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K Y B E R N E T I K A ™ V O L U M E 20 (1984), N U M B E R 1 

STATISTICAL LINEAR SPACES 

Part I. Properties of e, ^-topology 

JIŘÍ MICHÁLEK 

The definition of the statistical linear space in the Menger sense (SLM-space) is given in this 
paper. The e, ^/-topology is introduced and the basic properties of SLM-spaces as linear topo­
logical spaces are investigated. 

0. INTRODUCTION AND PRELIMINARIES 

In this paper we shall deal with basic properties of statistical linear spaces in the 
Menger sense (SLM-space) which are a special case of statistical metric spaces in the 
Menger sense (SMM-space). SMM-spaces are a generalization of the usual notion 
of metric spaces in that sense that a metric is replaced by a collection of probability 
distribution functions. Similarly, SLM-spaces are a generalization of linear normed 
spaces where a norm is substituted by a suitable family of probability distribution 
functions. 

This paper contains in Section 1 the definition of SLM-spaces and the main proper­
ties of them together with three examples. 

The definition of the £, //-topology and basic properties of SLM-spaces as linear 
topological spaces are in Section 2. Section 3 contains some properties of e, //-neigh­
bourhoods from a base for the e, //-topology. In Section 4 properties ol the mapping 
f, which is defined on an SLM-space and takes its values in the Levy space of pro­
bability distribution functions, are studied. 

The notation of an SMM-space is studied in many details in [ l ] , A detailing discus­
sion of the original Menger definition of the generalized triangular inequality is made 
there. Under these conclusions the authors suggested the following definition of an 
SMM-space. 

Definition 1. By a statistical metric space in the sense of Menger we shall call 
a triple (S, X , T) where S is a nonempty set, J f is a mapping Jf : S x S -> &, 
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where #" is the set of all one-dimensional probability distribution functions, satisfying 
(Jf(x,y) = Fxy(-)) 

1. (Fxy(u) = 1 for u > 0)o x = y 
2. Fxy(0) = 0 for every pair x, y e S 
3. Fxy(u) = Fyx(u) for every ueR and every pair x, y e S (R is the set of reals) 
4. Fxz(u + v) > T(Fxy(u), Fyz(vj) for every x, y, z e S and every u, v e R where T 

is a /-norm defined on <0, 1> x <0, 1> with values in <0, 1> and satisfying 
properties: 

(a; T(a, b) = T(b, a); T(a, 1) = a for a > 0 
(bj T(a, b) ^ T(c, d) for a ^ c, b g d 

T(T(a, b), c) = T(a, T(b, c)) 
(d) T(0, 0) = 0 . 

Definition 1 yields immediately that every f-norm T satisfies T(a, b) ^ min (a, b) 
where min is a /-norm too. Further important examples of /-norms are T(a, b) = 
= ab, T(a, b) = max (a + b — 1, 0). It is worth quoting [10] where one can see 
a close relation between /-norms and 2-dimensional copulas. 

Further, in [1] the e, ?7-topology is introduced by the neighbourhoods of the form 

Nx(e, n) = {yeS: Fxy(tj) > 1 - e} , xeS, ?? > 0 , 0 < e ^ 1 

and under the continuity of the /-norm T it is proved that these neighbourhoods 
form a base for a Hausdorflf topology in S. This topology is called the e, ^-topology. 
The paper [2] studies the question under which conditions the e, (/-topology is metriz-
able. If sup T(a, a) = 1 then the system Jf = {U(e, rj)} where U(e, tj) = {(x, y) e 

a<l 

e S x S : Fxy(i]) > 1 — g) (tj > 0, E S ( 0 , 1 » is a base of a Hausdorff uniformity 
in S x S. 

The mapping tf : S x S -* 3F where SF is the Levy space of probability distribu­
tion functions is studied in [3]. If lim T(a, v) = a uniformly in <0, 1>, then Jf is 

uniformly continuous with respect to the e, )7-topology in S x S. 

The problem of a completion of SMM-spaces is solved in [4]. It is proved (under 
certain conditions on the /-norm T) that every SMM-space can be (up to an iso­
morphism) completed by the maintaince of the /-norm in the unique way. 

In [5] it is suggested one of the possible generalizations of the triangular inequality. 
The demand 4 in Definition 1 is replaced by 4': (Fxy(u) = 1 and Fyz(v) = I) => 
=> Fxz(u + v) = I, which is of course weaker than 4 in Definition 1. Further, in this 
paper a relation between the mapping J f (mentioned above) and a certain class 
of semimetrics on S is studied and it is proved, in the case of the /-norm T = min (a, b) 
the existence of a probability space (D, SS, /;) where D contains some semimetrics 
on S, all se<-, of the form {d e D : d(x, y) > u) x, y eS, u e R belong to @ and 

n{d e D : d(x, y) > u) = Fxy(u). 
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At the beginning the theory of SMM-spaces belonged rather to the functional 
analysis than to the probability theory; e.g. many articles are devoted to problems 
of fixed points of mappings defined on SMM-spaces. Recently, some papers occurred 
where the connection with the probability theory is quite evident, see, e.g. [7], [8], [9]. 

