
Kybernetika

Jiří Anděl; Manuel Garrido Perez; Antonio Insua Negrao
Estimating the dimension of a linear model

Kybernetika, Vol. 17 (1981), No. 6, 514--525

Persistent URL: http://dml.cz/dmlcz/125642

Terms of use:
© Institute of Information Theory and Automation AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125642
http://project.dml.cz


K Y B E R N E T I K A - V O L U M E 17 (1981), N U M B E R 6 

ESTIMATING THE DIMENSION OF A LINEAR MODEL 

JIŘÍ ANDĚL, MANUEL GARRIDO PEREZ, ANTONIO INSUA NEGRAO 

A method for consistent estimation of the order of a linear model is derived in the paper. The 
procedure is analogous to modern criteria which are used in time series analysis. Some results of 
a simulation of polynomial regression are presented. 

1. INTRODUCTION 

Consider a regression model 

Yt = Po + PtXi + ... + ppx
p + e;, i=\,2,...,N, 

where e = (et, ..., eN)' ~ N(0, a2l), xu ..., xN are given numbers and fi0, ..., fip. a2 

are unknown parameters such that fip 4= 0, a2 > 0. The problem is to estimate the 
number p + 1 of regression parameters p0,...,[ip, when the pairs {Yu Xj), . . . 
..., (YN, xN) are given. Usually, only indirect methods for determining the number 
of parameters are used. Such procedures are based on a set of tests of significance 
concerning the estimates of fi0, •••,f>p. However, the application of a long series of 
tests is rather an art than an objective statistical method. The statisticians also con­
sidered the estimating of the order as a multiple decision problem (see Anderson [4], 
for example). But it seems that these results have not become popular. 

Another idea was proposed by Mallows [6]. Consider a linear model with p 
unknown regression parameters. If p grows, the bias in determining mean value is 
reduced, whereas the variances of estimators of parameters are larger. Denote s2 

the unbiased estimator for a2 in the model with p parameters and a2 a suitable esti­
mator for a2. Mallows advises to take the model which minimizes 

Cp = (N - p) s2
pja

2 + 2p-N. 

Similar problems appear also in time series analysis. Let Xu ..., XN be a stationary 
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autoregressive process generated by 

(1) Xt = atXt-t + ... + apX,-p + et, 

where et are again independent N(0, a2) variables. The modern procedures for deter­
mining p are based on following ideas. 

Assume that 0 g p ^ K, where K is a given number. Denote si an estimator 
of a2 in model (l) when k parameters a., ..., ak are taken into account. Usually, 
si is the maximum likelihood estimator of a2. For N -> co one can expect that s2 

approaches to a2 if fc ^ p, whereas s2 remains larger than a2 if fc < p. Nevertheless, 
the random behaviour of s2 does not allow to determine the beginning of the asympto­
tically constant part of the function s2, k = 0, 1, ...,K. The same problems arise 
in the variate difference method (see Anderson [4]). 

Introduce a function 

gN(k) = s2
k(\ +qk,N), k = 0,\,...,K, 

where qkN penalizes the growing number k of parameters in the model. Assume that 
Qk.N -> 0 as JV -+ oo for every fixed fe = 0 ,1 , .... K and that qk,N is an increasing 
function of k, when N is fixed. Then the inequality gN(k) > gN(p) for k < p will 
asymptotically hold and, for a properly chosen qktN, the values of gN(k) for k > p 
will also be greater than gN(p). For this reason we can estimate p by such a value 
k = p, which minimizes the function gN(k), k = 0 ,1 , . . . ,K. Many authors use 
In gN(k) = GN(k) instead of gN(k). Then they have the function 

GN(k) = In s2 + Qk.N , 

where QktN = In (1 + qkN). For example, Akaike's FPE criterion [ l ] as well as his 
AIC criterion [2] lead to 

(2) GN(k) = Ins2 + IkN'1 . 

Schwarz [8] and Rissanen [7] derived the function 

(3) GN(k) = \ns2
k + kN'^nN . 

Hannan and Quinn [5] proposed 

(4) GN(k) = In s2 + 2kcN-l In In N , 

where c > 1 is a constant. It was proved that (2) does not give the consistent estimator 
of the order of model (1) (see Shibata [10]), while the procedures based on (3) and 
(4) are consistent. 

