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K Y B E R N E T I K A — V O L U M E 29 ( 1 9 9 3 ) , N U M B E R 4, P A G E S 3 0 5 - 3 2 4 

INEXACT TRUST REGION METHOD FOR 
LARGE SPARSE NONLINEAR LEAST SQUARES 

LADISLAV LUKSAN 

The main purpose of this paper is to show that linear least squares methods based 
on bidiagonalization, namely the LSQR algorithm, can be used for generation of trust 
region path. This property is a basis for an inexact trust region method which uses the 
LSQR algorithm for direction determination. This method is very efficient for large sparse 
nonlinear least squares as it is supported by numerical experiments. 

1. INTRODUCTION 

Inexact trust region methods are frequently used for general large-scale uncon
strained minimization where we find the local minimizer x* £ Rn of the function 
/ : R" —* R which has continuous second-order derivatives. A typical inexact trust 
region method can be represented by the following algorithm. 

Algori thm 1.1. 

Data: 0 < ft < fa < 1 < 71 < 72, 0 < pi < p2 < 1, 0 < £2 < 1, 0 < A m a x . 

Step I: Choose an initial point x £ Rn and an initial trust region bound 0 < A < 
Am a x- Compute the value / := f(x) of the objective function / : Rn —> R 
at the point x £ Rn. 

Step 2: Compute the gradient g := g(x) of the objective function / : Rn —> R at 
the point x £ Rn. U\\g\\ < e2 then stop, otherwise determine the matrix B 
which is an approximation of the Hessian matrix of the objective function 
/ : # " - * R at the point x £ Rn. 

Step 3: Determine the current precision 0 < u> < 1 and compute the vector d £ Rn 

so that 

(a) ||rf|j < A 

(b) \\d\\<A=>\\Bd + g\\<u\\g\\ 

(c) Q(rf)<- i | |5 | |min( | | r f | | , |H | / | !S | | ) 

where 
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Q(d)=^dTBd + dTg (1.1) 

is a local quadratic approximation of the objective function / : Rn —* R. 

Step 4: Set x+ := x + d. Compute the value /+ := f(x+) of the objective function 
/ : Rn —* R at the point x+ £ Rn and the ratio 

If p < Pi then compute the value A + using the quadratic interpolation 
artri c o t and set 

= Pi\\d\\ i f A + < A | 
= /?2||d|| i f A + > / ? 2 | 
= A+ otherwise. 

If Pi < P < P2 then set A+ := A and A := min(A+, 72||d||). If p2 < p 
then set A+ := max(A,7i||d||} and A := min(A+,72||c(||, A m a x ) . 

Step 5: If p < 0 then go to Step 3, otherwise set x := «c+, / := / + and go to 
Step 2. 

Inexact trust region methods have strong convergence properties (see [6], [7], 
[8]). Even if they also work well for indefinite matrices, we confine our attention to 
positive semidefinite case which appears in nonlinear least squares. 

The most complicated part of Algorithm 1.1 is computation of the vector d £ Rn 

satisfying the conditions (a), (b), (c). There exist three basic possibilities for positive 
semidefinite case. First, the vector d £ Rn can be obtained as a solution of the 
subproblem 

d= argmin Q(d(X)) 
||d(A)||<A 

which leads to the repeated solution of the equation (B + \I)d(\) + g = 0 for selected 
values of A. This way gives well-convergent algorithms, especially in connection with 
the Newton method, but for large number of variables, it is time consuming. 

The second possibility, so-called dog-leg strategy, consists in computation of two 
vectors di £ Rn and d2 £ Rn such that gTBgdx + \\g\\2g = 0 and Bd2 + g = 0. The 
resulting vector d £ Rn is then obtained as d = \dx if ||di|| > A, d = d\ + X(d2 — d\) 
if ||di|| < A < ||d2||, and d = ||d2|| if ||d2|| < A, where the scaling factor A > 0 is 
chosen so that ||d|| = A. This way is more economical since the equation Bd2+g = 0 
can be solved inaccurately (||B<!2 + g\\ < u\\g\\) by some iterative method. 

The third possibility is very natural. The equation Bd + g = 0 is solved by some 
iterative method which generates the vectors di £ Rn, i £ N, having the following 
properties: 
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A) There exists an index k £ At, such that 

| |fldt+!7| |<u||ff | | 

for a given 0 < u < 1. 

(B) The sequence Q(di), 1 < i < k, is decreasing, i.e. 

Q(di+l) < Q(di) 

for 1 < i < k. 

(C) The sequence ||d,||, 1 < i < k, is increasing, i.e. 

IK+1||> M 

Q(Ml)<--\\g\\\\\di\ 

Q{di)^-2Ш 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

for 1 < i < k. 

(D) It holds that 

for 0 < A < 1, and 

for 1 < i < k. 

The resulting vector d 6 Rn is then obtained as d = \d\ if | |di | | > A, d = d,- + 
A(d i + 1 - di) if | |di| | < A < | | d t + i | | for some 1 < i < k, and d = ||d fc | | if ||dfc[| < A, 
where the scaling factor A > 0 is chosen so that | |d| | = A. 