1. DEFINITION OF SML-SPACE, BASIC PROPERTIES, EXAMPLES 

In this paper a special case of statistical metric spaces is considered. The definition 
of SMM-spaces is based on that fact that although the distance of two points is 
a fixed nonnegative number, an observer can measure this distance with certain 
errors. His measurements are affected by errors and from this point of view a distance 
is a random variable with its distribution function. Similarly, we can consider the 
case of a normed linear space, where a norm is the distance measured from the zero 
element. Properties of a norm and Definition 1 of the SMM-space lead us to the 
following definition of the linear statistical space. 

Definition 2. Let S be a real linear space, let #" be the set of all probability distribu­
tion functions defined on the real line ft. Let f : S -» 3F be a given mapping. For 
every x e S let us denote f(x) = Fx e J5" and we demand that f satisfies: 

1. x = QoFx = H where H(u) = 0 u g 0; H(u) = 1 u > 0 

2. FXx(u) = Fx(uj\X\) for every x e S and every X * 0. 

3. Fx(u) = 0 for every « ^ 0 and every xe S. 

4. T(Fx(u), Fy(v)) 5£ Fx+y(u + v) for every u, v e R and every pair x, y e S where 
Tis a f-norm satisfying (a), (b), (c), (d) in Definition 1. 

Under these conditions the triple (S, f, T) is called a linear statistical space in the 
Menger sense (SLM-space). 

Example 1. Let S = ft, let G be a distribution function with G(0) = 0 and 
G + H. If x E S let us define 

(x) = Fx(-) = G í—\ for x * 0 

= H(-) and T(a, b) = min (a, b) ; 

then (ft, f, min) is an SLM-space. As we assume G + H then x = 0 if and only 
if Fx = H. Further, Fx(0) = 0 for every x e ft thanks to the assumption G(0) = 0. 
Thus, we have 

Fju) - G (JL\- G (rJL-) ~G(±±\ = FX (W) 
\\Xx\) \\x\\x\J \\X\\x\J X\\X\J 

for every X e ft, X 4= 0 and every x 6 ft. The main problem is to prove the triangular 
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inequality in the form 

Fx+y(u + v) ^ min (Fx(u), Fy(v)), i.e. 

w a(^l\)imi"{%\y%\ 
If H <. 0 or v = 0 then the inequality (*) is true because G(0) = 0. In the case u > 0 
and c > 0, x = 0 or y = 0 or x + y = 0 the generalized triangular inequality is 
trivial. As the function G is nondecreasing, the inequality (*) for u > 0, v > 0, 
|x + y\ > 0, |x| > 0, |>| > 0 follows from the inequality 

M + v . . / H o 
> mm ( — , 

|x + >| \ | x | |> 

Indeed, let us assume u > 0, v > 0, \x + y\ > 0 and (H + v)\\x + y\> min (uj 
vj\y\). It implies that simultaneously (M + v)l\x + y\ > u]\x\ and (u + v)j\x + y 
> vj y\, thus (M + v) |x| > M|X + >| and (u + v) \y\ > v\x + y\, what gives |x 
+ \y > |x + >'|and that is a contradiction. This completes the proof of that fact 
that (R, f, min) is an SLM-space. 

Example 2. Let S be the set of all real sequences, i.e. S = {x : x = (xu x2, x3, ... 
..., x„, •••)}, where the operations of addition and scalar multiplication are defined 

00 

coordinatewisely. Let {a„}™=1 be a sequence of positive numbers such that £ a„ = 1. 

Let us define the mapping f : S -> !F in the following way: 

if x = (xx, x2, x 3 , . . . , x„,...) then we put 

E,(H) = 0 for H <. IxJ 

Fx(u) = aA for \xt\ < u <. \xt\ + \x2\ 

Fx(u) = ax + a2 for \xt\ + \x2\ < u < \x±\ + \x2\ + |x3 | 

Fx(u)=tii ^r f |x(| < « k\ |x,| 
: i = l : i = l ; i = l 

In the case if £ |XJ| < oo we must consider two possibilities: 
;=i 

a) J) |x,| contains infinitely many non-zero elements, then Fx(u) = 1 for u — £ |x,| 
i = l i = l 

b) J] IxJ contains finitely many non-zero elements only, then Fx(u) = 1 for M > 
i = l oo 