The aim of our paper is to derive by elementary means a similar method for 
consistent estimation of the order of a regression model and to present some results 
from simulated data. 
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2. PRELIMINARIES 

In this section we introduce some general assertions which will be needed in the 
main part of the paper. 

Theorem 1. Let <* be an ^-dimensional random vector with Ec; = u, Var £ = V. 
Then we have for every n x n matrix A 

E£'A£ = Tr AV + p'Ap . 

If £, has a normal distribution, then the formula 

Var ?A( = 2 Tr (AV)2 + 4fi'AVA(i 
holds. 

Proof. See Searle [9], pp. 55-57 . D 

Theorem 2. Let x«, ..., x.v be a sample from a distribution with finite moments 

ji\, ..., [i'2h- Denote 

1, X . , . 
• • * ! 

1, řt'l, ••, Џ'Һ 

1, * 2 , • - , x 2 M = Џ\, Џ'ъ ••> Џь+\ 

1, x„, . ' • ! " * & 

M = 

Џ'h> Џh+i> ••> /tѓ* 

W "'XX-^І и 
Then 

as JV —> co. 

Proof. The assertion is a consequence of the law of large numbers. D 

It happens also very often that xt,...,xN are equidistant points from a fixed 
interval <a, b}, - c o < a < b < co, such that xx = a, xN = fc. If N -* oo, then 
JV_ 1X'X-» M again holds. This time the elements of matrix M are 

4 = (Ь-<.)-'£ /iy. = (0 — a) * I xJ dx , 

i.e. the moments of the rectangular distribution on <a, b}. 

Theorem 3. Write 

X = (X., X 2 ) , M = j lи„, м1 2 

!и21, м2 2 

where Xx is a iV x fc block and M u is a fc x fc block, k ^ h. Let M be regular. 
Then 

(5) N-^X'.X, - xix.cxjx.)-1 x;x2] ---> Mk, 

where Mt. = M 2 2 — M 2 1 M U M 1 2 is a positive definite matrix. 

516 



Proof. Let U be a random variable with moments /;',, ..., fi'2h. For any vector 
c = (c0, ..., ch)' we have 

< OSE&ejUy^i icjCkn'j+k = c'Mc. 
j=0 ; = 0 k = 0 

Therefore, M is a positive semidefinite matrix. We assume M to be regular and so it 
is positive definite. Then Mtl as well as Mk are also positive definite matrices (see 
Andel [3], p. 65 for details). Relation (5) follows from the law of large numbers. • 

Let us remark that M is regular if and only if random variables 1, U, U2, ..., Uh 

are linearly independent a.s. 
If xu ...,xN are equidistant points from <a, by, then an analogous assertion to 

Theorem 3 holds. The assumption that M is regular is fulfilled automatically. 

3. LINEAR MODEL 

Consider a linear model 

(6) Y = Xp + e , 

where Y = (Yu ..., YN)' is a vector of observations, X is a given N x p matrix and 
e = (eu ..., eN)' is a vector of disturbances. Assume that the rank of the matrix X 
is r(X) = p and that e ~ N(0, a2\). Then 

(7) Y ~ N(Xp, a21) 

and the least squares estimator b of p is b = (X'X)"1 XT. It is well known that 

b - N ^ f f ^ X ' X ) - 1 ] . 

The unbiased estimator for a2 is 

s2
p=(N~ Pyi(Y-Xb)'(Y-Xb) 

and we shall use the fact that 

(8) (N-p)s2
Pl<T2~x2

N-P-

Write X in the form X = (Xu X2), where Xj is a N x k block, k < p. Denote 
P = (/?*', P2')', where p1 has k components. If we try to fit to Y a wrong model 

Y = X^1 + e , 

then our estimator for pl is 
b1 = (x;x1)~1x;y 

and our estimator for a2 takes form 

s2
k=^(N-k)-1(Y-X1b

1)'(Y-X1b
1). 
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From here we get s2 = (At - fc)"1 Y AY, where A = / - X^XJX, )" 1 X[. The 
matrix A is symmetric and idempotent. The same is true for X 1 (X;X 1 ) - 1 X[. From 
i(X.) = fc it follows that i fX.fX'X.Y 1 X,'] = fc and then Tr A = x(A) = N - k. 
Denote ak = Es*. With respect to (7) we get from Theorem 1 that 

(9) a\ = <r2 + (N - fc)-1 p'X'[i - x ^ x : ^ ) - 1 x;] xp = 

= a2 + (N - k)-1 p2,[x'2x2 - x . x ^ x j x , ) - 1 x ;x 2] p2. 