Steihaug [8] has proved that all above conditions are satisfied for the conjugate 
gradient method. Our main purpose is to prove that these conditions are also sat
isfied for more complicated iterative methods appearing in least squares solutions. 

Consider the nonlinear least squares problem which is a special minimization 
problem where the objective function / := Rn —* R has the form 

/(-)== 5 £.?(*) (1.8) 

and the functions /,• : Rn —+ R, 1 < i < ra, have continuous second-order derivatives. 
Denote / = f(x), fi = fi(x), 1 < i < m and g = g(x), gi = gi(x), 1 < t < m, the 
values and the gradients of the functions / : Rn —» R, fi : Rn —> R, 1 < i < m, at 
the point x £ Rn respectively and set 

A = A(x) = 
flíW 

6 = 6(з;) = 
Л(-) 

L /«(*) 
Then 

/ = \bтЬ , g = -Aтb , 

(1.9) 

(1.10) 
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and if we denote x+ = x + d as a new vector of variables, we get after linearization 

Therefore the optimal direction vector d* £ Rn can be obtained as a solution of the 
linearized problem 

d* = argmin |L4d-6 | | (1.11) 
deR" 

Since the function | |Ad —6|| is convex the vector d* 6 Rn is a solution of the problem 
(1.11) if and only if 

AT(Ad*-b) = 0 (1.12) 

If we denote B = ATA and if we use (1.10), we get the equation Bd* +g = 0 which 
is equivalent to (1.12). Therefore it suffices to substitute B •= ATA in Algorithm 
1.1 to adapt it for nonlinear least squares. Especially the quadratic function (IT) 
takes the form 

Q(d) = -dTATAd - dTATb (1.13) 

Using the substitution B = A A we can transform the conjugate gradient method 
to solve the normal equation (1-12). The resulting method is the CGLS algorithm 
(see [5] as an example) which is represented by the following iterative process 

d0 = 0, r„ = 6, (1.14a) 

vi = ATr0, 7i = I M | 2 (L14b) 

pi = vi (1.14c) 

and 

Ui = APi, Si = \\UÍ\\2 (1.14d) 

di = „i_j + ^-pi, r, = r._i - £«,- (1.14e) 
"i <>i 

vi+1 = ATn, 7 i + 1 = |K + 1 | | 2 (1.14f) 

pi+1 = vi+1 + ^±pi (1.14g) 
H 

for i 6 N. As it was proved by Steihaug [8] for the CG method, the vectors di G Rn, 
i e At, obtained by (1.14) satisfy the conditions (A), (B), (C), (D). The inequality 
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(1.3) has the form 7* < w27i since AT(Adk - b) = vj. and ||j4T(j4dfc - 6)||2 = jk by 
(1.14f). 

The CGLS algorithm is not the best one for linear least squares. Methods based 
on bidiagonalization [1], [4], namely the LSQR algorithm proposed in [5], were proved 
to be numerically more stable. In the next section we shall study properties of such 
methods with regard to conditions (A), (B), (C), (D) which have to be satisfied. 

2. BIDIAGONALIZATION AND LINEAR LEAST SQUARES 

Consider the problem which consists in finding a vector d* 6 Rn such that 

d* = argmin | |A(!-6 | | . (2.1) 
deft" 

Since the function ||yW— 6|| is convex, the vector d* £ Rn is a solution of the problem 

(2.1)ifandonlyif AT(Ad*-b) = 0. (2.2) 

The problem (2.1) can be solved iteratively using a bidiagonalization procedure 
proposed in [1] and [4]. In this case 

/?!«!= 6, (2.3a) 

aiv1=ATu1, (2,3b) 

and 

/?,+!Ui+i = Avi - aiUi, (2.3c) 

ai+ivi+1 = ATUi+i - Pi+iVi, (2.3d) 

for i G N, where the right hand sides are assumed to be nonzero and the coefficients 
on the left hand sides are chosen so that the corresponding vectors have unit norms. 
If some right hand side becomes zero then we formally set both the coefficient and 
the vector on the left hand side equal to zero and we stop the iterative process. 
Namely if 6 = 0 or T4T6 = 0 we set j3\ = 0, u\ = 0 or a\ = 0, Vi = 0 respectively. 

It can be easily proved by induction (see [1] and [4]) that for a. > 0, /?,• > 0, 
1 < i < k, the vectors i/,- 6 Rn, 1 < i < k, are nonzero and mutually orthogonal and 
the vectors u; £ Rm, 1 < i < k, have the same property. 

