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K Y B E R N E T I K A - V O L U M E 17 (1981), N U M B E R 6 

REAL-TIME PARAMETER ESTIMATION AND OUTPUT 
PREDICTION FOR ARMA-TYPE SYSTEM MODELS* 

VÁCLAV PETERKA 

A multi-input multi-output dynamic stochastic system, describable by a model of ARMA-type 
and possibly controlled in closed adaptive control loop, is considered. The paper solves the prob­
lem of real-time parameter estimation and output prediction for the case of known covariances 
of the stochastic moving-average (MA) term of the model. The presented bayesian solution, 
based on LD factorization of the covariance matrix, shows that for the given purpose the C-para-
meters of the MA term have to be considered as time varying even when the covariances are 
time-invariant. 

1. INTRODUCTION 

The model ARMA (Autoregressive - Moving Average) or ARMAX (X indicates 
the external manipulated input) is a very general input-output model of linear 
stochastic systems and therefore the problem of estimation of its parameters has 
attracted much attention in system identification literature. The maximum-likelihood 
method of Astrom and Bohlin [2] became popular for off-line estimation in single-
output case. The practical requirement to simplify the calculation and/or to track 
the model parameters in real time motivated the development of a number of 
recursive algorithms with reduced demand on the memory of the computing device. 
Their comparison and further references can be found in [9, 8, 3]. The most recent 
contribution to the topic seems to be [4, 7]. 

The present paper deals with the multivariate model of ARMAX type with un­
known matrix parameters of the deterministic part but with known covariances 
of the stochastic part. Due to the assumed knowledge of the covariances a sufficient 
statistic of fixed (nongrowing) dimension can be found both for the estimated para­
meters and the predicted output. This makes it possiple to give an exact bayesian 

* Presented at the Conference "Organization and Automation of Experimental Studies", 
May 27 -30 , 1981, Rousse, Bulgaria. 
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solution of the problem of real-time parameter estimation and output prediction in 
closed adative control loop with no loss of information. This optimal solution for 
the case of known covariances yields a better understanding of existing recursive 
suboptimal algorithms for the case of unknown covariances and may help to suggest 
their improvement and extension. 

2. PROBLEM STATEMENT 

It is assumed that the input-output relation for the observed system with v-dimen-
sional output yU) can be described by the model 

(1) /(«) = P-U) + vu) 

where fU) is a known vector-valued function of the output yU) (and contingently 
also of the recent input uu) and the past observed input-output data St('~1)) such 
that the mapping yU) <->fU) (for any fixed uU) and 3>(t~l)) is one-to-one, e.g. fu) — 
= )>(,)> o r /(,) = v(0 - yu-iy or j ( ( ) = In (jWj>(,-n) with yw > 0, etc. The vector 
zU) of dimension Q is a known function of the recent uU) and the past input-output 
data S?('~1', P is the (v x g)-matrix of unknown parameters and vU) is a colored 
stationary gaussian noise with zero mean and with a finite correlation span 

(2) -["(ot-f.-o] = Ri f o r ' = 0, 1, ..., n 

= 0 for |i| > n 

which can be modelled as a moving average defined on the sequence of mutually 
uncorrected normally distributed random variables {eu)}. 

(3) y(0 = *(.) + I Cie(t-i) 

(4) - M = 0, -[«(„-(•)]-«. 
Apparently 

(5) Rt = V cAcJ-i wirh co = I 
k=i 

It is assumed that Re and Ct (i = 1, 2 , . . . , n), or directly R; (i = 0, 1, ..., ri) are 
known. 

The time indexing is chosen in such a way that uU) precedes yU) (i.e. when u(t) 

is decided yU) is not yet known) and t = 1 indicates the first time instant for which 
zU) and j ( 0 are defined. Hence 

® (" = {>'«»«(«)»yc-D> M(.-i). •••> >'(D' "a) . ®C0)} 

where ^ ( 0 ) are initial input-output data which are required for z(1) and/ ( 1 ) . In the 
standard case of a linear ARMAX model we have j ( 0 = yu) and the matrix P of 
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unknown parameters and the corresponding vector z(() can be chosen, for instance, 
as follows 

P = [B0, Ax, Bx, ..., An, £.„] , zjt) = [ujt), >£_,,, _ ! _ , „ ..., yjt_n), ujt.n)] 

Clearly, in this case 

^ ( 0 ' = (>'(0). "(0). • • . >'(-«+!), «(-,•+!)} 

where u ( _ „ + 1 ) , y (_„ + 1 } is the first observed input-output pair. 
To define the input-output relation by the model (1) uniquely it is necessary to 

assume that there does not exist any hidden channel from the input signal {u(t)} to the 
noise {t>(()}. This condition can be formally expressed as the equality of the following 
conditional probability densities (c.p.d.) 

(6) / O . . | P(.-i), •••, Pen, «(,). »(«-i). •••. "(i). ^ ( 0 ) . P) = 

= /K»(,)|»(.-l), •••,»(!))• 

The problem can be formulated as follows. Given the prior c.p.d. / ( P | ^ ( 0 ) ) 
calculate recursively, for growing t, the c.p.d. 