>II4 
i = l 

We do not eliminate the case of an empty interval. 
As a r-norm we choose again the function min (a, b). Then the triple (S, /", min) 

is an SLM-space. Surely, Fx = H if and only if x = 0 because for every x =1= 0 at 
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least one coordinate xt differs from zero. Further, FXx(u) = Fx(u\\X\) for every 
x e S , A + 0, ueR because if X + 0, u > 0, x = 0 then Xx = 0 and FXx(u) = 1. 
If M = 0 then for every x e S it is EX(M) = 0 hence FXx(u) = 0 also for every XeR. 
Now, in the last case X + 0, u > 0, x + 0 we have 

Ex ( - - ^ = £ a, if and only if £ |xj < ^ r < " £ \x\ , 
\\X\J i = l i = l \X\ i=l 

what is 
n n + 1 

Z \Xx\ < U < Z Ux,| . 
;= i ;=i 

The previous inequality expresses the value of EAx at the point u, i.e. 

n n n + l 

-l\u(") = Z ai if a n d only if Z Uxi| < M = Z Ux;| • 
; = i i = i i = i 

At the end we must verify the generalized triangular inequality with the f-norm min. 
n n + l n + l n + l 

If u + v e ( Z |xf + yt\, Z \*t + J;|> then either u < Z |x.-| or v < Z |.v.|> hence 
i = l n i = l n i = l i = l 

either EX(M) < Z ai o r I'VOO = Z ao DUt i n e v e ry case the inequality min (EX(M), 
i = l i = l 

Fy(v)) < Fx+y(u + v) holds. The case EX(M) = 1 is investigated in a similar way. 

Example 3. Let (Q, s/, P) be a probability space. Two random variables £, ^ 
on Q with P{co : £(c«) = ^co)} = 1 shall belong to the same class of equivalence. 
Let S denote these classes of equivalence on Q. Evidently, S is a linear space. Let us 
define a mapping f in the following way: 

[M] = P{co : \£,(co)\ < u) = F((u), £ e S, ueR, 

As a ."-norm we choose m(a, b) = max (a + b + b - 1,0). Then the triple (S, f, m) 
is an SLM-space. 

It is clear that for every X + 0 and £ e S it holds 

P{a:\XZ(co)\<u} = pL:\Z(co)\<~\ 

and hence E^(M) = F^(w/|A|). Similarly, P{co : [£(&>)| < M} = 0 for M = 0 gives 
Ej(w) = 0 for every u < 0. Surely, F((u) = H(u) for every u e R if and only if 
£, = 0. The validity of the generalized triangular inequality is based on the results 
in [10]. It holds that the joint distribution function C?J„(", ') of £, V £ S can be ex­
pressed as a function of their marginal distribution functions g$('), g„(') G(„(u,v) = 
= C(g((u), g„(v)) where C is a 2-dimensional copula generally depending on a couple 
i, >7. This copula C is a function defined on <0, 1> x <0, 1> satisfying the following 
inequality 

min (a, b) ^ C(a, b) ^ m(a, b) . 

62 



The inclusions {w : \i](w) + rj(w)\ < u + v} => {w : \{(w)\ + |n(co)| < u + v} z> 
=> {w : |c;(co)| < u, |«(co)| < v} give 

F^ + „(M + i>) = P{co : |c;(fi)) + w(co)| < u + f} _l 

__ P{W : |{(_)| < u, \n(w)\ <v} = C(F4(u), Fn(v)) __ m(Fi(u), Fn(v)) . 

It proves the validity of the generalized triangular inequality with the f-norm m. 

Theorem 1. Every SLM-space is an SMM-space with the same f-norm. 

Proof. Let (S,f, T) be an SLM-space. Let us define the mapping Jf(x,y) = 
- f(* - y),Jf :S X S -+ &. Then the triple (S, X~, T) is an SMM-space. f(x) = 
= H if and only if x = 0. The mapping Jf* is surely symmetric, because #(x — y) = 
= f(y — x). It we denote Jf (x, v) = Fxy, f(x) = Fx, then the generalized triangular 
inequality holds, because 

T(Fju), Fjv)) = T(Fx_y(u), Fy_z(vj) = Fx_z(u + v) - F_(« + „) . D 

Remark. Let S be an n-dimensional real linear space. Then the triple (S, / , T) 
is an SLM-space if and only if to every n-tuple of real numbers (Xu X2, ..., X„) a pro­
bability distribution function -F(AI,A2,-^„) corresponds such that 

1- F(Xl,x2,...,x„) = H if and only if Xl = X2 = ... = X„ = 0 
2- F{ll,_lM2t...^n)(u) = F(M,x,,-,An)(ul\M\) for every \i + 0, u e U and every n-tuple 

(2l5A2,...,A„) 
3- F(X1M,-,XM = 0 ^ every n-tuple (Xu X2, ..., X„) 
4- T(F(*L12,-M(U)>F(*I,K,-;MJ(V)) = I?(A1+^1,;.2+w,.,A„ + ^„)(" + t^jfor every «-tuple 

(Xt, X2, ..., Xn) and («., jU2, ..., /i„) and every u,veU (Tis a f-norm). 

