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K Y B E R N E T I K A — V O L U M E 29 ( 1 9 9 3 ) , N U M B E R 4, P A G E S 3 7 7 - 3 8 8 

DISCRIMINABILITY OF ROBUST TEST 
UNDER HEAVY CONTAMINATION 

ASUNCIÓN MARIA RUBIO AND JAN ÁMOS VÍŠEK1 

The paper studies the upper limit of possible contamination level which still allows to 
discriminate by a robust (likelihood ratio) test a hypothesis from an alternative. Having 
found this limit the test of a hypothesis against an alternative, both being increasingly 
contaminated with the increasing number of observations, are considered. The level of 
contamination is adjusted so that it allows discrimination with an a priori fixed risk. The 
asymptotic distribution of the test statistic is found and the tightness of approximation to 
the power of test based on this asymptotic distribution is illustrated by a small numerical 
example. 

1. INTRODUCTION 

The notion of the contamination of data is one of the basic ones in robust statistics. 
Although the majority of methods constructed in robust statistics assume, at least 
implicitely, some level of contamination and accomodate the whole approach to it 
(see e.g. [6] or [7]), the estimation of the contamination level deserves relatively very 
small attention (see [12], [14] or [15]). However, having estimated the contamination 
level of data, in a similar way as we estimate other characteristics of data, as the 
location or the scatter, we may select a procedure with an appropriate "level of 
robustness", avoiding the procedures with (extremely) high breakdown point. It may 
allow us to reach directly a good efficiency by relatively simple methods. The benefit 
of it, besides others, may be e. g. a decrease of probability of the computational error. 

On the other hand the question "How high the contamination level can be still 
allowing a reliable estimation?" is (leaving aside its practical impact) very attractive 
and the results achieved in study of breakdown point may be viewed as an answer 
to it. Similarly for the robust testing one may ask: "How heavy could a contami­
nation be to allow still the discrimination of a hypothesis from an alternative (on 
a corresponding significance level and a power of test)?" In the present paper this 
question is studied in a framework of the model of contamination with the general 
neighbourhoods. 

The setup of the paper will be as follows. Let us have a simple hypothesis and 
a simple alternative, which are assumed to be fixed (which corresponds to the fact 

'The authors has obtained a support from the Department of Education and Science of the 
Spanish Government. 
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that in many cases they are "given" by (physical) circumstances). Independent ob­
servations, generated either by the hypothesis or by the alternative, are available 
but it is assumed that they are contaminated. Then, it is easy to see that there is 
an upper bound of the contamination level, and for the contamination level higher 
than it the problem of testing has no reasonable solution, because of the nonempty 
intersection of the contamination-generated neighbourhoods of the hypothesis and 
of the alternative. Hence it is clear that this bound does not depend on the number 
of observations. However assuming e. g. the value of (minimal) sum of the error 
probabilities as a characterization of test risk, one may expect that with the increas­
ing number of observations a level of contamination, permitting to construct a test 
still being able to discriminate the hypothesis from the alternative with an a priori 
given risk, would increase, too. Therefore finding the mentioned upper bound of the 
admissible contamination we will try to build up a model in which the level of the 
contamination would also increase with the increasing number of observations and 
moreover the distributions (under the hypothesis and under the alternative) of the 
test statistics would converge to asymptotic ones. 

The model is proposed in Section 3 and the desired property is established in 
Theorem 2. Numerical examples are presented in Section 4. Now, let us give some 
notations. 

2. NOTATIONS 

Let us denote by R the real line and by f>f the set of all positive integers. Let {0,, B) 
be a measurable space and let M stand for the set of all probability measures on it. 
Let Po and Pi be distinct probability measures. For real numbers £,• and 6i fulfilling 

0<e,- ,0<<5.,0 <£ ,+£ , • < 1, i = 0, l (1) 

let us define 

Vi{ti, hi) = {QeM: Q{B) > (1 - e.)P.(B) - 6{ for all B € B} 

Tn(£i,ti) -- <Q9Qi- Qj£ Vi{ei,6i) f o r j - 1 n 

Hi{£i,6i) = {wn: wneVf "(£,-, 6i) for all n € N} 

where " ® " = 1 " denotes nth convolution. 
Let us recall a definition of the least favorable pair (LFP) for (P 0 ,P i ) - We say 

that the pair of probability measures {Qo, Qi) is the least favourable pair for ('Po, 'Pi) 
if it satisfies 