(7) 4„|«(o.® ( '-1 )) 
which does not contain the unknown parameters P, and update, when a new input-
output pair {y(t), u(()} is observed, the c.p.d. characterizing the uncertainty of the 
unknown parameters 

(8) /,{P\®«-») 

Bearing in mind the possible application in adaptive control systems the input u(t) 

is allowed to be generated in closed control loop, but under the "natural conditions 
of control" [6] which means that the input u(t) may depend on the unknown param­
eters only through the past observed data and it holds 

/ ( M ( ( ) | ^ - 1 ' , P ) = / ( M ( t ) | ^ ' - 1 > ) 

or equivalently 

(9) /i(P | uw, # ' _ 1 > ) = /{P \&'~1)). 

3. GENERAL FUNCTIONAL RECURSION 

Since the mapping y{t) «->/(<), for any given {u((), &*-*•>}, is assumed to be one-to-
one, it is sufficient, and more convenient to consider, instead of the c.p.d. (7) for y(t) 

the c.p.d. for/ ( I ). Given the c.p.d. (8) and employing the natural conditions of control 
(9) the predictive c.p.d. can be determined as follows. 

(10) /{f(t) | _(0, _*'"*>) = J /(/(() | uit), £*'-» P) /(P | &'-") dP . 
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When the new input u(l) is applied, the true value of the new output y(t) observed and 
corresponding / ( 0 determined, the new piece of information can be built into (8) 
using the Bayes formula which, together with (9), gives 

(H) M? I ®(,)) = /^(;)!"(0'^"'>;)f
) Kp l ^~l)) • 

/</(„ | u(t), &< 1}) 
The functional recursion (10) and (11) describes the evolution of the c.p.d.'s (7) and 
(8) which are of interest. However, to be able to exploit this recursion the c.p.d. 

(12) /if(t) | u(t), 9 ^ \ P), t^ 1 

entering both (10) and (11) must be determined as a function of unknown param­
eters P. 

Considering (6) and the fact that the model (l) defines, for any fixed P and 
{w((), 5? ( , _ I )}, the one-to-one mappings v(t) *->f(l) *-* y(t) (the first one with the 
jacobian equal to one) it is seen that the c.p.d. (12) can be determined as 

(\T.) /,(„ I ,, „ „ ) - M.°(t)>v{t-i)>y:>vS,u) l 1 J ) p\v(t) w(t-i)> uo-2)» •••» vu)> — - 7 ; 
/>{v(t_u,v(t_2),...,v(1)) 

where each v(k) is expressed through the model (1). 

If the set of noise vectors {v(k); k = 1, 2, ..., r} is ordered into a single column 
vector 

then the joint p.d. in the numerator on the right-hand side of (13) can be written as 

follows 

(14) > ( % ) , v(t_1},..., v(1)) = (27i)-v,/2 |V | - " ' 2 cxp(-^V^v) 

where Vis the covariance matrix with the block entries of dimension (v x v) 

*(...) = K%)vly] 

K ( t>t_0 = R,., V(tt + 0 = RT , for i = 0, 1, ..., n 

V(t>t±0 = 0 , for i > n . 

4. LD FACTORIZATION OF THE COVARIANCE MATRIX V 

In order to determine the c.p.d. (13) the block-LD factorization of the covariance 
matrix V = LDLT will appear to be convenient, where L is a lower triangular matrix 
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of the form 

L = 

/• • 
Cl(2) I " • . . 

Cn(n-l) Cи-l(я-l) ••• ^ l ( п - l ) 

0 • ' • • • • .Cп(0 Cл-l(Г) ••• cl( > 
and D = diag [ D ( i ) , D{2), •••, D ( t )] is a (v x v)-b!ock-diagonal matrix. 

It is easy to verify that it holds 

D(i) = Ro > ^i(2) — ^il^(i) ' D ( 2 ) = R0 — Ci(2)D(,)C](2) 

and further on, for T = 3, 4, ... and i = n, n — 1,..., 1 with n t = min (n, T), 

(15) 

(16) 

Ci(T) - (Ri - E Cfc(T)D(T-fc)Cfc-i(T-i))D(t_i) 
fc=i+ 1 

D ( r ) — l^o E Q(t)"(i-.)Q(t) • 
fc=i 

As the matrix L is lower triangular its inverse F = L _ 1 is also lower triangular 
(with E(tjt) = /) and the quadratic form in the exponent of (14) can be given the fol­
lowing form 

vTV^1v = vTFJD"1Fv = E «?t)-)w8(t) 
T = 1 

where e ( t ) is the T-th block-row of the product Eu 

T T - l 

(17) £<t) -= E Iv*)«<*) = t'(T) + E F(T,k)Vm • 
fc=l fc=l 

The fact that the weighted sum (17) does not contain vik) for k > T makes it possible 
to determine the conditional probability density (13) in a straightforward way 