The iterative process (2.3) can be written in the matrix form 

Ui+l(plel)=b, (2.4a) 

AV = Ui+1Bi, (2.4b) 

ATUi+l = VBj + ai+m+tej^, (2.4c) 
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for i G N, where V. = [t»i,...,-«.] G Rnxi, V?V{ = I, Ui+1 = [uu...,ui+i] G 
Rnx(i+i)t a n d 

BІ = 

« 1 , 0, . .., 0 

ß2, «2, • .., 0 

o, ß2, • . . , 0 

o, 0, . . . , a 
o, 0, . .-, ß 

(2.5) 

If a,- > 0, Pi > 0, 1 < i < k, then the lower bidiagonal matrices Bi G R<-i+^xi, 
1 < i < k, have full column rank. If /?,-+i > 0 then Ui+iUs+i = I. In the other 
case Ui+i = [U,-,0], Bi = [Lj, 0]T, where £,- G ft'x' is a nonsingular square lower 
bidiagonal matrix, and (2.4) can be rewritten in the form 

Uiißteг) = Ь, (2.6a) 

AV = UÍLÍ, (2.6b) 

(2.6c) ATUi = ViLj + ai+1 vi+lej+l, 

for i G N, where v, = [« i , . . . , u,-] G •ftnx,') UTUi = / . 
Together with the iterative process (2.3) we consider the sequence of vectors 

di G Rn, 1 < i < k, such that 

di = argmin | |Лd—6| | . 
dţЩV,) 

(2.7) 

L e m m a 2.1. Consider the iterative process (2.3) with a,- > 0, /?,• > 0, 1 < i < k 
Let di G JR", 1 < i < k, be the sequence of vectors defined by (2.7). Then, fo] 
1 < i < k 

where 

di = VУІ (2.8а) 

аrgmin \\Biy-ßiei\ 
y%R' 

(2.8b) 

If /?,+! = 0 (it can be satisfied only for i = k) then \\Adi — b\\ = 0. 

P r o o f . If d G Tl(Vi) then necessarily d = Vty for some y G Rl. If A'+i > 0 then 

\\Ad-b\\ = \\AViy-b\\ = \\Ui+t{Biy-!Stei)\\ = \\BiV - ftcifl, 
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by (2.4a) and (2.4b), since Uj+1Ui+\ = I, so that (2.7) is equivalent to (2.8b). If 
Pi+1 = 0 then 

||.4rf - 6|| = IL4V.J, - 6|| = \\Ui{Liy - f3\ex)\\ = 0, 

by (2.6a) and (2.6b), since the lower bidiagonal square matrix Li is nonsingular and, 
therefore, there exists a solution r)i £ R' of the equation L,y = /3\e\. • 

Corollary 2 .1 . Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k, 

di = ViVi (2.9a) 

where 

yi=alpi{BjBi)-
le\. (2.9b) 

P r o o f . Since the function \\Biy — fi\e\\\ is convex, the vector j/j £ R' is a 
solution of the problem (2.8b) if and only if LiJ{Biy — f3\e.\) = 0. Because the lower 
bidiagonal matrices S,- £ R('+1)X'I 1 < i < fc, have full column rank, we can write 
m = (3\{BjBi)~lBje\ which together with Bje\ = axe\ (see (2.5)) gives (2.9b). • 

T h e o r e m 2 .1 . Consider the iterative process (2.3) and sequence of vectors (2.7). 
Then either d* = 0 is a solution of the problem (2.1) or there exists an index k <n 
such that d* = dk £ TZ{Vk) is a solution of the problem (2.1) and, moreover, a; > 0, 
Pi > 0 for 1 < i < k. 

P r o o f . If either b = 0 or ATb = 0 then d* = 0 is a trivial solution of the problem 
(2.1). In this case either 0\ = 0 or a\ = 0 . Suppose now that a; > 0, /?,- > 0 for 
1 < i < k < n. If k = n then 7?.(Vn) = Rn since the vectors v., 1 < i < n, are 
nonzero and mutually orthogonal. Therefore 

dn = argmin \\Ad- b\\ = argmin ||A<* - 6|| = d* 
d£n(Vn) d£Rn 

is a solution of the problem (2.1). If k < n and /3k+\ = 0 then \\Adk — b\\ = 0 by 
Lemma 2.1 so that d* = dk is a solution of the problem (2.1). If k < n and ak+\ = 0 
then ATUk+\ = VkB

T by (2.4c) so that 

AT{Adk -b) = AT{AVkVk -b) = ATUk+\{Bkyk - fte,) = VkB
T{BkVk - fta) = 0, 

by (2.4a) and (2.4b), since Bj{Bkyk -/3\e\) = 0 by (2.8b), and d* = dk is a solution 
of the problem (2.1) by (2.2). Q 

Theorem 2.1 shows that c** = c*,- is a solution of the problem (2.1) whenever a,+i = 0 
or /3{+\ = 0. The next lemma gives an important estimation in case a,+i > 0 and 
A-+i > o. 
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Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k, 

\\AT{Adi - 6)|| = ai+1pi+1\vjdi\. (2.10) 

P r o o f . Let ai+1 > 0 and /? i+1 > 0. Then using (2.4a) and (2.4c) we get 

AT{Adi-b) = AT{AVm-b) = ATUi+1{Biyi-(J1e1) = 

= {VBj + ai+1vi+1ej+1){piyi - ftcj) = 

= ai+1vi+1eJ+1{Biyi - fax) = ai+lf3i+lvi+1ej\ji 

since Bj(Bm - faex) = 0 by (2.8b), eJ+1Bi = /3i+leJ by (2.5), and eT
+1e,- = 0. 

