Kybernetika

Yogeshwar Dayal Mathur; Jagdish Mitter

Some theorems on geometric measure of distortion

Kybernetika, Vol. 11 (1975), No. 6, (398)--410
Persistent URL: http://dml.cz/dmlcz/125734

Terms of use:

© Institute of Information Theory and Automation AS CR, 1975
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

Some Theorems on Geometric Measure of Distortion

Y. D. Mathur, J. Mitter*

In this paper the relationship between the rate of transmission of information and the geometric measure of distortion is established both in discrete and continuous cases. The geometric ratedistortion function is defined as the infimum of the average mutual information between the sets of input and output symbols under the constraint that geometric distortion measure does not exceed a distortion limit. The slope of the geometric rate-distortion curve is evaluated and a lower bound is obtained. Finally geometric rate-distortion function is constructed for symmetric distortion measure.

I. INTRODUCTION

Consider an M-letter independent source with input symbols $\{0,1, \ldots, M-1\}$ which are used to communicate over channel whose set of output symbols is $\{0,1, \ldots$, $\ldots, N-1\}$. Let the channel matrix be $\left\{q_{j / i}\right\}$ where $q_{j / i}$ is the probability of receiving j when i is sent. If the input distribution is $\left\{p_{i}\right\}_{i=0}^{M-1}$ then the output distribution $\left\{q_{j}\right\}_{j=0}^{N-1}$ is determined by

$$
\begin{equation*}
q_{j}=\sum_{i} p_{i} q_{j / i} \text { for all } j \tag{1.1}
\end{equation*}
$$

Further let $\varrho_{i j}$ denote the distortion when symbol i is received as j such that $\varrho_{i j}>$ $>\alpha>0, i \neq j ; \varrho_{i i}=\alpha$. If we denote the geometric mean of single letter distortions $\varrho_{i j}$ by ${ }_{a} D_{G}$, then

$$
\begin{equation*}
{ }_{a} D_{G}=\prod_{i, j} \varrho_{i j}^{\left(p \cdot q_{j / i}\right)} . \tag{1.2}
\end{equation*}
$$

* The author is thankful to C.S.I.R. (India) for financial assistance.

Also, the average mutual information $I(X ; Y)$ (or $\left.R\left(\left\{q_{j / l}\right\}\right)\right)$ between the input and output, is given by

$$
\begin{equation*}
I(X ; Y)=R\left(\left\{q_{j / i}\right\}\right)=\sum_{i} \sum_{j} p_{i} q_{j / i} \log \frac{q_{j / i}}{\sum_{i} p_{l} q_{j / l}}, \tag{1.3}
\end{equation*}
$$

where logarithms are considered to the base 2 .
On the lines of Shannon's rate-distortion function [4], Sharma, Mitter and Mathur have defined the geometric rate-distortion function $R\left({ }_{\alpha} D_{G}^{*}\right)$ as

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right)=\min R\left(\left\{q_{j / i}\right\}\right), \tag{1.4}
\end{equation*}
$$

where the minimization is done with respect to all those $\left\{q_{j / j}\right\}$ for which ${ }_{\alpha} D_{G} \leqq{ }_{\alpha} D_{G}^{*}$, ${ }_{\alpha} D_{G}^{*}$ being a fixed quantity.
The measure defined in (1.2) has some advantages over the Shannon's measure of distortion given by

$$
\begin{equation*}
D=\sum_{i} \sum_{j} p_{i} \cdot q_{j / i} \cdot \varrho_{i j} \tag{1.5}
\end{equation*}
$$

Some relations that it bears with entropies of the system and the rate of transmission, have been given in [5]. Bounds on $R\left({ }_{\alpha} D_{G}^{*}\right)$ when measure of distortion is symmetric i.e., $\varrho_{i j}=\beta>\alpha \forall i, j ; i \neq j$ were obtained by Sharma and the authors in [6].