2. TOPOLOGY IN SLM-SPACES 

We shall use usual notions in the topology and in the theory of linear topological 
spaces; see, e.g. [11]. Only the notions important for us shall be defined explicitly. 

Definition 4. Let (S, $', T) be a statistical linear space in the sense of Menger, 
let xe S, 0 < e _ 1, r\ > 0. Then the subset of S 

0(x, E, n) = {zeS : Fx_z(rj) > 1 - e} 

is called the e, w-neighbourhood of the point x. 

As the space S is linear, it is sufficient to introduce neighbourhoods of the zero 
element only, i.e. the neighbourhoods of the form 0(E,T]) = {z : Fz(rj) > 1 — e}. 
We shall assume the continuity of the £-norm T on <0, 1> x <0, 1>. Under this 
assumption it is possible to prove that the collection of e, ^-neighbourhoods forms 
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a base of a topology in the space (S, #, T). It is clear that 0 e 0(e, rf) for every 
0 < £ <; 1, 17 > 0, because E0(n) = H{if) = 1 > 1 — e. Further, if two e, ^-neigh­
bourhoods 0(e, n), 0(fi', n') are given, then there exists a neighbourhood 0(«*, ^*) 
such that 

o(e*, rf) c o(e, n) n o(e'. n'). 

It is sufficient to put £* = min (fi, e'), tf = min («, if) because 

0(fi, if) n 0(e', n') = {z e S : E.(«) > 1 - e, F,(J- ' ) > 

> I -&'}•=> {z : Ez(min (n, n'j) > 1 - min (e, &')} = 0(e*. rf). 

Similarly, if £ :g e', n ^ rf then 

0(8, n) c o(e', n') • 

The last property which is necessary for a base of neighbourhoods in a topology 
is that for every e, n-neighbourhood 0(e, rf) and every _y e 0(e, n) there exists such 
an £, n-neighbourhood that 0(y, e*, if) c 0(e, n). Let 0(e, n) and 3' be given. 
As the function Fy being a probability distribution function is left continuous at n, 
there exist w0 < », £0 < e that Fj,(«0) > 1 — £0 > 1 — e. Now, we choose n* such 
that 0 < n* < n — n0 and £* such that T(l — e0, 1 - e*) > 1 — £ (such an £* 
exists because the f-norm Tis assumed continuous and T(a, 1) = a). Let s e 0(y, e*, 

n*) then Fs(n) _t T(Ffy0), Fy_,(r, - ^0)) > T(Fy{r,0), Fy_fy*)) = T(l - £0, 1 -
— £*) > 1 — e and s e o(fi, n). 

Definition 5. The topology generated under the continuity of the r-norm T by the 
base % = {o(e, JJ) : 0 < e <. 1, r/ > 0} of the neighbourhoods of the zero element 
in (S, #, T) will be called the e, n-topoiogy. 

Definition 6. A sequence {x„}"=1 <= (S, f, T) will be called E-convergent at x e S, 
if 

lim FXn_x(u) = H(u) 

for every u e R (in symbols x„ I~* x). 

Lemma 1. A sequence (x„}"= 1 c (S, f, T) is E-convergent at x e S if and only if 

(Vfi 6 (0, 1> Vn > 0 3n0 Vn ^ n0) => (x„ e 0(e, n)) . 

Proof. If lim FXn(u) = H(u), u > 0, -t is lim FXn(u) = 1, then 
n->oo n-*oo 

(VM > 0 Ve e (0, 1> 3n0 Vn > w0) => F x » > 1 - £ o x„ e 0(e, u) . 

Conversely, if (Vfi e (0, 1> Vn > 0 3n0 Vn = n0) => x„ e 0(e , n) <* FXn^) > 1 - g, it 
is precisely t ha t l im FXn(rj) = 1 for every n > 0. If u :g 0 we have FXn(u) = 0 for 
every n. ""*00 • 

Theorem 2. Every SLM-space (S, #, T) with a con t inuous i-norm is with respect 
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to the e, (/-topology a Hausdorff linear topological space with a countable base 
of neighbourhoods of the zero element and hence it is metrizable. 