Qo{{7t>t}) = sup{o ' ({7r>*}):Q'6p0(£o ,S0)}, 
Qx{{*>t}) = mi{Q"{{n>t}): Q"€9i{et,61)} 

for all positive t and TT € dQi /dQ 0 . 
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3. RESULTS 

Let E\, 60 and 6\ be real numbers such that there exists e £ R and Be £ B such that 
(1) is fulfilled (with e0 = e) and 

(1 - £\)P\(Be) + £\ + 61<(l- e)P0(B€) - 60. (2) 

Let £ be a set of all such e € (0,1) for which (1) and (2) hold and put 

£o = sup £. 

To simplify further notation put 

£\ + 6\ 6\ 
v\ = - , wi = 

l-e\ 1 — £i 

and 
e + 60 60 

and define for any t > 0 and A € dPi /dP 0 

<M*) = (v\ +Uetyr [t • P0(A < t) - P ( A < i)] 

and 
^u(t) = (v£t+u\)-1[P\(A>t) - i-Po(A>t)} 

Assert ion 1. The function ipoe(t) is strictly increasing on {t G R, ipoe(t) > 0} and 
^\c(t) is strictly decreasing on {t 6 R, ipie(t) > 0}. 

P r o o f . The proof is essentially contained in [6] but since it is short we will 
present it for the convenience of the reader. Let us assume at first the function 

<p€(t) = Po(A < t) - r1-P1(A<t)). 

Let 0 < t\ < t2, t1,t2e{te R,ihc(t) > 0} . Since for any u> £ {t\ < A < t2} we 
have dPo(w) > t^1 • dP\(u>), we obtain also 

P0(t\ <A<t2)> t'1 • P\(t\ <A<t2)> t'1 • P\(A < t2) - q1 • P\(A < t\) 

and hence 

Vc(h) - Mh) = Po(h <A<t2)- t~l • P\(A < t2) + t~1 • Pi(A < t\) > 0. 

On the other hand 

^{t) = v 4-1 r y g ( < ) ' 
V\ •+• U)e • t 

and since t (v\ + w£ • t)~l is also increasing on {t > 0} , the proof follows. • 
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Since for t \ 0 the function ip0c (t) \ 0 and for t / oo it converges to 
w~l — ̂ f* > 1 (the last inequality follows from (1)), there is a uniquely given 
number Ao« such that il>oc(Aoc) = 1 or 

A0 £P0(A < A0 e) - Pi (A < A0£) = 1/1+ OJCA0C (3) 

and similarly for V'le there is also uniquely given Alc so that 

P i ( A u < A) - A u P 0 ( A u < A) = ucAu + «i-

Let 

A0 = sup{A0£ : e € £} 

and 

Aj = inf{A u :ee£}. 

Lemma 1. The set £ has a form (0,eo) and it holds: 

1-£»P„fA<i^N)-P,fA<l^U„ + T A r , (4) l-єг Ч 1-єiУ " Г 1-ђ/ ' 1-ђ ' 
l-eo Д 0 = Дi = 
l - є i 

P r o o f . Let e G £ and § G R, 0 < e < e. Then evidently (1) holds for e. Since 
for some Bc ~ B the relation (2) is fulfilled, we have also 

( l - £ i ) P i ( B e ) + ei + « i < ( l - e ) P 0 ( B , ) - * 0 . 

So e € £, too. Moreover, let t > 0. Then uc • t < ut • t and hence ipoe(t) < V,o«(0 
which implies 

A 0 £ -<A 0 £ . (5) 

Let us assume that il>oe(jzi~') < 1- Then 

(1 - e) P0 ( A < ~ ~ j - 60 < (1 - e i ) Px (A < ± ^ \ + ei + «i- (6) 

Let B € B and let us consider the set C = j A < j f j - > n B c where the superindex 
"c" stands for the complement. Due to the fact that at any point u ~ C we have 
(1 - £i) dPi(w) < (1 - e) dPo(w) we obtain 

( l - e i ) P i ( C ) < ( l - e ) P o ( C ) 

and hence (using (6)) 

(1 - e) P0 (IA < ~~-\ n BJ ~ 60 < (1 - ei) Pi (I A < ±^j-\ n B) +ei + 6X. 

