) - exp(xi+i), mod(fc, 2) = 1, i = 1

fk(x) = 8 - exp(3xi_!) - exp(3*i)

+ 4 - exp(_i) - exp(*i+1), mod(fc, 2) = 1, 1 < i < n

/„(_) = 8 - exp(3xi_i) - exp(3*,), mod(fc, 2) = 1, i = n

/„(_) = 6 - exp(2*,) - exp(2*i+1), mod(fc, 2) = 0

xi = 0.2, I > 1

(Received January 12, 1993.)

324

R E F E R E N C E S

[1] G. Golub and W. Kahan: Calculating the singular values and pseudo-inverse of a
matrix. SIAM J. Numer. Anal. 2 (1965), 205-224.

[2] J. J. More, B. S. Garbow and K. E. Hillstrom: Testing unconstrained optimization soft
ware. ACM Trans. Math. Software 7(1981), 17-41.

[3] J . E . Dennis and H. H.W. Mei: An Unconstrained Optimization Algorithm which Uses
Function and Gradient Vlues. Report No. TR-75-246. Dept. of Computer Sci., Cornell
University 1975.

[4] C. C. Paige: Bidiagonalization of matrices and solution of linear equations. SIAM J.
Numer. Anal. 11 (1974), 197-209.

[5] C . C . Paige and M. A. Saunders: LSQR: An algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math. Software 8 (1982), 43-71.

[6] M. J . D . Powell: Convergence properties of a class of minimization algoritms. In: Non
linear Programming 2 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.),
Academic Press, London 1975.

[7] G. A. Shultz, R. B. Schnabel and R. H. Byrd: A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties. SIAM J.
Numer. Anal. 22 (1985), 47-67.

[8] T. Steihaug: The conjugate gradient method and trust regions in large-scale optimiza
tion. SIAM J. Numer. Anal. 20(1983), 626-637.

Ing. Ladislav Lukšan, DrSc, Ústav informatiky a výpočetní techniky AV ČR (Institute
of Computer Science - Academy of Sciences of the Czech Republic), Pod vodárenskou
věží 2, 182 07 Praha 8. Czech Republic.

		webmaster@dml.cz
	2012-06-06T01:32:06+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