But V;TV; = / and, therefore, Vjrdi = Vt
TViyi = m so that ejy{ = eTV-Trf; = 

vjdi which together with ||w t+i|| = 1 gives (2.10). If ai+1 = 0 or (5i+1 = 0 then 
\\AT{Adi-b)\\ = 0 by Theorem 2.1. • 

Now we shall study properties of the vectors d{ E i?n , 1 < i < fc, defined by (2.7). 
We shall use the notation (1.13). 

Lemma 2.3. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k, 

1 

r 
Q{di) = -l-a\f3leTCie1 (2.11) 

and 

|K-||2 = alUleJChi (2.12) 

where 

d = {BjBi)-1. (2.13) 

P r o o f . Using (1.13) and (2.8a) we can write 

Q(di) = \yJVTATAViVi - yJVTATb 

which together with (2.4a), (2.4b) and (2.9b) gives 

Q{di) = \yjBjUT
+1Ui+1 Biyi - yjBjuJ+1b = \yJBjBiyi - piyjBjei = 

= \alfieJCiBjBidei - a'fiejde, = ~\a\H\e
TCiei 

since Bjei = a%e\ by (2.5). Similarly we get 

¥i\\2 = yJVTVyi = yjyi = a2 /?1
2(C ie1)TQ e i = a\fS\eTChx 

since VTVi = / and the matrix (2.13) is symmetric. • 
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Lemma 2.4. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k, 

(2.14) _ [ C. + a? + 1 / ?^ l 7 t + 1 C.e .e?C i , -a.+ 1 /? .+i7i+io iei 
G i + 1 - [ -ai+\(3i+\li+xeJCi, 7i+i 

where 

Ti+i = "?+i+/^2-<iftV-^ 

P r o o f . Using (2.5) we can write 

> 0 (2.15) 

fli
rS. = 

* i , ft. 0, . . , 
0, a2, Ã , ... 

L 0, 0, 0, 

o, 0 

o, 0 

a,-, ft+1 j 

r al+fá, a2/?2, 
a2p2, a\ + Pl 

0, 

C*3/?3, 

a3/?3, «§ + /?!, 

0, 0, 

a\, 0, 
ft, <*2, 

0, &, 

0, 0, 
0, 0, 

, o 
, 0 
, 0 

, «? + #+. 

Therefore 

fíT pí _ [ I^i, a.+ift+iei 
e ^ B i + 1 " [ ai+\l3i+\ej, a? + 1 + /??+2 

(2.16) 

Since the matrix BT+xBi+x is nonsingular, it suffices to prove that Bj+xBi+xCi+\ = I 
for matrices (2.14) and (2 A 6), which leads to straightforward computations. D 

Lemma 2 .5 . Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 < i < k, 

eJCfeteJCiet > 0 (2.17) 

P r o o f . (By induction): Since both matrices Ci and C\ are positive definite we 
have e^Ciei > 0 and e^Cj^i > 0 so that eJC\exeJC\ex > 0. Suppose that (2.17) 
holds for some i < k. Then, using (2.14), we get 

eJCi+\ei+\ = -a .+ 1 /? í + 17i+ 1e^ 'C.e. 
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and 

eJCf+1ei+1 = -ej(d + ahl^+iJi+lCieieJCi)(ai+1pi+\yi+1Ciei) -

-eJ(ai+1f3i+1yf+1Ciei) = 

= -ai+1pi+1yi+i(eJCfei + a2
+l[Jf+lJi+1eJCieieJCfei + 

+yi+1eJCiei). 

Therefore 

eJCf+1et+1eJCi+1el+1 = a2
+lPf+lyf+1(eJCfeieJCiei + yi+1(fJClei)

2 + 

+<*l+1f]f+iyi+i(eJCei)
2eJCfet). 

But eJCfeieJCiei > 0 by inductive assumption, 7i+i > 0 from positive definiteness 
of the matrix Ci+i, and eJCfei > 0 from positive definiteness of the matrix Cf. 
This together with a,-+i > 0 and A+i > 0 gives ejCf+1ei+1eJCi+1ei+1 > 0. • 

Theorem 2 .2 . Consider the iterative process (2.3) and the sequence of vectors 
(2.7). Let k be the index from Theorem 2.1. Then, for 1 < i < k, 

Q(di+1) < Q(di) (2.18) 

and 

||rf.+i|| > 11*11. (2.19) 