Proof. If we choose any sequences {e„}f, {>7„}i° such that e„ J, 0, n„ J, 0 then 
{o(e„, ^n)}'l is a base of neighbourhoods of the origin for the e, ^-topology, because 
for every 0(s, n) we can find a pair e„0, ^„0 such that e„0 g e, ^„n g ,7 and hence 
o(<W 17 J «= 0(e, if). 
This space will be a Hausdorff space if and only if f) U = {0} where J'(O) is a base 

tfeiS(O) 

of neighbourhoods of the origin for the e, ^-topology. In our case it is necessary 
to prove that f] 0(e, n) = {0}. Let us suppose that x e f) o(e, '?)• Then for 

O<£gl , I f>0 £.1) 

every (7 > 0 and every e e (0, 1) Fx(t]) > 1 — e, in other words Fjji) = 1 for every 
n > 0. It implies that x = 0 in S. We have proved that a countable base of the origin 
for the e, (/-topology exists and hence the e, ^-topology is metrizable. 

Using Lemma 1 and the existence of a countable base for the e, (/-topology at the 
origin we can easily prove that linear operations and the e, ^-topology are consistent. 
Let X„ —» I in reals, let x„ —• x in S in the e, (/-topology. Then A„X„ — AX = A„(X„— X) + 

+ (A„ - X)x and the generalized triangular inequality proves immediately conti­
nuity of scalar multiplication in the product topology. In a similar way, using the 
generalized triangular inequality again, one can prove continuity of addition in S 
in the product topology. • 

Theorem 3. Let (S,f, T) be a statistical linear space with the f-norm T satisfying 
lim T(a, b) = 1. Then (S, f, T) with the topology defined by the E-convergence 

«t t . * t i 
is a linear topological space. 

also. Further, for every stationary sequence {x„}f, i.e. x„ = x for every n > ;;0, 

it holds that x„ -L. x. 

If x„ ++ x, i.e. there exists at least one u0 > 0 that FXn_x(u0) ++ 1, then an e0 > 0 
{x„} must exist such that for every subsequence ÍY*1 

l x t j 1 {x„k}f Fx*k_x(u0) = 1 - e0, in other words x* +> x. 

In this way we have verified all demands put on the topological convergence and 
we must prove further that this convergence and linear operations defined on S are 
in accordance. When x„-^Ux, )'„—-*)' then using the generalized triangular inequality 
we obtain 

FXn+yn(2n) = T(FXn(ri), Fyn(n)) > T(l - e, 1 - e) 

for a suitable large n and the left continuity at [ l , 1] of the f-norm implies that T(l— e, 
1 — e) -» 1 if e —> 0. Similarly, as it was done in the proof of Theorem 3 we can 
prove that x„—Lx, k„~* A imply that Xttx„^~+lx, too. It follows from the left conti­
nuity at [1, 1] of the r-norm Tthat every T-convergent sequence has a unique limit 
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point, because 

FXo.yo(2n) > T(FXn„Xo(,1hFXn_yo(n)) > T(l - e, 1 - e) 

for a suitable large natural n and every >? > 0. • 

Remark. If the /-norm Tis continuous then as we proved in Lemma 1 and Theorem 
3, the e, ^-topology and the T-convergence are equivalent. Generally, this equivalence 
need not hold without the assumption of the continuity of the /-norm T because 
£, ^-neighbourhoods need not form a base of neighbourhoods of the origin in S for 
the topology generated by the T-convergence. 

In further considerations we shall deal with continuous /-norms only. In this case 
every statistical linear space (S, J', T) has the metrizable s, ^-topology and the 
question of its normability is interesting for us. 

Definition 7. A subset A <= S where (S, T) is a linear topological space with a topo­
logy T is called bounded in topology T if for every T-neighbourhood U of the origin 
m S there exists X > 0 that 

A <= XU . 

In our case of an SIM-space (S, J', T) a subset A <= S is e, ^-bounded if and only 
if for every o(e, >?) there exists X(s, f/) > 0 that 

A <= X(s, n). 0(s, n) = 0(s, X(s, n) . n)). 

In other words, the e, ^-boundedness of A can be expressed as follows: a subset A 
is E, ^-bounded if and only if for every sequence {x„}f a A and every sequenc; 
{4} i°> K -* 0 of reals Xnx„ —^ 0 also in S. 

Now, we use very important criterion of normability of linear topological spaces 
due to Kolmogorov, see [11]. A Hausdorff linear topological space is normable if 
and only if there exists a bounded convex neighbourhood of the origin in it. If U 
is such a neighbourhood then the norm in question can be expressed as 

\x\ = M {X > 0 : x e XU} , xeS . 

In the case of an SLM-space (S, f, T) if such a neighbourhood o(e0, f?0) exists, 
then a possible norm | • || has the form 

||x| = inf {X > 0 : xe X O(s0, ^0)} = 

= inf {X > 0 : x e O(s0, /U/0) = 

= inf {X > 0 : Fx(Xn0) > 1 - e0] . 

With this question of normability an important property is connected as the following 
Theorem 4 states. 
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In the next Theorem 4 we shall need the following notation: 

conv A is the absolutely convex hull of A, conv A is the convex hull of A. 