In the present communication, we obtain some expressions for $R\left({ }_{\alpha} D_{G}^{*}\right)$ and study the nature of the geometric rate-distortion curve. A lower bound on $R\left({ }_{\alpha} D_{G}^{*}\right)$ when the measure $\varrho_{i j}=\varrho(x ; y)$ (continuous case) depends on the difference of x and y and its value when the measure is symmetric, are obtained herein.

II. THEOREMS ON ${ }_{\alpha} D_{G}$

Theorem 2.1. Let $R\left({ }_{a} D_{G}^{*}\right)$ be the geometric rate-distortion function of a discrete memoryless source with source probability $\left\{p_{i}\right\}$ and single letter distortion measure $\varrho_{i j}$, then $R\left({ }_{a} D_{G}^{*}\right)$ can be expressed as

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right)=v \cdot{ }_{\alpha} D_{G}^{*} \log _{\alpha} D_{G}^{*}+\sum_{i} p_{i} \log \mu_{i} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{i} \mu_{i} p_{i} i_{i j}^{v_{j}} D *_{G}=1 \quad \text { for all } j \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{i}^{-1}=\sum_{j} q_{j} \rho_{i j}^{p} i_{j}^{\alpha * *}, \text { for all } i . \tag{2.3}
\end{equation*}
$$

Proof. Proceeding as in Gallager [2], it can be shown that by constructing a function φ as

$$
\varphi=I(X ; Y)-v \cdot{ }_{\alpha} D_{G}^{*}+\sum_{i} S_{i} \sum_{j} q_{j / i}
$$

where

$$
\sum_{j} q_{j / i}=1
$$

and differentiating it with respect to $q_{j / i}$, after setting $S_{i}=-p_{i} \log \mu_{i}$, the condition for $q_{j / i}$ to yield a stationary point for φ is that

$$
\begin{equation*}
q_{j / i}=\mu_{i} q_{j} o_{i j}^{r_{i j} D *_{G}}, \text { for all } i \text { and } j \tag{2.4}
\end{equation*}
$$

satisfying

$$
\sum_{i} \mu_{i} p_{i} i_{i j}^{v_{i j}} D *_{G}=1 \quad \text { for all } j
$$

Further setting (2.4) in (1.3), we get

$$
\begin{gathered}
R\left({ }_{\alpha} D_{G}^{*}\right)=\sum_{i} \sum_{j} p_{i} \mu_{i} q_{j} \varrho_{i j}^{v_{\alpha} D *_{G}} \log \left(\mu_{i} Q_{i j}^{v_{\alpha} D *_{G}}\right)= \\
=v \cdot{ }_{\alpha} D_{G}^{*} \sum_{i} p_{i} q_{j} \mu_{i} \varrho_{i j}^{v_{\alpha} D *_{G}} \log \varrho_{i j}+\sum_{i} \sum_{j} p_{i} q_{j} \mu_{i} Q_{i j}^{v_{i} D *_{G}} \log \mu_{i}= \\
=v \cdot{ }_{\alpha} D_{G}^{*} \log { }_{\alpha} D_{G}^{*}+\sum_{i} p_{i} \log \mu_{i},
\end{gathered}
$$

using (2.3).
The result can be analogously extended to continuous case. With similar notations, we have

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right)-\gamma \cdot{ }_{\alpha} D_{G}^{*} \log _{\alpha} D_{G}^{*}=\int p(x) \ln \mu(x) \mathrm{d} x \tag{2.6}
\end{equation*}
$$

such that

$$
\int \mu(x) p(x) \varrho^{v_{x} D *_{G}}(x ; y) \mathrm{d} x=1 \text { for all } y,
$$

and

$$
\begin{equation*}
\mu^{-1}(x)=\int q(y) e^{v_{-\alpha} D *_{G}}(x ; y) \mathrm{d} y \tag{2.6a}
\end{equation*}
$$

where \ln denotes logarithms to the base e.
The parameter v admits of a geometrical interpretation which we now state below:
Theorem 2.2. The slope $R^{\prime}\left({ }_{\alpha} D_{G}^{*}\right)$ of the geometric rate-distortion curve at ${ }_{\alpha} D_{G}^{*}$ is given by

$$
\begin{equation*}
R^{\prime}\left({ }_{\alpha} D_{G}^{*}\right)=v \cdot \log \left(2 \cdot{ }_{a} D_{G}^{*}\right) . \tag{2.7}
\end{equation*}
$$