Analogously, 

(10) Vars2 = 2(/V - fc)"1 a4 + 

+ 4(N - fc)"2 a2p2'[x2x2 - xr.x.fxix.Y1 x;x_] p2. 

Now, consider an overfitted model with k > p parameters 

y = Zy + e , 

where Z = (X, X3) and y = (/.', /.')'• Obviously, X3 is a N x (k — p) matrix and A 
has A: — p components. Let r(Z) = fc. Then g = (Z'Z)"1 ZY is an unbiased estimator 
for y and if we put 

Sfc
2 = (At-fcY1(y-zg)'(y-Zg), 

then s,2 is an unbiased estimator for a2. Again, we have 

(11) (N-k)s2
kla

2~y2__k, 

which is quite analogous to (8). 

Theorem 4. Assume that there exist such positive definite matrices A10, /Vl., ... 
..., /Vl.., that 

N-1[X^X2 - x ^ x ' x . Y 1 x;x2] -> Mk 

for fc = 0, 1, . . . , p — 1 as N -» oo. Define a function 

A = s2(l +qk,N), k = 0,l,...,K, 

where qkiN = kwN and wN -» 0, Ni/2wN -» co for TV -* oo. Then 

P(At > A_ for /c = 0, I, ...,p - \,p + 1, . . . ,X) -» 1 

if _V -> oo. 

Proof. Denote 

(12) sk = lim(JV - fc)-1 p2,[x'2x2 - x'.x^xix,)-1 x ;x 2 ] p2, 
JV-^oo 

fc = 0 , 1 , . . . , p — 1. Because we assume that the order of our model is exactly p, 
we have p2 # 0 and thus <50, ..., §p_1 exist and are positive. Formulas (9) and (10) 
imply 

(13) a2 -» a2 + Sk , Vars2 = o(iV-1), fc = 0 , 1 , . . . , p - 1 . 
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Formulas (8) and (11) give 

(14) <T2 <_. a2 , Var s2
k = 2(N - k)~ x aA , k = p, p + 1, ..., K . 

Denote 

Ik = (s2
P - -2) (1 + qP,N) - (si - a2

k) (1 + qktN), 

£„ = <72(1 + <__.„) - ff2(l + qpN) . 

Let k + p. Then 
P(A4 > A.) = P(^ < 8*) • 

Obviously, Ej^ = 0. For k < p we have ek ~* (\ for N -» oc. Denote <5* = 
= min (<50, ..., <5__j). There exists such JV_ that for N ^ JV_ the inequality sk > 
> 8*j2 > 0 holds. For k > p we see that e_ = a2(qk>N — qPyN) > 0. Consider N = 

>, N* = max (N0, ...,Np_{). Using Tchebyschev inequality we obtain 

P(/l/c > Ap) = P(\,h\ < £ . ) _ . 1 - £/T2 Var ,_ . 

Since for any two random variables £,, <J2 with finite second moments we have 

Var (. , + <̂ 2) < 2 Var £, + 2 Var c2 , 
we can write 

(15) P(Aft > Ap) __ 1 - 2£,72[(1 + <7P,,V)2 Var s2
p + (l + ^. ,w)2 Var .s'2] . 

If fc < p, then £fc > .*/2. From (13) and (14) we have Var s2
k = 0(N~1), Var s2

p = 
= 0(N _ 1 ) , and thus formula (15) implies P(At > Ap) -* 1. 

If k > p, then using (14) we get from (15) 

P(A, > A„) ^ 

= 1 - 4(_.fW - 9 P ,A) - 2 [(N - p)~l(\ + qPiN)- + (N - fc)-J (1 + qk,Nf] . 

Inserting qkM = kwN we obtain P(A_ > Ap) -> 1. 