Theorem 4. Let an SLM-space (S,f, f) be finite-dimensional. Then the e, ^-topo­
logy is normable and is equivalent to the usual Euclidean topology. 

Proof. We suppose that the space (S,f,T) is finite-dimensional and hence 
every x e S can be expressed in the form 

* = £ V;; 
; = i 

(<?., e2, ..., e„) is any linear base in S. As the number of the elements in a base is 
finite, we can find an e, ^-neighbourhood 0(c, r\) which contains all elements of the 
base. Further, every x e conv (et, e2,..., en) can be expressed as an absolutely convex 
combination of ex, e2, ..., en, i.e. x — £ P-fii, X \p\ ^ L and because conv 0(e, rj) 

; = 1 ; = I 

is also absolutely convex in S then conv(e u e2, ..., e„) c conv o(e, 17). 

NOW, it is necessary to prove that conv (eu e2, . •., e„) is at the same time a neigh­
bourhood of the zero element in the e, ^-topology; for this fact it is sufficient to find 
o(e*, )7*) such that 

0(E*, rj*) _ conv(e1, e2, ..., e„). 

Let us suppose, that such a neighbourhood does not exist, i.e. for every 0(E, >j) 
there exists at least one point x0 e 0(e, rj) so that x0 $ conv (ex, e2, ..., e„). Taking 
£« I 0, )/„ | 0 we can construct a sequence {x,„}f which has the zero element as its 

limit point, let us say xm = ' £ A"'e(, but xm $ conv (ex, e2, ..., e„), i.e. £ |Am| > 1-
i = l n i = l 

First, we can suppose that M ^ £ Uil > ' f ° r a ' l m> w n e r e -^ < +°°- Then there 
i = i 

exists a subsequence {i'"k; A"2", ..., A"'"} that is convergent and hence 

*«* = I ;-i'k ei - - -vo b u t *o * 0 because 
;= I 

x0 = £ $e,, A? = lira AT" and £ |A?| >= 1 . 
i = l k i = l 

If there exists a subsequence ]T Um"| unbounded from above, i.e. 
i = i 

lim £ \x7k\ = + oo , 
fc ; = i 

then we can cons ider the sequence 

Xm* = L e i = *>»* > 
1-1 V l;mfcl v l ; H 

J = I j = i 
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instead of the original {x,„},„. However, at the same time, we have x*k = V, /«7fce; 
n i= 1 

with Y_ \ft""'\ = 1 and this case can be transformed to the previous one. This fact 

proves that conv (e,, e2,..., e„) must be a neighbourhood of the zero element in the 
e, f/-topology. The boundedness of conv (et, e2, ..., e„) is clear, because if {xm}f 
is any sequence from conv (e,, e2, ..., e„), lim Qm = 0, Q,„ e R then 

Q,„X,„ = Q„, Y_ X"'et, Y, \X"'\ _l 1 and 
; = i i = i 

f . . . . W i T » f e „ U 1 ) f , . , ^ . ) ) ; 
V VM7|/ \\QJ:\)J 

(T'"\ch,a2, . . , « „ ) = T(a„T(fl2, ..., T(a„_„ a„)...)), 

with \X"\ g 1 and this fact implies that e„x„-^0. We proved that in the case of a finite 
dimensional SLM-space (S, f, T) the e, ^-topology is equivalent to the topology 
generated by the coordinate convergence and the e, r/-topology is normable. • 

Lemma 2. Every SLM-space (S, f, T) where T(a, b) = min (a, b) is a locally 
convex linear topological space. 

Proof. The proof is very simple. Let us consider any e, ^-neighbourhood 0(e, (7) 
in (S,f, T) and let x, y e 0(e,»/), a e <0, 1>, then Fx(r\) > 1 - e, F ^ ) > 1 - e 
and hence 

Fax, a_a)y(n) > min {Fax(w), Fa_a)y(([ - a) /?)) = min (Ffy), Fy(Vj) > 1 - e . Q 

3. PROPERTIES OF e, ^-NEIGHBOURHOODS 

Lemma 3. Let 0(e, 77) be an e, ^-neighbourhood of the zero element in an SLM-
space (S, / , T). Then for every \X\ ?S, 1, X e R and every x e 0(e, 17J 

Ax e 0(e, 77). 

Proof. Let x e 0(e, >/), i.e. T,(»?) > 1 - e then Fjij) = Fx(i]j\x\) ^ Fxty) > 1 - e 
and hence Xx e 0(e, fy). • 

Lemma 4. Every e, ^-neighbourhood 0(e, 77) is a symmetric set. 