Proof. From (2.1), it follows that $R\left({ }_{\alpha} D_{G}^{*}\right)$ is a function of $v,{ }_{\alpha} D_{G}^{*}$ and $\mu_{i}(i=0,1, \ldots$ $\ldots, M-1)$. Thus, we have

$$
\begin{gathered}
R^{\prime}\left({ }_{\alpha} D_{G}^{*}\right)=\frac{\mathrm{d} R\left({ }_{\alpha} D_{G}^{*}\right)}{\mathrm{d}_{\alpha} D_{G}^{*}}=\frac{\partial R}{\partial_{\alpha} D_{G}^{*}}+\frac{\partial R}{\partial v}\left(\frac{\mathrm{~d} v}{\mathrm{~d}_{\alpha} D_{G}^{*}}\right)+\sum_{i} \frac{\partial R}{\partial \mu_{i}}\left(\frac{\mathrm{~d} \mu_{i}}{\mathrm{~d}_{\alpha} D_{G}^{*}}\right)= \\
\quad=v+v \cdot \log _{\alpha} D_{G}^{*}+\left[{ }_{\alpha} D_{G}^{*} \log _{\alpha} D_{G}^{*}+\sum_{i} \frac{p_{i}}{\mu_{i}}\left(\frac{\mathrm{~d} \mu_{i}}{\mathrm{~d} v}\right)\right] \frac{\mathrm{d} v}{\mathrm{~d}_{\alpha} D_{G}^{*}} .
\end{gathered}
$$

As the transverse the $R\left({ }_{\alpha} D_{G}^{*}\right)$ curve, the solution always satisfies (2.2), so that

$$
\sum_{i}\left[\mu_{i \alpha} D_{G}^{*} \log \varrho_{i j}+\frac{\mathrm{d} \mu_{i}}{\mathrm{~d} v}\right] p_{i} \varrho_{i j}^{v_{i} \cdot} D * G=0
$$

Multiplying this by q_{j} and summing over j, we obtain

$$
{ }_{\alpha} D_{G}^{*} \log _{\alpha} D_{G}^{*}+\sum_{i} \frac{p_{i}}{\mu_{i}}\left(\frac{\mathrm{~d} \mu_{i}}{\mathrm{~d} v}\right)=0 .
$$

This, in turn gives

$$
R^{\prime}\left({ }_{x} D_{G}^{*}\right)=v+v \cdot \log _{x} D_{G}^{*} .
$$

Theorem 2.3. For a reproducing probability distribution $q=\left(q_{0}, q_{1} \ldots, q_{N-1}\right)$ let $B_{q}=\left\{j: q_{j}=0\right\}$ and $V_{q}=\left\{j: q_{j}>0\right\}$ be the boundary and interior sets respectively. Then a conditional probability assignment $\left\{q_{j / i}\right\}$ such that

$$
q_{j / i}=\mu_{i} q_{j} e_{i j}^{v_{i j} D *_{G}} \text { for all } i \text { and } j,
$$

yields a point on the $R\left({ }_{\alpha} D_{G}^{*}\right)$ curve if and only if

$$
\begin{equation*}
\sum_{i} \mu_{i} p_{i} i_{i j}^{v_{i j}} D *_{G} \leqq 1, \text { for } j \in B_{q}, \tag{2.8}
\end{equation*}
$$

where μ_{i} and v satisfy (2.3).
Proof. Let a change of transition probabilities $\Delta q_{j / i}$ be such that

$$
\begin{gather*}
\Delta q_{j / i} \geqq 0, \text { for } j \in B_{q}, \tag{2.9}\\
\sum_{j} \Delta q_{j / i}=0 \tag{2.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\Delta_{a} D_{G}=\exp \left[\sum_{i} \sum_{j} p_{i} \Delta q_{j / i} \log \varrho_{i j}\right]=\exp (0)=1 \tag{2.11}
\end{equation*}
$$

