Kybernetika

Ivan Mezník

On G-machines generating intersection and union of generable languages

Kybernetika, Vol. 11 (1975), No. 6, (391)--397
Persistent URL: http://dml.cz/dmlcz/125730

Terms of use:

© Institute of Information Theory and Automation AS CR, 1975
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

On G-machines Generating Intersection and Union of Generable Languages

Ivan Mezník

The article deals with the construction of G-machine generating to given two G-machines the union (if they satisfy certain necessary and sufficient conditions) and the intersection of their languages.

1. INTRODUCTION

The notion of a G-machine was introduced in [2] as a certain generalization of machines studied in [1] and [4]. A generable language is the set of all "words" generated by a G-machine (in the mentioned references "generable set" instead of "generable language" is used). The class of generable languages is closed under intersection, but not generally under union (see [3]). We shall deal with the construction of G-machines generating to given two G-machines the intersection and the union of their languages.

2. PRELIMINARIES

2.1. Denotation. $T=\{1,2, \ldots\}, \bar{T}=\{0,1,2, \ldots\}, T_{n}=\{1,2, \ldots, n\}, \bar{T}_{n}=$ $=\{0,1,2, \ldots, n\}$.
2.2. Let I be a finite set (including the empty set). Denote I^{∞} the set of all nonvoid sequences of elements of I. These sequences are called words. For $w \in I^{\infty}, m \in T, w=$ $=\left(s_{0}, s_{1}, \ldots, s_{m-1}\right)$ put $l(w)=m$. For $w \in I^{\infty}, w=\left(s_{0}, s_{1}, \ldots\right)$ put $l(w)=\infty$. The symbol $l(w)$ is called the length of w. Instead of $w=\left(s_{0}, s_{1}, \ldots, s_{m-1}\right)$ and $w=$ $=\left(s_{0}, s_{1}, \ldots\right)$ we write $w=s_{0} s_{1} \ldots s_{m-1}$ and $w=s_{0} s_{1} \ldots$ or $w=\prod_{i=0}^{m-1} s_{i}$ and $w=$ $=\prod_{i=0}^{\infty} s_{i}$ respectively. Considering a word of finite or infinite length we use the denotation
$\prod_{i} s_{i}$. For $k \in T$ by the symbol $\left(s_{0} s_{1} \ldots s_{m-1}\right)^{k}$ we understand the word $s_{0} s_{1} \ldots s_{m} s_{m+1} \ldots$ $\ldots s_{2 m} s_{2 m+1} \ldots s_{k m-1}$, where $s_{i m+j}=s_{j}$ for all $i \in \bar{T}_{k-1}$ and all $j \in \bar{T}_{m-1}$. Further, by the symbol $\left(s_{0} s_{1} \ldots s_{m-1}\right)^{\infty}$ we understand the word $s_{0} s_{1} \ldots s_{m} s_{m+1} \ldots s_{n m} s_{n+1} \ldots$, where $s_{n m+j}=s_{j}$ for all $j \in \bar{T}_{m-1}$ and all $n \in \bar{T}$. For $m=1$ we omit the brackets and write $s_{0}^{k}, s_{0}^{\infty}$.
2.3. Convention. In the relation $C \subseteq I^{\infty}$ we suppose that every element from I is included in at least one sequence from C.
2.4. A G-machine is a triple $M=(S, I, \delta)$, where S is a nonvoid finite set, $I \subset$ $\subset S(I \neq S), \delta$ is a mapping of I into the set of all nonvoid subsets of S. In the following, M is to be understood as G-machine $M=(S, I, \delta)$. Let $m \in T$. A word $\prod_{i=0}^{m-1} s_{i}$ or $\prod_{i=0}^{\infty} s_{i}$ is called an output word of the length m or ∞ respectively, if $s_{0} \in I, s_{i+1} \in$ $\in \delta\left(s_{i}\right) \cap I$ for all $i \in \bar{T}_{m-2}$ or for all $i \in \bar{T}$. An output word $w=\prod_{i} s_{i}$ is called a word generated by M if either $l(w)=\infty$ or $l(w)=m$ and there exists $v \in \delta\left(s_{m-1}\right) \cap(S-I)$. To distinguish that $\prod_{i} s_{i}$ is an output word of G-machine M we use the denotation $\prod_{i} s_{i}(\delta)$. The set of all words generated by M is denoted $L(M)$ and called the language of M. A set $C, C \subseteq I^{\infty}$ is called a generable language if there exists M such that $C=L(M)$.