The assertion that ?(Ak > Ap simultaneously for all k + p) -> 1 follows from 
Bonferroni inequality. • 

Theorem 3 shows that the condition 5k > 0 is fulfilled under quite general as­
sumptions. The existence of positive limits of (12) for k = 0, 1, . . . , K can be proved 
also for other situations when xt are chosen in a systematic way. It can be seen from 
the proof of Theorem 4, that the assertion remains true even under weaker conditions, 
namely if Var s_ = 0(N~l) and if for the smallest eigenvalue XN of the matrix 

iv-1[x_x_-x_x1(x_x_)-ix_x_] 
the relation 

lim inf XN > 0 
N->oo 

holds for all k = 0, 1, . . . , p ~ 1. 
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Theorem 4 shows that the variable k = p which minimizes the function Ak is 
a consistent estimator of the order of the given linear model. It remains to choose 
the function qkN. We can take 

<7/{./v = cfc/Va , 

where c > 0 and oc e (0, \) are constants. In a simulation study (see Section 4) quite 
satisfactory results were obtained for c = 1, a = 0-25. 

Let us consider in detail a special case of model (6), the classical linear regression 

Denote 
Y, = jS0 + /J.x, + e,, ( = 1, 2 , . . . , N . 

3c = N " 1 Y> ; , s2
x=(N - l ) - 1 £ (* . - x)2 . 

Inserting into above formulas we obtain 

4 = a1 + (h + Pi*)2 +(N~ l)N-lp\s2
x , 

o\ = a2 + (i\s2
x , 

Var si = 2JV~1a4 + 4AT V [ ( 0 O + ptx)2 + N~\N - 1) p\s2] , 

Var s2 = 4(/V - l ) " 1 /}2<72s2 + 2(/V - l ) " 1 a4 . 

We have 
4 ~°\ = (ßo + ßгxУ-N^ß2^2. 

If /?0 + ptx = 0, then CT0 < a\. It demonstrates a little surprising fact that o2 may 
not be decreasing for fc = 0 , 1 , . . . , p — 1. 

4. A SIMULATION STUDY 

A realization of the model 

(16) Y, = 2 - x; - 2xf + x? + <?, 
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for X; = —1-5(0-1) 1-5 with the corresponding theoretical regression function is shown 

in Fig. 1. The variables e,- are pseudorandom normal numbers with sample mean 

0-032 and sample variance 0-408. The values of s2 and Ak = s2(l + kN~0-25) are 

given in Table 1 and in Figures 2 and 3. Fig. 3 clearly shows a minimum for k = 4 

parameters. The estimated function is 

y = 1-915 - l-302x - l-866x2 + l-224x3 

and the corresponding unbiased estimate for a2 is s4 = 0-444. 

Table 1. 

k 0 1 2 3 4 5 6 7 8 

1 ! 
л k j 

2-997 2-892 
2-997 4-118 

2-813 0-946 
5197 2-149 

0-444 
1-197 

0-451 
1-407 

0-469 
1-662 

0-436 
1-729 

0-443 
1-945 

Fig. 2. 

Other results concerning model (16) are collected in Tables 2 — 5. Each row cor­

responds to 100 simulations. A' is the number of equidistant points from < - 1-5, l-5>. 

The first point is -1-5, the last one is 1-5. We used functions Ak = s2(l + ckN~") 

and Ak = s2

k(\ + ckN~* In N) with c > 0, a g (0, 0-5). 

Tables 2a and 2b show that in the case of model (16) for N = 31 and a = 0-65 

the results do not depend too much on a. 

If we take c = 1, a = 0-25 and N = 31 or N = 61, then we can see from Tables 

3a, 3b, 4a and 4b that for small a both functions Ak = s2(l + kN"0'25) and Ak = 

= s2(l + kN~0'25 In N) give similar results, whereas for large a the former is sub­

stantially better than the latter. 
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Table2a. N= 31, a = 0-65, Ak = 4 1 + kN "•") 

\ P 
a \ 

1 2 3 4 5 б 7+ 

0-05 0 0 2 94 3 1 0 

015 0 0 0 95 3 2 0 

0-25 0 0 0 95 3 2 0 

0-35 0 0 0 94 3 3 0 

0-45 0 0 0 91 5 3 1 

Table2b. N= 31, <r = 0-65, /4t = Í£(1 + kN~*\n N) 

\ í 
« \ 

1 2 3 4 5 6 7-1-

005 0 0 4 95 1 0 0 
0-15 0 0 4 95 1 0 0 
0-25 0 0 3 95 2 0 0 
0-35 0 0 3 93 3 1 0 
0-45 0 0 2 94 3 1 0 