For V_{q}, the change in $I(X ; Y)$ is given by

$$
\Delta I_{v}=\sum_{i} \sum_{j \in v_{q}} p_{i} \Delta q_{j / i} \log \mu_{i} \varrho_{i j}^{v \cdot{ }_{j}} D * G
$$

(from 2.4) and for B_{q}, the change is

$$
\Delta I_{B}=\sum_{i} \sum_{j \in B_{q}} p_{i} \Delta q_{j / i} \log \frac{\Delta q_{j / i}}{\Delta q_{j}}
$$

Thus the total change is then given by

$$
\Delta I=\sum_{i} \sum_{j \in V_{q}} p_{i} \cdot \Delta_{j / i}\left\{\log \varrho_{i j}^{v}{ }^{D} D *_{G}+\log \mu_{i}\right\}+\sum_{i} \sum_{j \in B_{q}} p_{i} \cdot \Delta q_{j / i} \log \frac{\Delta q_{j / i}}{\Delta q_{j}}
$$

By adding and substracting the quantity

$$
\sum_{i} \sum_{j \in B_{q}} p_{i} \cdot \Delta q_{j /}\left\{\log \varrho_{i j}^{\nu \cdot \alpha D *_{G}}+\log \mu_{i}\right\},
$$

we obtain

$$
\begin{align*}
\Delta I & =\sum_{i} \sum_{j} p_{i} \cdot \Delta q_{j / i}\left\{\log \varrho_{i j}^{v \cdot \alpha} D *_{G}+\log \mu_{i}\right\}+ \\
& +\sum_{i} \sum_{j \in B_{q}} p_{i} \cdot \Delta q_{j / i} \log \left(\frac{\Delta q_{j / i}}{\Delta q_{j} \cdot \mu_{i} \varrho_{i j}^{v \cdot \alpha} D *_{G}}\right) . \tag{2.12}
\end{align*}
$$

Invoking the constraints (2.10), (2.11), the first expression on the right hand side of (2.12) vanishes. Again by applying the inequality

$$
\begin{equation*}
\left.\log x \geqq 1-\frac{1}{x} \quad \text { (with equality iff } x=1\right) \tag{2.13}
\end{equation*}
$$

to the second expression of right hand side of (2.12), we get

$$
\Delta I \geqq 0
$$

if (2.8) holds.
This shows that any change of transition probabilities can only increase $I(X ; Y)$ if ${ }_{\alpha} D_{G}$ is kept fixed when (2.8) holds, which implies that the above solution achieves the minimum of $I(X ; Y)$. The second part of the theorem can be readily established by showing that the set of transition probabilities which does not satisfy (2.8), will decrease $I(X ; Y)$, keeping ${ }_{\sigma} D_{G}$ fixed.

Theorem 2.4 (Another form of $R\left({ }_{\alpha} D_{G}^{*}\right)$). Let $\hat{\mu}$ be the set $\{\mu\}$ where $\mu=\left(\mu_{0}, \mu_{1}, \ldots\right.$ \ldots, μ_{M-1}) and $\mu_{i}>0$ for each $i=0,1, \ldots, M-1$ satisfying

$$
\begin{equation*}
\sum_{i} \mu_{i} \cdot p_{i} \cdot Q_{i j}^{v_{i j} D * G} \leqq 1 \text { for all } j \tag{2.14}
\end{equation*}
$$

then

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right)=\max _{v, \mu \in \hat{\mu}}\left(v \cdot{ }_{\alpha} D_{G}^{*} \log _{\alpha} D_{G}^{*}+\sum_{i} p_{i} \cdot \log \mu_{i}\right) \tag{2.15}
\end{equation*}
$$

and a necessary and sufficient condition for μ to achieve maximum in (2.15) is that its components be given by

$$
\begin{equation*}
\mu_{i}^{-1}=\sum_{j} q_{j} o_{i j}^{V_{i} D *_{G}}, \quad i=0,1, \ldots, M-1 . \tag{2.16}
\end{equation*}
$$