Proof. If x e 0(e, JJ) then F_x(n) = Fx(tj) > 1 —e also, what implies that — xe 
e 0(e, ri). • 

Lemma 5. Let an e, ^-neighbourhood 0(e, f?) be given. Then for every x e (S, f, T) 
there exists a A > 0 such that x e /« 0(e,77) for every w, |/»| > A. This property is 
called the absorbing property of e, ^-neighbourhoods. 
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Proof. Since for every x e ( S , / , T) lim EV(M) = 1, i.e. for every e > 0 there 

exists Mv(e) > 0 such that for every u = ujf) we have Fx(u) > 1 - e, it is evident 
to put X = ux(e)]n. If /< is an arbitrary real number with |/(| > X then Fx(\/i\ n) = 

> Fx(ux(s}) > 1 — e and hence x e o(e, |/i| X). As every o(c, r]) is a symmetric set, then 
o(e, |/(| (?) = /.< . 0(e, n). • 

Lemma 6. If an e, ^-neighbourhood 0(e, n) is a convex set, then it is an absolutely 
convex set in (S, f, T). 

Proof. It follows immediately from Lemma 3 and Lemma 4. 

Lemma 7. For every s, ^/-neighbourhood of the zero element in (S, J?, T) 

S = U o(e, n .;/). 
n = I 

Proof. Let x e (S, J', T) and let o(e, )j) be an arbitrary e, fj-neighbourhood of the 
zero element in S. As Lemma 5 states for the chosen e > 0 there exists u(e) > 0 
such that Fx(u(e)) > 1 — e. Now, it is sufficient to choose a natural n in such a way 
that n . r\ = «(e), at this moment x 6 0(e, nn) = n . o(e, rj). This proves that S = 

= U n . o(e, rt) . Q 
n = 1 

Lemma 8. Let x0 be a cluster point of an e, fj-neighbourhood 0(e, n) in an SLM-
space (S, f, T). Then 

lim FX0(u) = 1 - e . 
u^n + 

Proof. Let {x„} c 0(e, r\), x„—-*x0, let /. > 1. Then, according to the generalized 
triangular inequality 

FXo(Xn) = T(FXn„X0((X - 1) n), FXn(n)) = T(FX:,_Xo((X - l) ,j), 1 - e) 

for every natural « because x„ e o(e, fj). But x„ —— x0, i.e. Ex„-.Vo((A — l) n) > 1 — e' 
for a suitable large n and hence FXo(Xri) = T(l - e', 1 - e). As e' is quite arbitrary, 
the /-norm Tis continuous and T(a, l) = a for a > 0, this implies Fxo(/,n) = 1 — e 
for every A > 1. EVo(-) is a probability distribution function, therefore the limit 
lim FXo(u) must exist and in this case lim EVo(M) _ 1 — e. • 

U^«+ U~,) + 

Lemma 9. If o(e, n) is a convex set in an SLM-space (S, f, T) then its closure 
o(e, n) in the e, )j-topology can be described as 

o(i^) = {x e S : inf [X > 0 : Ex(Af?) > 1 - e} = 1} . 

Proof. If o(e, >j) is a convex set in (S, / , T) then it is at the same time absolutely 
convex and absorbing. Let us define a functional (Minkowski functional) 

pE„(x) = inf {X > 0 : x e o(e, hi)} = 

= inf {X > 0 :Fx(Xn) > 1 - e} . 
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From the properties of the e, (/-neighbourhood o(e, n) mentioned above it follows 
that P£„(-) is a seminorm defined on S. As o(e, n) is a neighbourhood in the s, ^-topo­
logy this seminorm Pe„(') is continuous in the s, ^-topology, and the closure 0(^n) 
can be expressed as 

o(i^) = {x e S : inf {), > 0 : Fx().n) > 1 - s} £ 1} = {x : nt_£(x) g n] 

where n ^ i x ) = inf {i > 0 : FjX) > 1 — e}. D 

4. PROPERTIES OF MAPPING / 

Let an SLM-space (S, f, T) be given. The mapping f is defined on the linear 
space S with values in the set J5" of all probability distribution functions defined 
on real numbers. In J5" we can introduce a metric Ldefined by 

L(F, G) = inf {h > 0 : F(u - h) - h ^ G(u) g F(u + h) + h for every u e « } ; 

this metric is called Levy's metric and the pair (!F, L) is a complete metric space. 

Definition 9. Let (S, f, T) and (S, f , T) be two SLM-spaces defined on the same 
linear space S. We shall say that (S, f, T) and (S, / ' , T') are topologically equi­
valent if the mappings f, f define equivalent e, ^-topologies. 

Theorem 5. SLM-spaces (S, f', T), (S, f , T) are topologically equ;valent if and 
only if the mapping Uf(-), f'(-)) defined on S is continuous at 0 in both the a, n-
topologies. 