(7) 
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Since similarly for any u € -j A > j^f- > we have 

( , . , ) P n ({A > ifJL} n B) < (1 - 4.) A ({A > i f i } n a) , 

taking into account (7) we obtain for any B & B 

(1 - e) Po (B) - 60 < (1 - £i) Pi (B) + ei + 6l 

but it is in a contradiction with the assumption that £ £ £ (see (2)). So we have 
found that V;o«(xr^) > 1 and then from the Assertion 1 follows that A0e < j~£-
for any £ € £. Let us assume that A0 < jzf- a n d for any £ € £ denote by C£ 

the set {w e fi; A < A 0 £ } . Consider a monotone sequence {£n}„°=i / £o- From the 
continuity of probability measure in a nondecreasing sequence {oe„}n=j (see (5)) 
we obtain 

lfo«0(Ao)=l. (8) 

But then from the assumption that A0 < jz^ we obtain 

*-(&?)><• 
Let us define %j>(e) = ipoe \jE§-}- Then we have i>(£0) > 1 which implies that there 

exists £* € R, e* > e0 and V»(e*) > 1, i.e. 

l - e * r , l A l-e*\ _ j A l - e * \ 1-e* 
-Po A < ; - Pi A < > J/] + w£ 1 - e i V 1 - e i j V l - £ i j 1 - e i 

Putting B£* = { A < J 5 j - > one obtains 

(1 - e*)Po(S£.) - 60 > (1 - e1)Pl(Bc.) + ei + 5i, 

i. e. (2) holds for e*. Moreover 

0 < e 1 + 5 1 + ( l - £ 1 ) P , ( S e . ) < ( l - e * ) P 0 ( S £ . ) - 6 o < l - ( e * + o " 0 ) . 

i.e. (1) is fulfilled for £*, too. So we have found that the assumption A0 < j ^ -

implies existence of e* > £o,e* £ £ and therefore A0 = y^ff- Similarly it is possible 

to show that Ai = jrf1- a 

Remark 1. The assertion of Lemma 1 may be written also as 

A0P0(A < A0) - Pi (A < A0) = i/i + w0A0 

from which follows 

P0(A < A o ) - w 0 > 0. 

We will need this inequality several times in the sequal. 

For any e € (0, e0) write e = e(r) = £0 - r (for some r € (0, e0) )• 
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Lemma 2 . Let us write 

A0 e = Ao - TR0(T) and Ale = A0 + TRX(T). 

Then 
limPo(T) = r \ 0 ( l - £ i ) [ P 0 ( A < A 0 ) - w o ] 

and 

l i m / í i ( T ) = + t / ° 
r \ o ( l - e 1 ) [ P 0 ( A o < A ) + i/o]' 

P r o o f . It follows from (5) that the mapping A0e : S —»(0, A0) is nondecreasing, 
and since A0 = sup {Ao« : £ G £} we have 

lim A0e(T) = A0 . 
T\0 V ' 

Let e 6 £. Substracting (3) from an analogous relation written for eo (and Ao, 
naturally — see (4)) one obtains 

A0 (P0 (A < Ao) - Po (A < Ao,)) + (A0 - A0 e)P0(A < A0e) - Pi(A0 e < A < A0) 

= (w0 - we)A0 + we(A0 - Ao,), 

A0Po(A0e < A < Ao) - Pi(A0 e < A < Ao) (9) 

= (w0 - w,)A0 + (Ao - A0,)(w, - P0(A < A0 e)) . 

From (3) follows that 
Po(A < A0e) - we > 0 (10) 

because of vx > 0 (and hence also Ao, > 0 — see also Remark 1). A straightforward 
computation gives 

Pi(A0 e < A < A 0 ) < A 0P 0(A 0 , < A < A0) (11) 

which together with (9) results in 

(A0 - A0,)(w, - P0(A < Ao,)) > (w, - w0)A0 

and finally (see (10)) 

A c -Ao,<[ f , (A<A.)-U . ] - ' - . ( 1_ e o ;^ ( 1 . e i ) . 