2.5. A pair (s, v) is called productive if $s \in I$ and $v \in \delta(s) \cap I$ and unproductive if $s \in I$ and $v \in \delta(s) \cap(S-I)$. Denote P_{δ} the set of all productive pairs and N_{δ} the set of all unproductive pairs. Then $\delta=P_{\delta} \cup N_{\delta}$. For every $s \in I$ put $N^{s}=\{(s, v) \mid(s, v) \in$ $\left.\in N_{\delta}\right\}$. Choose from every $N_{\delta} \neq \emptyset$ an arbitrary (s, v^{s}) (a representative) and put $N_{\delta}^{R}=\underset{s \in I, N^{s} \neq \emptyset}{ }\left(s, v^{s}\right)$ and $\delta^{R}=P_{\delta} \cup N_{\delta}^{R}$. G-machine $M^{R}=\left(S, I, \delta^{R}\right)$ is said to be result of reduction of M.
2.6. G-machines $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right)$ and $M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ are said to be equivalent if $L\left(M_{1}\right)=L\left(M_{2}\right)$. Then we write $M_{1} \sim M_{2}$.
2.7. Let I be a finite set, $C \subseteq I^{\infty}$ and $I \subset S(I \neq S)$, where S is a nonvoid finite set. Suppose $I \neq \emptyset$ (then according to Convention $2.3 C \neq \emptyset$). Denote c an element (sequence) from C and by s_{i} the $(i+1)$-th element of $c, c=\prod_{i} s_{i}$ for all $i \in \bar{T}_{m-1}$ if $l(c)=m \in T$ and for all $i \in \bar{T}$ if $l(c)=\infty$. For $c \in C, c=\prod_{i=0}^{m-1} s_{i}(m \in T)$ put $P(c)=$ $=\bigcup_{k}\left(s_{k}, s_{k+1}\right)$ for all $k \in \bar{T}_{m-2}$ and $N(c)=\left(s_{m-1}, v\right)$, where v is an arbitrary element
of $(S-I)$. For $c \in C, c=\prod_{i=0}^{\infty} s_{i}$ put $P(c)=\bigcup_{k}\left(s_{k}, s_{k+1}\right)$ for all $k \in \bar{T}$. Denote $P=$ $=\bigcup_{c \in \mathrm{C}} P(c), N=\bigcup_{c \in \mathrm{C}} N(c), \delta[C]=P \cup N$. If $I=\emptyset$ put $\delta[C]=\emptyset$. Define G-machine $M[C]=(S, I, \delta[C])$.
3. G-MACHINES M_{P} AND M_{U}
3.1. Proposition. $M \sim M^{R}$.
(See [2], Corollary 2.)
3.2. Proposition. Let I be a finite set, $C \subseteq I^{\infty}$. C is a generable language iff $C=$ $=L(M[C])$.
(See [2], Theorem 6 and Corollary 3.)
3.3. Proposition. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Then the following statements $(\mathrm{A}),(\mathrm{B})$ are equivalent:
(A) $P_{\delta_{1}}=P_{\delta_{2}}$ and there exists $\left(s, v^{1}\right) \in N_{\delta_{1}}$ iff there exists $\left(s, v^{2}\right) \in N_{\delta_{2}}$.
(B) $M_{1} \sim M_{2}$.
(See [2], Corollary 5.).
3.4. Definition. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Put
(1) $P_{1}=\left\{(s, v) \mid\right.$ there exist $\prod_{j=0}^{\infty} s_{j}$ and $i \in \bar{T}$ such that

$$
\left.\prod_{j=0}^{\infty} s_{j}\left(\delta_{1}\right)=\prod_{j=0}^{\infty} s_{j}\left(\delta_{2}\right) \quad \text { and } \quad s_{i}=s, \quad s_{i+1}=v\right\}
$$