N= 31, Ah = Í | ( 1 + kN~0-25) 

0-25' 0 0 0 95 3 2 0 
0-50 0 0 0 95 3 2 0 
0-75 0 0 11 87 1 1 0 
1-00 0 0 28 68 3 1 0 
1-25 6 0 50 43 0 1 0 
1-50 21 0 47 29 2 1 0 

Table 3b. N= 31, Ah = s2(l + kN'0-25 In N) 

\ P 
a \ 

1 2 3 4 5 б 7+ 

0-25 0 0 0 98 2 0 0 

0-50 0 0 0 98 2 0 0 

0-75 0 0 17 82 0 1 0 

1-00 8 0 40 50 2 0 0 

1-25 41 0 36 23 0 0 0 

1-50 72 0 19 9 0 0 0 
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Table 4a. УV = 61, Ak «.ž 1 + kN - 2 0 . 5 ) 

^ \ P 
o V \ 

1 2 3 4 5 6 7+ 

0-25 0 0 0 100 0 0 0 
0-50 0 0 0 100 0 0 0 
0-75 0 0 1 99 0 0 0 
100 0 0 18 82 0 0 0 
1-25 0 0 52 48 0 0 0 
1-50 9 0 65 26 0 0 0 

Table 4b. N = 61, Ak = sl(\ + kN~ ln/V) 

~ \ p 
1 2 3 4 5 6 7+ 

0-25 0 0 0 100 0 0 0 
0-50 0 0 0 100 0 0 0 
0-75 0 0 6 94 0 0 0 
100 5 0 42 53 0 0 0 
1-25 60 0 28 12 0 0 0 
1-50 89 0 8 3 0 0 0 

Table 5 summarizes some results with varying c. Again, the dependence on c 
does not seem to be very strong — only the value c = 0-5 leads to a larger number 
of overfitted models. 

Table5. N = 31, o = 065, Ak = i |(l + kcN~0ЛS) 

\ P 
C \ 

1 2 3 4 5 6 7+ 

0-5 0 0 0 91 5 3 1 

10 0 0 0 95 3 2 0 
1-5 0 0 1 95 3 1 0 
2-0 0 0 2 94 3 1 0 

The dependence of the estimates on the choice of a model was investigated for the 

following models: 

I. Y, = 0-2 + 0-5x; + 0-2x? + et; 

II. Y; = 0-2 + 0-5x; + 0-5xf + e ;; 

III. Y; = 0-2 + 0-5x; + l-0xf + e ;; 

IV. Y = 0-2 + 1-Ox, + 0-2x? + e;. 
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Here e,- ~ A?(0, a2). The corresponding regression functions for 1 i x £ 6 are given 
in Fig. 4. The points x, = 1-0 (0T) 5-9 were taken (i.e., N = 50). The results of 

Fig. 4. 

simulation are for Ak = s2(l + kN~°'2s In N) in Tables 6a —6c. Each row cor­
responds to 30 simulations. Models I. and IV. led to the same table for a g 2-0. 

Table 6a. 
Models I. and IV. 

чľ "" л 

<^< 1 2 3 4+ 

0 1 0 0 30 0 

0-2 0 0 30 0 
0-4 0 5 25 0 
0-5 0 16 14 0 
0-6 0 20 10 0 
0-7 0 24 6 0 
0-8 0 27 3 0 
0-9 0 29 1 0 
10 0 30 0 0 
2 0 0 30 0 0 

1 2 3 4+ 

0-4 0 0 30 0 
0-6 0 0 30 0 

0-8 0 0 30 0 
10 0 5 25 0 
1-2 0 12 18 0 
1-5 0 20 10 0 
1-7 0 23 7 0 
2 0 0 27 3 0 
3 0 0 30 0 0 
4 0 0 30 0 0 

> < " 1 2 3 4+ 

10 0 0 30 0 
2-0 0 5 25 0 
3 0 0 20 10 0 
4 0 0 27 3 0 
5 0 0 30 0 0 

The table confirms our expectation, namely, that the order of the regression function 
can be better estimated even for greater a, if the coefficient by x2 is larger. 

(Received May 3, 1981.) 
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