(18) /(»(.) | » ( l_,), . . . ,c ( 1 )) = 

= (2^) - v / 2 | l>(o | - 1 / 2 exp(- i^o l ) (o l £ (o) -

To derive the required c.p.d. (12) it now remains to express all vir) in (18) through 
the data and unknown parameters using the model (1). It appears suitable to perform 
this in the following way 

f(t) = /(t) - P z w = / w " Z(oP 

where Z( t ) is the quasidiagonal (v x vg)-matrix 

Z,.. = 
^ ) 0 • 
0 «£, • 

. . 0 

. . 0 

0 0 "т 
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and p is a (v_)-vector of the unknown parameters constructed from the matrix P 

by "stacking" its elements in the row-by-row way, i.e. if Pt is the i-th row of P then 

P -

After this substitution e(T) defined by (17) can be expressed as follows 

(19) e(T) = f(t} - ZU)p 

where 

/(t) = ZIVt ,*)/(*) 
j t = i 

zd) = 2, I^(t,_) z(t) 
J c = 1 

To see that this filtering of data can be performed recursively consider the following 

equalities 

7(»" 
/«> = F 

'/(»" 
/«) E 

7aГ 
/>> = 

ЛD" 
/(2) 

/«)_ _/(«). /(«). _/(.)_ 

The last row in the second of these equalities gives the recursion relation 

(20) j(0 + f c,W(.-.)=/(0. /(D=/o) 
i = l 

where n, = min («, /). Similarly for Z ( 0, 

(21) Z ( 0 + X e»(oZ(r-0 ~ Z(0 ' Z(D = Z d) 
; = i 

Note that, while Z ( 0 is quasidiagonal, the filtered matrix Z ( 0 (t > l) is, in general, 

a full (v x _v)-matrix. 

Hence, the c.p.d. (12) has a normal form 

(22) / ( / ( o | W ( o , ^ ' - I ) , P ) = 

= (2K)--'2 |Pw|-1l2«p{-i_j;,-'(o1«(.,} - A?(,), ->(«)) 

where the conditional mean j ( 0 , expressed as a function of any given parameters p, 

using (19) and (20), is 

(23) j«) = Z(oP + __e,(oj«-o 
i = l 

or, when Z ( 0 is substituted from (21), 

(24) fo = Z(,)P + I c,(o(j(,-1) - -?(,-oP) 
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5. FINAL ALGORITHM 

A straightforward calculation of the functional recursion (10) and (11) using (22) 
proves the following 

Theorem. If the c.p.d. (8) is normal 

/ ( p l ^ ' - ^ - ^ A . - D - ^ r - l , ) 

then, for the model (l) and the conditions defined in Section 2, the normality is 
reproduced 

XI(o|® ( '-1))~^"(/(r,.*/(o); 

/,(p | &•>) ~ .V(plt), Rp(l)) 

and the following algebraic recursion holds for the conditional mean values and 
covariance matrices 

(25) /(,) =Z(,)P(1-ii + I C ; w V i ) 
> = i 

(26) R/(0 = D(t) + Z ^ R ^ ^ Z / , , 

(27) Ao = P(t-i) + K(tlf(t) ~ 2(OP(,-D) 

(28) K(t) = Rp(,_i)Z(
T

0R7(
1

t) = Rp(t)Zjt)D(tl 

(29) Rpu) = !^p(f-i) - Rp(t-i)Z(t)Rf(t)Zo)RP(.t-i) 

The overall algorithm for the real-time estimation of the parameters p and for the 
one-step-abead prediction of j ( ( ) is obtained when the recursion (25) to (29) is sup­
plemented with the recursive calculation of Ci(t) (i = n„ nt — 1, ..., 1), D(t) (facto­
rization) according to (15) and (16), and with the data filtering (20) and (21). If little 
is known a priori about the possible values of the unknown parameters p then it 
can be recommended to start the recursion with p(0) = 0andR / ( O ) = d'^I where &~i 

is a large number the influence of which rapidly disappears if the data do carry the 
information about p. 

6. CONCLUDING REMARKS 

The recursive formulae (15) and (16) can be regarded as an algorithm for the 
factorization of the matrix-polynomial product C(z) Re C

7(z'1) where C(z) — 
= I + Clz + ... + Cnz", [10]. However, it should be stressed that the optimality 
of prediction and parameter estimation requires that the factorization be performed 
in real-time even when the result of factorization is a priori known, i.e. when all roots 
of |C(z)| lie outside or on the unit circle. For the case of prediction with the known 
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parameters p this has been shown by Aasnaes and Kailath [1], who also showed that 

the often used predictor with C;(I) = CHx) does not produce optimal predictions 

(not even asymptotically) if the roots of |C(z)| lie on the unit circle and that the con­

vergence to the optimality may be very slow if the roots are close to the unit circle. 

The presented optimal solution for the case of known noise covariances clearly 

shows the principal difficulties which are encountered when this knowledge cannot 

be assumed. If the uncertainty of the covariances can be reduced so that only a finite 

number N of sets of values can be considered as possible then the optimal solution 

can be found by combining the result of this paper with the bayesian approach to 

system classification developed in [5, 6]. However, in such a case N filters have to 

run in parallel. 

(Received June 17, 1681.) 
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