(2) $P_{2}=\left\{(s, v) \mid\right.$ there exist indices $i, n \in \bar{T}, n>i+1$, states $v^{1} \in S_{1}, v^{2} \in S_{2}$ and an output word $\prod_{j=0}^{n-1} s_{j}$ with $s_{0} s_{1} \ldots s_{i} s_{i+1} \ldots s_{n-1}\left(\delta_{1}\right), s_{0} s_{1} \ldots s_{i} s_{i+1} \ldots s_{n-1}\left(\delta_{2}\right)$ where $s_{i}=s, s_{i+1}=v$ and $\left.\left(s_{n-1}, v^{1}\right) \in N_{\delta_{1}},\left(s_{n-1}, v^{2}\right) \in N_{\delta_{2}}\right\} ;$
(3) $N^{\prime}=\left\{\left(s, v^{i}\right) \mid\left(s, v^{i}\right) \in N_{\delta_{i}}\right.$ and there exists $\left(s, v^{j}\right) \in N_{\delta_{j}}$ for all $\left.i, j \in\{1,2\}, i \neq j\right\}$;
(4) $\delta_{P}=P_{1} \cup P_{2} \cup N^{\prime}, P_{\delta_{P}}=P_{1} \cup P_{2}, N_{\delta_{P}}=N^{\prime}$;
(5) $S_{P} \supseteq S$, where $S=\left\{s \mid\right.$ there exists $\left.(s, t) \in \delta_{P}\right\} \cup\left\{t \mid\right.$ there exists $\left.(s, t) \in \delta_{P}\right\}, S_{P}$ is a nonvoid finite set;
(6) $I_{P}=\left\{s \mid\right.$ there exists $\left.(s, t) \in \delta_{P}\right\} \cup\left\{t \mid(s, t) \in P_{\delta_{P}}\right\}$.

Define G-machine $M_{P}=\left(S_{P}, I_{P}, \delta_{P}\right)$.
3.5. Theorem. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines, $C=$ $=L\left(M_{2}\right) \cap L\left(M_{2}\right)$. Then $L\left(M_{P}\right)=L(M[C])$.

Proof. Suppose $P_{\delta_{P}} \neq \emptyset,(s, v) \in P_{\delta_{P}}$. By Definition $3.4(s, v) \in P_{m}$ for some $m \in\{1,2\}$. First assume $(s, v) \in P_{1}$. From 2.4 and (1) of Definition 3.4 it follows there exists a word $w=\prod_{j=0}^{\infty} s_{j}$ which belongs to $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$, thus $w \in C$. By $2.7(s, v) \in P(w)$ and $(s, v) \in P_{\delta[c]}$. Second let $(s, v) \in P_{2}$. By Definition 3.4 there exist $v^{1} \in S_{1}, v^{2} \in S_{2}$ and an output word w of the form given by (2). Using $2.4 w=s_{0} s_{1} \ldots$ $\ldots s_{n-1} \in L\left(M_{m}\right)$ for all $m \in\{1,2\}$, thus $w \in C$. By $2.7(s, v) \in P(w),(s, v) \in P_{\delta[C]}$. Hence the inclusion

$$
\begin{equation*}
P_{\delta_{P}} \subseteq P_{\delta_{[C]}} \tag{7}
\end{equation*}
$$

holds true. Now suppose $(s, v) \in P_{\delta\left\{C_{]}\right.}$. By 2.7 there exist $c \in C$ and $i \in \bar{T}$ such that $\left(s_{i}, s_{i+1}\right) \in P(c), s_{i}=s, s_{i+1}=v$. Since $c \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$ then there holds $\left(s_{i}\right.$, $\left.s_{i+1}\right) \in P_{\delta_{m}}$ for all $m \in\{1,2\}$. First consider $c=\prod_{j=0}^{\infty} s_{j}$. Then from (2) and (4) of Definition 3.4 it follows immediately $\left(s_{i}, s_{i+1}\right) \in P_{1},\left(s_{i}, s_{i+1}\right) \in P_{\delta_{P}}$. Second let $c=\prod_{j=0}^{n-1} s_{j}(n \in T)$. Since $c \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$ from 2.4 it follows $s_{0} s_{1} \ldots s_{i} s_{i+1} \ldots$ $\ldots s_{n-1}\left(\delta_{1}\right)=s_{0} s_{1} \ldots s_{i} s_{i+1} \ldots s_{n-1}\left(\delta_{2}\right)$ and there exist $\left(s_{n-1}, v^{1}\right) \in N_{\delta_{1}},\left(s_{n-1}, v^{2}\right) \in$ $\in N_{\delta_{2}}$. By Definition $3.4\left(s_{i}, s_{i+1}\right) \in P_{2},\left(s_{i}, s_{i+1}\right) \in P_{\delta_{P}}$ and therefore $P_{\delta_{[C]}} \subseteq P_{\delta_{P}}$. Using (7) we obtain