P r o o f . Using (2.14) we get 

e^a+iei = eT(C',. + a?+1/?2+lT.+lC-.e.eTc-.)ei = 

= eJCiSl + a2
+1^r+17i+i(e1

rCiei)2 > e ^ e , 

since ai+1 > 0, /?,+i > 0 by the assumption, yi+1 > 0 from positive definiteness of 
the matrix Ci+i, and (e^Qe,)2 > 0 by Lemma 2.5. This together with (2.11) gives 
Q(di+1) < Q(di). Similarly using (2.14) we get 

eJCf+1ex = ej(d + al+rff+ai+rCideJCi)^ + (a^pi^y^ejdei)2 = 

= efCfet + 2a2
i+1pf+1yi+1eJCfeieJCiei + 

+^+1Pt+1yf+1(eJCiei)
2eJCfei+a2

+1pf+1yf+1(eJCie,)2 > 

> eJCfe, 

since ai+i > 0, A+i > 0 by the assumption, 7,+ 1 > 0 from positive definiteness 
of the matrix C + i , ejcfet > 0 from positive definiteness of the matrix Cf, and 
(eJCid)2 > 0, eJCfaeJdei > 0 by Lemma 2.5. This together with (2.12) gives 
IK+l||2>ll*l|2- D 
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T h e o r e m 2.3. Let the assumptions of Theorem 2.2 be satisfied. Then 

Q(Xd\)<-\\\ATb\\ HAdiH, 

forO< A < 1, and 

Q(di) < -
I « 
2|iA^ir 

(2.20) 

(2.21) 

for 1 < i < k. 

P r o o f . The equalities (2.11) and (2.12) imply 

Q(d\) = ~\a\p\eTC\e\ = -\a\fiyfeJCfa = -\\\ATb\\ \\d\\\ 

since from (2.3a) and (2.3b) AT6 = a\(3\V\ follows, which together with ||vj.|| = 1 
gives \\ATb\\ = a\p\. But the function (1.13) is convex and Q(0) = 0 so that (2.20) 
holds for 0 < A < 1. Furthermore using (2.3c) we can write 

/?! = (Av\ - a\U\)T(Av\ - a\U\) = vj AT Av\ - a\ 

since ||«i[| = 1 and vjATu\ = a\\\v\\\2 = a\ (see (2.3b)). Therefore 

a\ + Pl = vTATAv\ < \\ATA\\ \\v\f = | |A T ^| | . 

Now, if we use (2.11) and (2.15), we get 

Q(d\) = -Uf3MCie\= l °^? 

2 " i r i v l w l " ~ 2a\ + f3?-

which together with (2.18) gives (2.21). 

<_iJИт &H2 

2 \\ATA\\ 

We have proved that the vectors d; G Rn, 1 < i < k, defined by (2.7) satisfy the 
conditions (A), (B), (C), (D) stated in Section 1. This fact will be used in the next 
section for construction of an inexact trust region algorithm. It remains to derive 
simple recurrence relations for the vectors di € Rn, 1 < i < k. 

The most widely used iterative method for linear least squares is the LSQR algo
rithm proposed in [5]. This algorithm uses orthogonal matrices Qi, 1 < i < k, such 
that 

where 

IÍBÍ = 
RІ 

••\ ř 
Vi+\ 

(2.22) 

RІ = 

Pì, 0-2, 0, . ., 0 " m 
o, P2, ^з, • ., 0 

, ìц = 
m 

o, o, o, . • •, Pi m 

(2.23) 
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At the same time Qit 1 < i < k, are products of Givens plane rotations and Ri G 
/?**', 1 < i < k, are regular square upper bidiagonal matrices. The iterative process 
for computing elements of both the matrices Ri, 1 < i < k, and the vectors hi, 
1 < i < k, has the form 

p1=a1, Tj^fa (2.24a) 

and 

Pi = yJpJ+fl+i, ct = ^, si = ^±, (2.24b) 

Pi+i = Cfa.+i, o-j+i = s{ai+1, (2.24c) 

Vi = ci7]i, ,Vi+i = SiVi (2-24d) 

for 1 < i < k (see [5] for detailed description). 
The values pi > 0 and ?/,-, 1 < i < k, can be used in estimation (2.10). 

Lemma 2.6. Let the assumptions of Lemma 2.1 be satisfied and let pi > 0 and 
T]i, I < i < k, are the values generated by (2.24). Then, for 1 < i < k, 

| | A T ( M - 6 ) | | = a i + i A - + 1 — ' (2.25) 

Pi 

P r o o f . Using (2.8) and (2.22) we can write 

di = Viyi (2.26a) 

where 
RiVi = hi (2.26b) 

Then 

vjdi = vJViRJlhi = ejRr1^ = -ejhi = ^ 
Pi Pi 

which together with (2.10) gives (2.25). O 

Recurrence relations for the vectors di G Rn, 1 < i < k, can be derived from 
(2.26). We do not give this derivation here because it is fully contained in [5]. The 
resulting formulas have the form 

d0 = 0, (2.27a) 

Pi=vu (2.27b) 
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and 

d, = d,_1 + ^ -p i j (2.27c) 
Pi 

p , + 1 = vt+i - ^±ip<, (2.27d) 
Pi 

for 1 < i < k. Note that, in contrast with the CGSL method (1.14), the coefficients 
Vi/Pii 1 < t < &, in (2.27c) are not all positive (they alternate signs). 

3. INEXACT TRUST REGION METHOD FOR NONLINEAR LEAST SQUARES 

Now we are in a position to describe complete inexact trust region method which is 
a combination of Algorithm 1.1 together with the LSQR algorithm investigated in 
Section 2. 

Algorithm 3 .1 . 