In the same way as (11) one may derive 

A 0 ,P 0 (A 0 , < A < A0) < P!(A0 , < A < A0) 

which together with (4) gives 

(A0 - Ao,) w, - P0(A < Ao,) < (Ao - A0 , )P0(A0 e < A < A0) - (w0 - we)A0, 
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i.e. 
(A0 - A0£)(u>£ - P0(A < A0)) < («, - wo)A0. (12) 

Taking into account Remark 1 and the inequality u>o = j - ^ ~ ^ H ^ + r = We w e Se^ 

P0(A < A0) - ioc > 0. (13) 

Now from (12) and (13) we obtain 

r • 60 
Д 0 - Д o e > [ P o ( A < Дo) - « - ] " ( l - ř o + r ) ( l - e i ) 

and the proof of the first assertion follows from the monotone convergence of A0e to 
Ao and continuity of the probability. A proof of the second assertion of Lemma 2 is 
similar. Q 

Now for a fix £i and for any e ~ S we may find LFP (Qoe> Qie) for V0(e, 60),V\(e\, 6\), 
the likelihood ratio of which is given by 

— = V 1 ^ median {A0e, A, A l £} (14) 
?0e 1 - ~ 

where densities q0c and q\E may be taken with respect to P0 + Pi or Qoe + Qu, see 
[9]. Keep in mind that although t\ and 6\ are fix (and hence also V\(e\) is fix), q\e 

depends on e — see (6.4) of [9]. From the relation (6.4) of [9] and from Lemma 1 it 
also follows that there is a probability measure Q0 such that 

lim ||Qoe - Qo|| = 0 and Km \\QU - Q0\\ = 0. 

Recalling that for any e € (0,e0) we have written e = £0(r) = e0 — r for some 
r £ (0,e0), put for h > 0 rn = h.n~~ and en = max{0,£0 — r n } . 

Asser t ion 2. If | |Pn - Pn\\ —* 0 as n —*• oo, then the sequences {Pn}~_i and 

{Pn}n
<'-\ are mutually contiguous. 

For the proof see [10], Lemma 2.1 of Chapter 1. D 

T h e o r e m 1. Sequences of probability measures {Qfn
n }°°_ , j = 0, 1 are (mutu­

ally) contiguous. 

P r o o f . The proof follows immediately from Assertion 2 due to 

lim IIQa- - Qu\\ = 0. a 
£/eo 

Keeping the notation of [10] let us write ACo,h,n for the logarithm of the likelihood 
ratio dQfn

n/dQ^"n. Then we have 

A - O , M W = f > g f, 1~£! m e d i a n {Aoem ,A(*0,Au.>l • (15) 
j - ^ 11 - e0 + Tn J 
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Let us find a function <P(-Tn,Tn)(x) such that 

Ae„A«(*) = 2^1og V 3 ( _ T n ] T n ) ( a ; i ) , (16) 

*=i 

i.e. 1 

<f{-Tn,Tn){xi) = - — § — median{A0£n, A(_,), A „ . > . 
L1 SO + "n J 

Let us evaluate <p'{0) = l im r \o ~ {V?(_T,T)(~) - V>(o,o)0>0} for a fix x. Let 
a: € {A < Ao}. Then there is a f = f{x) > 0 such that for all r e (0, f) 

V(-r,T) = ( Y ^ ^ A O , J 

and hence 

"•(•) = ^H(T^TV4'-)'-(^ta»)'} < l 7 » 
=, „-łj (__-!!__, V ť1 — 

\ o r | V l - £ ; o + r j V 1 _ í r o 

' ( -_ - *») ' + Urn I ( I T -
T \ o r [ V l - £ o 

(keep in mind that e — E{T)). NOW we easy find that the first limit is equal to 

(!-g i)2 _ _ | M _ £ Q ) Making use of Lemma 2 we also easy compute the value 
2(l-«.)-A0-

of the second limit, namely — ----- )rp (
c_<A ~__ i t n a t finally gives 

«_7.n - IMA < AQ) 
V 7 W - 2 ( l - e o ) N - J P o ( A < A o ) ] 

for any x 6 {A < A 0 } . Similarly for any x £ {A0 < A} we find 

^(0) = P ° ( A < A ° )  
VK) 2 ( l - e o ) [ P o ( A o < A ) + 1/o] 

and moreover, due to the fact that for the case when r > f we have 

V?(_T,T)(~) € (TZV-AOE, l__-At .J (see (14)), convergence 

~ {sP(--,r)(~0 - V(o,o)(~)} — ^ \ 0 <p'(0) 

is uniform. Since all consideration were made under the assumption that the domi­
nating measure is a probability, we have 

£ ( 0 ) _ Y ( 0 ) a.s. [QQ] 
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where <p(0) denotes the derivative of y?(_TT)(a:) with respect to r in the quadratic 
mean. Finally, defining F = 4 • EQo<p2 we may compute that 

T = {(1 - e0)
2[P0(A < A0) - a;0][Po(A0 < A) + t/o]}"1 • P0

2(A < A0) . 