$$
\begin{equation*}
P_{\delta_{P}}=P_{\delta_{[C]}} \tag{8}
\end{equation*}
$$

Further, suppose $N_{\delta_{P}} \neq \emptyset,(s, v) \in N_{\delta_{P}}$. By 2.4 and (3) there exists a word $w=s_{0} \in$ $\in L\left(M_{j}\right)$, where $s_{0}=s$ for all $m \in\{1,2\}$. From here $c=s_{0} \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$ and by 2.7 there exists $v^{\prime} \in N_{\delta[C]}$ such that for $s=s_{0}\left(s, v^{\prime}\right) \in N(c)$ holds, thus $\left(s, v^{\prime}\right) \in$ $\in N_{s[C]}$. Hence the implication

$$
\begin{equation*}
\text { if }(s, v) \in N_{\delta_{P}} \text { then there exists } \quad\left(s, v^{\prime}\right) \in N_{\delta[C]} \tag{9}
\end{equation*}
$$

holds true. Now suppose $\left(s, v^{\prime}\right) \in N_{\delta[C]}$. By 2.4 and 2.7 there exist a word $c=s_{0} \in C=$ $=L\left(M_{1}\right) \cap L\left(M_{2}\right)$, where $s_{0}=s$ and $v^{1} \in\left(S_{1}-I_{1}\right), v^{2} \in\left(S_{2}-I_{2}\right)$ such that $\left(s, v^{1}\right) \in$ $\in N_{\delta_{1}},\left(s, v^{2}\right) \in N_{\delta_{2}}$. From (3) it follows $\left(s, v^{1}\right) \in N^{\prime},\left(s, v^{1}\right) \in N_{\delta_{P}}$ and therefore the implication

$$
\begin{equation*}
\text { if } \quad\left(s, v^{\prime}\right) \in N_{\delta[C]} \text { then there exists }(s, v) \in N_{\delta_{P}}, \tag{10}
\end{equation*}
$$