Data: 0 < /?i < /?2 < 1 < 71 < 72, 0 < px < p2 < 1, 0 < ei < e2 < 1, 0 < n < 1, 
0 < Wmax < 1, 0 < Am a x , k1eN,i1£N 

Step I: Choose an initial point x 6 Rn. Compute the values ft := ft(x) of the 
functions /,• : Rn —* R, 1 < i < m, at the point x £ Rn. Determine the 
vector b £ Rm using (1.9). Compute the value / := f(x) of the objective 
function / : Rn -> R by (1.10). Set A := 0 and r := (n) 1 !" . Set k := 1. 

Step 2: Compute the gradients #, := gi(x) of the functions /,• : Rn —• R, 1 < i < 
m, at the point x £ Rn. Determine the matrix A 6 Rm*n using (1.9). 
Compute the gradient g := g(x) of the objective function / : Rn —* R by 
(1+0). If either / < £1 or \\g\\ < £2 then stop, otherwise set £ := 1. 

Step 3: If A = 0 then set A := min(| | f f | |
3/ | |^l|2 ,4// | |ff | | , A m a x ) . Set u := 

min(\/||ff||,'rfc,a;max). Compute the vector d G Rn by the following sub-
algorithm: 

Step 3.1: Set d := 0. Compute /? := ||6|| and u := b//3. Compute a := \\g\\/P 
and v := — #/|ifir||. Set p := a, rj := /? and p := t;. Set i := 1. 

Step 3.2: Compute /? := \\Av - au\\. If /? = 0 then go to Step 3.3, otherwise 
set u := (Av - au)//3. Compute a := \\ATu - /3v\\. If a = 0 then go 
to Step 3.3, otherwise set v := (ATu - (3v)/a. 

Step 3.3: Compute p := \/p2 + /?2, c = p/p, s = /?/p and t? = ct?. If ||"' + 
(?//p)p|| > A then determine 0 < A < 1 so that \\d + A(ty/p)p|| = A, 
set d := d + X(r]/p)p and go to Step 4. Otherwise set d := d + (r)/p)p-

Step 3.4: If either i = n + 3 or a/?M//? < w\\g\\ then go to Step 4, otherwise 
compute p := ca, a := sa, t? := —srj and set p := v - (cr/p)p- Set 
i : = » ' + ! and go to Step 3.2. 
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Step 4: Set x+ := x + d. Compute the values / + := fi(x+) of the functions 
/,• : Rn —» R, 1 < i < m, at the point a;+ £ # n . Determine the vector 
b+ £ Rm using (1.9). Compute the value / + := / (*+) of the objective 
function / : Rn — R by (1.10). Compute the value Q(d) by (1.13) 
and set p := (/+ - f)/Q(d). When p < p\ then compute a := (/+ -
f)/dTg, p := 1/(2(1 - a)) and set A := /3\\\d\\ if /? < A , A := /?||d|| 
if A < /? < ft, A := /?2||d|| if A < /?• When P\ < p < p2 then set 
A := min(A,72||rf||). When p2 < p then compute A := max(A,71||rf||) 
and set A := min(A,72 | |d||, A m a x ) . 

Step 5: If p < 0 and £ > £\ then stop (too many reductions). If p < 0 and £ < £\ 
then set £ := £ + 1 and go to Step 3. If /? > 0 and fc > k\ then stop (too 
many iterations). If p > 0 and k < k\ then set x := x+, b := b+, f; = / + , 
set fc := A; + 1 and go to Step 2. 

The maximum number of iterations k\ £ N serves as an alternative termination 
criterion in the case when the convergence is too slow. The maximum number of 
reductions £\ £ N serves as a safeguard against possible infinite cycle which can 
arise for large residual problems when present round-off errors do not allow us to 
obtain a solution with the required gradient norm (\\g\\ < e2). 

We suppose, in the subsequent considerations, that all computations were per
formed accurately and that k\ = £\ = oo. Furthermore we denote 

m 

g(x) = J2fi(x)gi(x) (3.1) 
i = \ 

and 

G(x) = f2gi(x)gJ(x) + JTfi(z)Gi(x) (3.2) 
!=1 .=1 

the gradient and the Hessian matrix of the objective function (1.8) respectively. 

Theo rem 3.1. Let the functions f, : Rn -* R, 1 < i < m, have continuous 
second-order derivatives and let there exist constants C\ > 0, C2 > 0, C3 > 0 so 
that | / . (*) | < C\, \\gi(x)\\ < C2, \\Gi(x)\\ < C3, 1 < i < n, for all x £ Rn. Let 
xk £ R", k € N, be the sequence generated by the Algorithm 3.1. Then 

lim inf \\g(xk)\\ = 0 (3.3) 
fc-+oo 

P r o o f . From (1.9) we have 

m m 

\\A\x)A(x)\\ <J2\\gi(x)97(z)\\ = D l ^ H 2 -- m°l 
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and (3.2) implies 
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HoOOH < \\AT(x)A(x)\\ + 5>(-)G.(-) < 

< mCl + J T \fi(x)\ \\Gi(x)\\ < m(Cl + CiC3) 
1 = 1 

Therefore both matrices B(x) = AT(x)A(x) and G(x) are bounded from above so 
that (3.3) holds (see [6], [7], [8]). a 

Theo rem 3.2. Let the assumptions of Theorem 3+ be satisfied with 

lim xk = x* 

Let the matrix A(x*) has full column rank and 

m 

£/.(x*)G,(s*) = 0 
1 = 1 

Then the rate of convergence of the sequence xk 6 Rn, k £ At is superlinear. 