Denote by .C^lP] the distribution of a random variable y under a probability mea­
sure P and by N(fi,a2) the normal distribution with the mean /i and the variance 
a2. Finally let us put 

on = 2 n - * f > ( 0 ) (18) 

where ipj(0) denotes value of ^(0) (or ip'(Q), it is the same) at the point Xj. 

Theorem 2. It holds 

£ [Dn | Qf£] —• N((-l)j+1h • F, r) 

and 

C [A£0,„,n \Q%n
n] — At (UŽíLtfr, ^ (19) 

The proof follows directly from Theorems 4.6, 4.5 and 4.3 of Chapter 2 of [10]. 
(In fact, specifying Theorems 4.3, 4.5 and 4.6 for our setup, i.e. for the setup in 
which we assume except of a system of the shifting alternatives also a system of the 
shifting hypotheses, we obtain Theorem 2.) 

4. NUMERICAL EXAMPLES AND DISCUSSION 

The numerical studies performed in [6] have proved the reliability of approximations, 
based on Edgeworth expansion, to error probabilities of the robust likelihood-ratio 
test based on A£(Ji/i>n (defined in (15)). So we may use them to create an idea about 
two questions: 

i) How does convergence described in Theorem 2 work? 

ii) In which situations the result given in Theorem 2 is useful for an approximation 
to error probabilities of the robust test? 

Both answers are presented in the form of tables. Let us explain a setup and the 
values gathered in them. P0 and Pi were assumed to be N(0,1) and N(/.i,l), re­
spectively. 

The Tables la, lb and lc offer a possibility to make an idea about the convergence 
in (19), i.e. e0 and h are fixed. Their values together with other parameters are 
referred on the upper margin of the tables. An approximation obtained from (19) is 
denoted by a*. 

The setup of Table la, lb and lc was selected so that it shows how convergence 
given in (19) works. However this setup is not appropriate for building up an idea 
of a practical possibility to use (19) as an approximation to size or power of test. 
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T a b l e l a . 
џ = .5 ei = .070 є 0 = .097 ío = í i = -025 

h = .027 Г = 3.520 л* = .4899 

n 10 20 30 40 50 

EDG.APPROX. .488824 .488882 .488903 .488914 .488920 

n 60 70 80 90 100 

EDG.APPROX. .488925 .488928 .488931 .488932 .488934 

n 110 120 130 140 150 

EDG.APPROX. .488935 .488936 .488937 .488938 .488938 

T a b l e l b . 

/ t = .75 e, = .080 eo = .219 So = Si = .025 

A = .139 T = 2.684 a* = .4546 

n 10 20 30 40 50 

EDG.APPROX. .454125 .454460 .454585 .454653 .454697 

n 60 70 80 90 100 

EDG.APPROX. .454728 .454751 .454769 .454783 .454795 

n 110 120 130 140 150 

EDG.APPROX. .454805 .454814 .454822 .454828 .454834 

T a b l e l e . 
ft = 1.0 ei = . 1 0 0 eo = .343 60 = Sj = .025 

h = .243 T = 2.359 a* = .4260 

n 10 20 30 40 50 

EDG.APPROX. .421214 .421853 .422093 .422224 .422307 

n 60 70 80 90 100 

EDG.APPROX. .422366 .422410 .422445 .422473 .422496 

n 110 120 130 140 150 

EDG.APPROX. .422515 .422532 .422546 .422559 .422570 

Hence t h e Tables 2a, 2b a n d 2c collect t h e values of t h e a p p r o x i m a t i o n , yielded by 

(19), a n d t h e E d g e w o r t h one for a s i t u a t i o n when e is a s s u m e d t o be fixed (value 

of which we have e s t i m a t e d (or guessed) from t h e character of given d a t a ) and t h e 

p a r a m e t e r h of the a s y m p t o t i c se t t ing of Section 3 is taken h = h(n) so t h a t for 

every n (E M we have 

£ = £o - h(n)/y/n, 

h(n) = y?I(£o - e ) . 