where $v=v^{1}$ holds. By (8), (9), (10) and (A) of Proposition 3.3 we obtain $L\left(M_{P}\right)=$ $=L(M[C])$.
3.6. Corollary. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), \quad M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines, $C=L\left(M_{1}\right) \cap L\left(M_{2}\right)$. Then $M_{P} \sim M[C] \sim M_{p}^{R}$.
3.7. Theorem. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines, $C=$
$=L\left(M_{1}\right) \cap L\left(M_{2}\right)$. Then $C=L(M[C])=L\left(M_{P}\right)=L\left(M_{P}^{R}\right)$.
Proof. Since $C=L\left(M_{1}\right) \cap L\left(M_{2}\right)$ is a generable language (see [3]) then by Proposition 3.2 $C=L(M[C])$ and the proof is completed.
3.8. Example. Using Definition 3.4 we shall construct to given G-machines M_{1}, M_{2} the G-machine M_{P}, for which $L\left(M_{P}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$. G-machines $M_{1}=$ $=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ are given as follows: $S_{1}=\{a, b, c, x\}, I_{1}=$ $=\{a, b, c\}, \delta_{1}:[a \rightarrow\{a, x\}, b \rightarrow\{a, b\}, c \rightarrow\{c, x\}], S_{2}=\{a, b, y\}, I_{2}=\{a, b\}$, $\delta_{2}:[a \rightarrow\{y\}, \quad b \rightarrow\{a, b\}, \quad c \rightarrow\{b\}]$. Since $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{1}\right)=s_{0} s_{1} \ldots s_{n-1}\left(\delta_{2}\right)$, where $s_{j}=b$ for every $n \in(T-\{1\})$ and $j \in \bar{T}_{n-1}$ then by $(1)(b, b) \in P_{1}$. Further, $b a\left(\delta_{1}\right)=b a\left(\delta_{2}\right),(a, x) \in N_{\delta_{1}},(a, y) \in N_{\delta_{2}}$, thus by $(2)(b, a) \in P_{2}$. The pairs (a, a), $(c, c),(c, b)$ obviously do not belong to P_{j} for any $j \in\{1,2\}$. Further, $(a, x) \in N_{\delta_{1}}$, $(a, y) \in N_{\delta_{2}}$ and by (3) $(a, x) \in N^{\prime},(a, y) \in N^{\prime}$. Hence $\delta_{P}:[a \rightarrow\{x, y\}, b \rightarrow\{a, b\}]$, $S_{P}=\{a, b, x, y\}, I_{P}=\{a, b\}, M_{P}=\left(S_{P}, I_{P}, \delta_{P}\right)$. By $2.5 M_{P}^{R}=\left(S_{P}, I_{P}, \delta_{P}^{R}\right)$, where $\delta_{P}^{R}:[a \rightarrow\{x\}, \quad b \rightarrow\{a, b\}]$. Apparently $L\left(M_{P}^{R}\right)=\left\{b^{\infty}, b^{k} a, a \mid k \in T\right\}=L\left(M_{1}\right) \cap$ $\cap L\left(M_{2}\right)$.
3.9. Definition. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Define G-machine $M_{U}=\left(S_{U}, I_{U}, \delta_{U}\right)$, where $S_{U}=S_{1} \cup S_{2}, I_{U}=I_{1} \cup I_{2}, \delta_{U}=\delta_{1} \cup \delta_{2}$.
3.10. Theorem. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines, $C=$ $=L\left(M_{1}\right) \cup L\left(M_{2}\right)$. Then $L\left(M_{U}\right)=L(M[C])$.
Proof. Suppose $(s, t) \in P_{\delta_{U}}$. Obviously $(s, t) \in\left(P_{\delta_{1}} \cup P_{\delta_{2}}\right)$. There exists a word $w \in L\left(M_{U}\right)$ beginning with the output word $s_{0} s_{1}\left(\delta_{U}\right)$, where $s_{0}=s, s_{1}=t$ (see [2], Corollary 1). By $2.7\left(s_{0}, s_{1}\right) \in P(w)$, thus $\left(s_{0}, s_{1}\right) \in P_{\delta[C]},(s, t) \in P_{\delta[C]}$. Herefrom it follows

$$
\begin{equation*}
P_{\delta_{U}} \subseteq P_{\delta[C]} \tag{11}
\end{equation*}
$$

Now assume $(s, t) \in P_{\delta[C]}$. By 2.7 there exists a word $c \in C$ such that $(s, t) \in P(c)$. Since $C=L\left(M_{1}\right) \cup L\left(M_{2}\right)$ it must hold $(s, t) \in P_{\delta_{j}}$ at least for one $j \in\{1,2\}$, therefore $(s, t) \in P_{\delta_{U}}$ and $P_{\delta[C]} \subseteq P_{\delta_{U}}$. Using (11) we obtain

$$
\begin{equation*}
P_{\delta_{U}}=P_{\delta[C]} \tag{12}
\end{equation*}
$$

Let $(s, t) \in N_{\delta_{U}}$. By $2.4 w=s_{0}=s \in L\left(M_{U}\right)$. Apparently $(s, t) \in N_{\delta_{j}}$ at least for one $j \in\{1,2\}$. From 2.7 it follows there exists $\left(s, t^{\prime}\right) \in N(w)$, thus $\left(s, t^{\prime}\right) \in N_{\delta[C]}$ and the implication

$$
\begin{equation*}
\text { if }(s, t) \in N_{\delta_{U}} \text { then there exists } \quad\left(s, t^{\prime}\right) \in N_{\delta_{[C]}} \tag{13}
\end{equation*}
$$