Proof. If the e, (/-topologies are equivalent, i.e. if x„ —-* 0 in (S,f,T) then 
.\-„ JL 0 in (S, f , T) and vice versa, then f(x„) (u) = FXn(u) -» H(u), f'(x„) (u) = 
= F'x„(u) ~* H(u) for every u e R what can b ; expressed also in the form 
L(/(x„), H))-^ 0, L(f'(x„), H)) ~* 0. From the triangular inequality in the metric 
space (&, L) 

L(f(x„), f'(x„)) fZ L[f(x„), H), + L(f'(xn), H)) 

it immediately follows that 

(x„), f'(x„)) = 0 . 

Conversely, if x„ JL 0 in (S, f, T), i.e. L(FXn, H) -»• 0 and we assume that L(f(x„), 
f'(x„)) -» 0 also, then L(/ '(x„), H) g L(/(x„), HJ + L(f(x„), f'(x„j) for every n 
and hence lim L(/'(x„), H) = 0. This fact says that x„ -F-> 0 in (S, / ' , T'j and the 

e, (/-topology in (S, f, T) is stronger than the e, (/-topology in (S, f , T). In a similar 
way we can prove the opposite implication what completes the proof of Theorem 5. D 

Theorem 6. Let an SLM-space (S, f, T) be given. Then the mapping f : S -* 
-> (-F, L) is uniformly continuous in the e, (/-topology. 
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Proof. The (-norm Tis continuous on <0, 1> x <0, 1> and therefore T is uni­
formly continuous on <0, 1> x <0, 1> and lim T(a, x) = a uniform in a. It means 

xt l 

that ('in > 0 3e e (0, \) Va e <0, 1>J => T(a, 1 - s) > a - n. Let x„ -> x0 in the 
e, //-topology, we can find a natural number n0 such that for every n _• n0 

x„ e O(x0, s, n) o FXn_xo(n) > 1 — £ . 

Let u e W be arbitrary, then 

r*> + n) = T(F_,_xAt,), FXn(u)) _% T(Fju), 1 - 8) > F J I I ) - i, . 

From this inequality we obtain that FXo(u + n) + n > FXn(u). In a similar way 
we can prove the opposite inequality FxJu) > FXo(u — n) — n. Both the obtained 
inequalities express together that L(FXn, FXQ) < //. The continuity of the mapping 
J in the e, ^-topology is proved. It is necessary to note that a choice of e and n does 
not depend on x„, x0 and the continuity of f can be expressed in a stronger form as 
follows (in > 0 Ve e (0, l) Vx, yeS,x - ye 0(s, r\)) => L(FX, Fy) < n. This implica­
tion means, of course, the uniform continuity of the mapping / in the e, //-topology. 

Q 
Theorem 7. A set K c (S, f, T) is bounded in the e, //-topology if and only if the 

image f(K) in (#", I ) is compact. 

P r o o l . Let K be a bounded subset in (S, f, T). It means that for every s, //-neigh­
bourhood 0(e, n) there exists an a = a(e, n)e R such that for every real X, \?.\ _ a 

K c X 0(s, n) = 0(e, \A\ n). 

Let f(K) = {Fx : xeK). If we choose the neighbourhood 0(E, l) then for every 
X, \X\ __ a(e, I) K c 0(e, \X\). It implies that f(K) c / ( 0 ( e . |lj)) what means for 
every |A| _l a(e, I) and every x e K FX(\X\) > 1 — e. We have proved that for every 
F e f(K) and every u _t a(e, 1) 

F(u) > 1 - £ . 

This fact can be expressed in the form lim Fx(u) = 1 uniformly in xeK. As we 

know that the subset f(K) is compact in (3P', L) if and only if 

lim F(u) = 1 , lim F(u) = 0 uniformly in 

the necessary part of the proof is finished. Let us suppose that f(K) is compact 
in (J^, L), K c (S, / , T). Then lim Fx(u) = 1 uniformly i n x e X , i.e. 

(Ve e (0, 1> 3a = a,(e) Vu _l a Vx 6 K) => Fx(u) > 1 - e . 

Let {x„}f be an arbitrary sequence in K and let Xn —> 0 in reals. Then 

^ „ x » = I';c„fe)>1-£ f ° r » ^ K W -



As A„ -> 0, then for every u > 0 there exists such a natural n0 that u >, a|l„| for 

every n ^ «0. So, for u ^ «0 we have lnx„ e o(e, u). The convergence A„x„ -~* 0 is 

proved and hence the subset K is bounded in the e, ;/-topology. D 

Theorem 8. An SLM-space (S, Jf, T) with the r-norm T = min is normable if 

and only if there exists such an E, ^-neighbourhood 0(fi, n) of the zero element that 

its image ${0(z, ;/)) is compact in (#", L). 

Proof. This statement immediately follows from Theorem 7 and Criterion of 

nonliability. • 

(Received September 2, 1981.) 
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