It may seem s t range t h a t we have considered in the previous section the p a r a m e t e r 

h to be fixed and now we select h = h(n). B u t it is qui te consistent . In t h e 

previous section we have for some fixed h derived some a sympto t i c result . Now we 

t ry to use this result for a given s i tua t ion in which we assume t h a t bulk of d a t a is 

d i s t r ibu ted either according to probabi l i ty model PQ or according to P\, bu t they are 
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con tamina ted wi th fixed con tamina t ion level. Natura l ly , we have some fixed number 
of observat ions . After es t imat ing values of pa rame te r s describing con tamina t ion level 
(namely £o,£i,<5o a n d <5i), we have to select h so t h a t "shrinking se tup includes" 
our concrete case (or in other words, a sympto t i c se tup "runs" th rough our fixed 
case). T h e n we do the s a m e for other sample size (but the same Eo,£i,6Q and 6\) 

and hence the p a r a m e t e r h changes because in fact we approx ima te corresponding 
error probabil i t ies in a different a sympto t i c model ( i . e . for every column in the next 
tables we have to have different a sympto t i c model ) . In the examples described by the 
following tables e's are the s ame as in the Tables l a , l b and lc . They corresponds 
to ( the upper bound of) the usual level of con tamina t ion , (see [5]). The i r values 
together with the other p a r a m e t e r s are given again on the upper margin of t he 
tables and a* again denotes the approx imat ion evaluated from (19) as above. 

T a b l e 2a. 
H = .5 ei = .070 e0 = .097 So = St = .025 

n 10 20 30 40 50 
a* .4849 .4787 .4740 .4699 4664 

EDG.APPROX .4644 .4499 .4388 .4295 .4213 

T a b l e 2 b . 
H = .75 si = .080 e0 = .219 S0 = Si = .025 

n 10 20 30 40 50 
a* .4415 .4175 .3993 .3842 3710 

EDG.APPROX .3945 .2982 .2586 .2274 .2017 

T a b l e 2c . 
H = 1.0 ei = .100 e0 = .348 S0 = «i = .025 

n 10 20 30 40 50 
a* .4033 .3646 .3358 3123 .2921 

EDG.APPROX .2552 .1767 .1281 .0951 .0716 

R e m a r k 2 . It follows from the Tables l a , l b and lc the Edgeworth approx imat ions 

of error probabi l i t ies are very s table which is in the accordance with T h e o r e m 2. T h e 

differences among a* and the values given in the Tables l a , l b and l c are due to the 

fact t h a t the approx ima t ion to t he s t a n d a r d normal d is t r ibut ion (used for evaluat ion 

of Po(A < Ao) and P i ( A < A o ) ) is not very t ight . (A polynomial approx imat ion 

from [1] wi th accuracy 10~ 5 which is usually sufficiently good was used.) However 

one finds out t h a t the small deviat ions in approx imat ion cause really not negligible 

changes in solut ion of (4) . Maybe , a normal iza t ion of the Edgewor th expansion 

could bring a l i t t le be t t e r accuracy (see [2], [3] or [11]). 

On the other h a n d a pract ical appl ica t ion of the results of T h e o r e m 2 is possible 

only for a ra the r "small" size of sample (as Table 2a, 2b and 2c show) and for a 

heavy con tamina t ion i .e . for con tamina t ion not very far from the m a x i m a l possible 

one. At the first glance i t m a y seem s t range why wi th increasing n the accuracy 

of the approx imat ions decreases. T h e exp lana t ion is s imple and follows from (18). 

In o ther words, due to t he fact t h a t our Q0en and Qun are fixed, namely equal to 
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Qoe and Qu, t he s u m m a n d s in (16) are the s ame , independen t ly of n. However the 
a sympto t i c mode l , in which we embed our s i tua t ion , assumes t h a t they are equal 
to <pj (0) (see ( 1 8 ) ) . A s y m p t o t i c d i s t r ibu t ions of such two sums of independen t and 
identical ly d i s t r ibu ted r a n d o m variables are na tu ra l ly disjoint. Hence the increasing 
inaccuracy. T h i s is t he reason why models wi th shr inking ne ighbourhoods while 
for the theoret ical purposes very appea l ing and clarifying l imit ing s i tua t ions , are of 
l imited impor t ance for prac t ica l appl ica t ions . I t does no t m e a n t h a t they should 
no t be used a t all. T h e y can be used in s i tua t ions when size of sample j u s t crosses 
b o u n d a r y above which the d iscr iminat ion (under heavy con tamina t ion ) is a l ready 
possible wi th a given risk. 

(Received April 16, 1992.) 
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