P r o o f . We have to prove that 

and 

lim uik = 0 

.m \\(G(xk)-A
T(xk)A(xk))dk\\=Q 

lim 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

since these conditions are sufficient for the superlinear rate of convergence if the 
matrix G(x*) is positive definite (see [6], [7], [8]). But u>k —• 0 since 0 < uk < \\g(xk)\\ 
in Step 3 of Algorithm 3.1 and g(xk) ~* 0 by (3.3) and (3.4). From (3.2) we get 

\\(G(xk)-A
T(xk)A(xk))dk\ 

\\dk\\ E/.(*-)<*(**) 
and continuity assumptions imply 

m m 

lim ^2fi(xk)G(xk) = 5>(.-*)<-M-.') 
" " ^ j = i t = i 

which together with (3.5) gives (3.7). The matrix o(.c*) is positive definite since 

m m 

GK) = Y,9i(**)9?(**) + J3/i(.-*)G,(.-») = AT(x*)A(x*) 
i = i i = i 

by (3.2) and (3.5) and since the matrix A(x*) has full column rank. £ 
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4. COMPUTATIONAL EXPERIMENTS 

In this section we present results of a comparative study of three trust region methods 
for nonlinear least squares: the exact trust region method with the double dog-leg 
step (DDLS) subalgorithm proposed in [3], the inexact trust region method with 
the CGLS subalgorithm described in Section 1 and the inexact trust region method 
with the LSQR subalgorithm studied in Section 2. All these trust region methods 
were realized by algorithms which differ from Algorithm 3.1 only in Steps 3.1-3.4 
(Algorithm 3.1 uses the LSQR subalgorithm). 

Algorithm 3.1 contains several parameters. We have used the values /?i = 0.05, 
fa = 0.75, 7i = 2, 72 = 106, pi = 0.1, p2 = 0.9, ex = 10~16, e2 = 10 - 8 , n = 10"3, 
wmax = 0.4, A m a x = 103, &i = 500, l\ = 20 in all numerical experiments. 

All test results were obtained by means of the 9 problems given in the Appendix. 
All these problems were considered with 100 variables. Therefore a sparse matrix 
technology was used (for instance the DDLS subalgorithm contained a sparse Choles-
ki factorization procedure). Summary results for all problems are given in Table 1. 
Rows of this table correspond to individual problems and columns correspond to 
selected algorithms (DDLS, CGLS, LSQR). The results are presented in the form 
IT-1F-IG (P) where IT is number of iterations IF is number of different points at 
which the values fi(x), 1 < i < m, were computed, IG is number of different points 
at which the gradients gt(x), 1 < i < m, were computed and (P) is the logarithm of 
the obtained gradient norm. 

Numerical results contained in Table 1 show that the LSQR algorithm is most effi
cient, measured by both numbers of iterations and numbers of functions evaluations, 
in comparison with other tested algorithms. 

Table 1. 

n=100 DDLS CGLS LSQR 

1 
2 
3 
4 
5 
6 
7 

• 8 

9 
10 

218-221-219 (-11) 
166-180-167 (-8) 

13-14-14 (-8) 
29-60-30 (-7) 

5-6-6 (-14) 
5-6-6 (-10) 

25-61-26 (-4) 
15-17-16 (-8) 

69-108-70 (-6) 
405-458-406 (-6) 

135-150-136 (-8) 
152-188-153 (-11) 

17-18-18 (-8) 
199-230-200 (-7) 

9-10-10 (-10) 
10-11-11 (-10) 

38-69-39 (-4) 
15-16-16 (-8) 
53-80-54 (-6) 
26-61-27 (-7) 

117-121-118 (-11) 
111-131-112 (-7) 

14-15-15 (-8) 
81-109-82 (-6) 

6-7-7 (-8) 
8-9-9 (-13) 

38-72-39 (-4) 
15-16-16 (-8) 
50-71-51 (-6) 
28-66-29 (-7) 

£ 950-1131-960 654-833-664 468-617-478 
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A P P E N D I X 

Our test problems consist in searching local minimum of the objective function 

n-)-4 £/-(*) 
fc=i 

from the starting point x. We suppose n is even. We use functions div (integer 
division) and mod (remainder after integer division). 