396 holds true. Now suppose $(s, z) \in N_{\delta\left[C_{]} \text {. Then }\right.}$ there exists $c \in L(M[C])$ such that $(s, z) \in N(c)$. Since $c \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$, then $c \in L\left(M_{j}\right)$ and there exists $\left(s, z^{j}\right)$ at least for one $j \in\{1,2\}$. Hence the implication

$$
\begin{equation*}
\text { if } \quad\left(s, t^{\prime}\right) \in N_{\dot{\partial}\left[C_{]}\right]} \quad \text { then there exists } \quad(s, t) \in N_{\delta_{U}}, \tag{14}
\end{equation*}
$$

where $t^{\prime}=z, t=z^{j}$ is satisfied. From (12), (13), (14) it follows the condition (A) of Proposition 3.3 is fulfilled, hence $M_{U} \sim M[C]$ and $L\left(M_{U}\right)=L(M[C])$.
3.11. Theorem. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines and let $C=L\left(M_{1}\right) \cup L\left(M_{2}\right)$ be a generable language. Then $C=L(M[C])=L\left(M_{U}\right)=$ $=L\left(M_{v}^{R}\right)$.

Proof. The statement is the consequence of Propositions 3.1, 3.2 and Theorem 3.10.
3.12. Proposition. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Then - the following statements (A), (B) are equivalent:
(A) For every $i, j \in\{1,2\}, i \neq j$ and for every $n \in T$
(A^{\prime}) if $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{j}\right)$ and $\left(s_{n-1}, v\right) \in P_{\delta_{i}}$ then $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{i}\right)$ or $\left(s_{n-1}, v\right) \in P_{\delta_{j}}$ and
($\mathrm{A}^{\prime \prime}$) if $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{j}\right)$ and $\left(s_{n-1}, v^{i}\right) \in N_{\delta_{i}}$ then $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{i}\right)$ or there exists $\left(s_{n-1}, v^{j}\right) \in N_{\delta_{j}}$.
(B) $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ is a generable language.
(See [3]).
3.13. Corollary. Let $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be G-machines. Then the following statements (A). (B), (C) are equivalent:
(A) For every $i, j \in\{1,2\}, i \neq j$ and for every $n \in T$
($\left.\mathrm{A}^{\prime}\right)$ if $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{j}\right)$ and $\left(s_{n-1}, v\right) \in P_{\delta_{i}}$ then $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{i}\right)$ or $\left(s_{n-1}, v\right) \in P_{\delta_{j}}$ and
($\left.\mathrm{A}^{\prime \prime}\right)$ if $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{j}\right)$ and $\left(s_{n-1}, v^{i}\right) \in N_{\delta_{i}}$ then $s_{0} s_{1} \ldots s_{n-1}\left(\delta_{i}\right)$ or there exists $\left(s_{n-1}, v^{j}\right) \in N_{\delta_{j}}$.
(B) $\quad L\left(M_{1}\right) \cup L\left(M_{2}\right)$ is a generable language.
(C) $\quad L\left(M_{1}\right) \cup L\left(M_{2}\right)=L\left(M_{U}\right)=L\left(M_{U}^{R}\right)=L\left(M\left[L\left(M_{1}\right) \cup L\left(M_{2}\right)\right]\right)$.
3.14. Example. Let G-machines $M_{1}=\left(S_{1}, I_{1}, \delta_{1}\right), M_{2}=\left(S_{2}, I_{2}, \delta_{2}\right)$ be given as follows: $S_{1}=\{a, b, c, x\}, I_{1}=\{a, b, c\}, \delta_{1}:[a \rightarrow\{a, x\}, b \rightarrow\{b, c, x\}, c \rightarrow\{a\}]$,
$S_{2}=\{a, c, d, y\}, I_{2}=\{a, c, d\}, \delta_{2}:[a \rightarrow\{a, y\}, c \rightarrow\{a\}, d \rightarrow\{c, d\}]$. First, we shall examine the condition (A) of Corollary 3.13. Let $k, m \in T$. Then the following holds:

$$
\begin{gathered}
a^{k}\left(\delta_{1}\right),(a, a) \in P_{\delta_{2}}, a^{k}\left(\delta_{2}\right) ; a^{k}\left(\delta_{1}\right),(a, y) \in N_{\delta_{2}},(a, x) \in N_{\beta_{1}} ; \\
b^{k} c\left(\delta_{1}\right),(c, a) \in P_{\delta_{2}},(c, a) \in P_{\delta_{1}} ; b^{k} c a^{m}\left(\delta_{1}\right),(a, a) \in P_{\delta_{2}},(a, a) \in P_{\delta_{1}} ; \\
b^{k} c a^{m}\left(\delta_{1}\right),(a, y) \in N_{\delta_{2}},(a, x) \in N_{\delta_{1}} ; a^{k}\left(\delta_{2}\right),(a, a) \in P_{\delta_{1}}, a^{k}\left(\delta_{1}\right) \\
a^{k}\left(\delta_{2}\right),(a, x) \in N_{\delta_{1}},(a, y) \in N_{\delta_{2}} ; c a^{k}\left(\delta_{2}\right),(a, a) \in P_{\delta_{1}},(a, a) \in P_{\delta_{2}} ; \\
d c a^{k}\left(\delta_{2}\right),(a, x) \in N_{\delta_{1}},(a, y) \in N_{\delta_{2}} ; d c a^{k}\left(\delta_{2}\right),(a, a) \in P_{\delta_{1}},(a, a) \in P_{\delta_{2}} ; \\
d c a^{k}\left(\delta_{2}\right),(a, x) \in N_{\delta_{1}},(a, y) \in N_{\delta_{2}}
\end{gathered}
$$

From the above G-machines M_{1}, M_{2} satisfy the condition (A) of Corollary 3.13, therefore $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ is a generable language and $L\left(M_{1}\right) \cup L\left(M_{2}\right)=L\left(M_{U}\right)=$ $=L\left(M_{U}^{R}\right)$ holds true. By $2.4 L\left(M_{1}\right) \cup L\left(M_{2}\right)=\left\{a^{\infty}, a^{k}, b^{\infty}, b^{k}, c a^{k}, b^{k} c a^{\infty}, b^{k} c a^{m}\right.$, $\left.c a^{\infty}, d c a^{\infty}, d c a^{k}, d^{\infty}\right\}$. By Definition $3.9 S_{v}=S_{1} \cup S_{2}=\{a, b, c, d, x, y\}, I_{u}=$ $=I_{1} \cup I_{2}=\{a, b, c, d\}, \delta_{U}=\left(\delta_{1} \cup \delta_{2}\right):[a \rightarrow\{a, x, y\}, b \rightarrow\{b, c, x\}, c \rightarrow\{a\}$, $d \rightarrow\{c, d\}], \quad M_{U}=\left(S_{U}, I_{U}, \delta_{U}\right)$. By $2.5 \delta_{U}^{R}:[a \rightarrow\{a, x\}, b \rightarrow\{b, c, x\}, c \rightarrow\{a\}$, $d \rightarrow\{c, d\}], M_{U}^{R}=\left(S_{U}, I_{U}, \delta_{U}^{R}\right)$. It is easy to verify that $L\left(M_{U}\right)=L\left(M_{U}^{R}\right)=\left\{a^{\infty}, a^{k}\right.$, $\left.b^{\infty}, b^{k}, c a^{k}, b^{k} c a^{\infty}, b^{k} c a^{m}, c a^{\infty}, d c a^{\infty}, d c a^{k}, d^{\infty}\right\}=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
(Received January 3, 1973.)

REFERENCES

[1] W. Kwasowiec: Generable Sets. Information and Control 17 (1970), 257-264.
[2] I. Mezník: G.-Machines and Generable Sets. Information and Control 5 (1972), 499-509.
[3] I. Mezník: On Some Closure Properties of Generable Languages. CMUC 14 (1973), 3, 541 552.
[4] Z. Pawlak: Stored Program Computers. Algorytmy 10 (1969), 7-22.

RNDr. Ivan Meznik, CSc.; katedra matematiky FE VUT v Brně (Department of Mathematics, Technical University of Brno), Hilleho 6, 60200 Brno. Czechoslovakia.