Problem 1. Chained Rosenbrock function. 
m = 2 ( n - l ) , t'-=div(.s + 1.2) 

/*(.-) = 10(.e? - xi+l), A;-odd 
fk(x) = a?j — 1, k — even 

xt = -1 .2 , ^ - o d d 

xi = 1.0, I— even 

Problem 2. Chained Wood function. 

m = 3 ( n - 2 ) , i = 2 diw(k + 5, 6) - 1 

/ . , (* )= 10(.r? - ar.+i), mod(*,6) = -

/fc(x) = .5i-l, mod(fc,6) = 2 

/*(*) = >/90(x? + 2 - . - . + 3) ) mod(fc,6) = 3 

/fc(.c) = Xi+2 - 1, mod(fe, 6) = 4 

fk(x) = VT6 (sc.+i + a;i+3 - 2), mod(fc, 6) = 5 

/fc(x) = (xi+i - .-,-+3)/>/l0) mod(fc, 6) = 0 

xi = - 3 , ^ - o d d , e<4 

xt = - 2 , J? - odd , £ > 4 

if = —1, ^ —even, ^ > 4 

xt = 0, ^ - even, ^ < 4 

Problem 3. Chained Powell singular function. 

m = 2 ( n - 2 ) , i = 2 div(fc + 3,4) - 1 

/.,(*) = *• + 10x,+x, mod(fc,4) = 1 

fk(x) = VE (xi+2 - xi+3), mod(k, 4) = 2 

fK(x) = (x i + i - 2ar1+2)2, mod(fc, 4) = 3 

fk(x) = v/10 (.?,• - a-i+3)2, mod(fc,4) = 0 
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xi = 3, mod(£,4) = l 

xг = - 1 , mod(f,4) = 2 

xг = 0, mod(£,4) = 3 

xг = 1, mod(€,4) = 0 

Problem 4. Chained Cragg and Levy function 

m = 5 ( n - 2 ) / 2 , ѓ = 2 div(A; + 4,5) - 1 

fk(x) = (exp(xí) - xi+i)
2, mod(jľ,5) = 1 

fk(x) = Ю(xi+l-xi+2)
3, mod(&,5) = 2 

f (т\ _ s i n 2 ( x , + 2 - x i + 3 ) 
Jk\Xl ~ c o s Ҷ r , + 2 - x , + 3 ) ' mod(Â;,5) = 3 

fk(x)=xf, mod(&,5) = 4 

fк(x) = xi+3- 1, mod(&, 5) = 0 

xг = l, 1=1 

xг=2, l>\ 

Problem 5. Generalized Broyden tridiagonal function. 

m = n, XQ = 0, i „ + i = 0 

fk(x) = (3 - 2a;fc) a;* + 1 - Zi_i - xk+i 

xi = -l, £>\ 

Problem 6. Generalized Broyden banded function. 

m = n, k\ = max(l,& — 5), k2 = min(n, k + 1) 
k2 

fk(x) = (2 + hx2)xk + l+J2Xj(l + Xj) 
j '=fci 

Z< = - 1 , ^ > 1 

Problem 7. Extended Freudenstein and Roth function. 

m = 2 ( n - l ) , i = div(jb + l ,2) 

fk(x) = a:,- + z i + i ( (5 - a;i+i)a;i+1 - 2) - 13 , k - odd 

fk(x) = xi + xi+x((\ + x i + i)a; i + i - 14) - 29, fc - even 

xi = 0.5, £ <n 

xt = - 2 , ^ = n 
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Problem 8. Wright and Holt zero residual problem (n is multiple of 4). 

ra = 5n, i = mod(k,n/2) + l, j = i + n/2 

0 = 1 , k< ra/2 

a = 2, k > ra/2 

6 = 5 - div(jfc, ra/4) 

c = mod(fc, 5) + 1 

/„(*) = (*?--JT 

_« = sin2(£) 

Problem 9. Toint quadratic merging problem. 

ra = 3 ( n - 2 ) , i = 2 div(fc + 5,6) - 1 

/*(*) = Xi + 3_ i + i (xi+ 2 - 1) + x?+3 - 1, mod(£, 6) = 1 

fk(x) = (Xi + _ i + 1 ) 2 + (_ i+2 - l ) 2 - *.+3 - 3, mod(fc, 6) = 2 

fk(x) = _.~i+i - xi+2xi+3, mod(fc, 6) = 3 

fk(x) = 2_,_,+2 + *,+ 1*i+3 - 3, mod(fc, 6) = 4 

fk(x) = (_,• + xi+1 + xi+2 + xi+3)
2 + (*i - l ) 2 , mod(fc, 6) = 5 

fk(x) = _ , _ i + 1 x i + 2 _ i + 3 + (xi+z - l ) 2 - 1, mod(fc, 6) = 0 

it = 5, £>l 

Problem 10 . 

ra = 2 n - l , i = div(ik + l,2) 

fk(x) = 4 - exp(_.) - exp(xi+i), mod(fc, 2) = 1, i = 1 

fk(x) = 8 - exp(3xi_!) - exp(3*i) 

+ 4 - exp(_i) - exp(*i+1), mod(fc, 2) = 1, 1 < i < n 

/„(_) = 8 - exp(3xi_i) - exp(3*,), mod(fc, 2) = 1, i = n 

/„(_) = 6 - exp(2*,) - exp(2*i+1), mod(fc, 2) = 0 

xi = 0.2, I > 1 

(Received January 12, 1993.) 
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