Proof. From the assumption ${ }_{\alpha} D_{G} \leqq{ }_{\alpha} D_{G}^{*}$ and making use of the inequality (2.14) and (2.13), we get

$$
\begin{gathered}
R\left({ }_{\alpha} D_{G}^{*}\right)-\dot{v} \cdot{ }_{\alpha} D_{G}^{*} \log _{\alpha} D_{G}^{*}-\sum_{i} p_{i} \cdot \log \mu_{i} \geqq \\
\geqq \sum_{i} \sum_{j} p_{i} q_{j / i}\left\{1-\frac{q_{j} \cdot \mu_{i} Q_{i j}^{v}{ }^{\circ} *_{a}}{q_{j / i}}\right\}=1-\sum_{j} q_{j} \sum_{i} \mu_{i} p_{i} i_{i j}^{v /{ }^{v}} D{ }^{D * G} \geqq 1-\sum_{j} q_{j}=0 .
\end{gathered}
$$

Hence, for every set of conditional probabilities $\left\{q_{j / i}\right\}$ for which ${ }_{\alpha} D_{G} \leqq{ }_{\alpha} D_{G}^{*}$, $R\left({ }_{\alpha} D_{G}^{*}\right)$ approaches the maximum on the right hand side of (2.15). Thus

$$
\begin{equation*}
R\left({ }_{a} D_{G}^{*}\right) \geqq \max _{v, \mu \in \hat{A}}\left(v \cdot{ }_{a} D_{G}^{*} \log _{\alpha} D_{G}^{*}+\sum_{i} p_{i} \log \mu_{i}\right) \tag{2.17}
\end{equation*}
$$

we can easily see from Theorem 2.1, that

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right) \leqq \max _{v, \mu \in \hat{A}}\left(v \cdot{ }_{\alpha} D_{G}^{*} \log _{\alpha} D_{G}^{*}+\sum_{i} p_{i} \log \mu_{i}\right) . \tag{2.18}
\end{equation*}
$$

Thus combining (2.17) and (2.18), we obtain (2.15). The necessary and sufficuent condition for achieving the maximum in the statement of the theorem follows immediately from Theorem 2.3.
In the next section, we shall come to a variational problem to find a lower bound of $R\left({ }_{\alpha} D_{G}^{*}\right)$. For that we shall need the continuous analog of Theorem 2.4 which may be stated as follows:

If $\hat{\mu}$ is the set of all non-negative functions $\mu(x)$ satisfying

$$
\begin{equation*}
\int \mu(x) p(x) \varrho^{v_{\alpha} D * c}(x ; y) \mathrm{d} x \leqq 1 \text { for all } y \tag{2.19}
\end{equation*}
$$

404 then

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right)=\operatorname{Sup}_{v, \mu(x) \in \mu}\left[v \cdot{ }_{\alpha} D_{G}^{*} \log _{\alpha} D_{G}^{*}+\int p(x) \ln \mu(x) \mathrm{d} x\right] \tag{2.20}
\end{equation*}
$$

and a necessary and sufficient condition for $\mu(x)$ to achieve supremum in (2.20) is that there exists an output probability density function $q(y)$ satisfying (2.6a) for almost all y for which $q(y)<0$.

III. A LOWER BOUND WHEN $\varrho(x ; y)=\varrho(x-y)$

When the distortion $\varrho(x ; y)$ depends upon the difference of x and y, we call it as difference distortion measure.

Theorem 3.1. If R_{L} denotes the lower bound of $R\left({ }_{\alpha} D_{G}^{*}\right)$ for difference distortion, then

$$
\begin{equation*}
R_{\mathrm{L}}=H(x)-H(\psi(x)) \tag{3.1}
\end{equation*}
$$

where $H(X)$ is input entropy, that is $-\int p(x) \log p(x)$,

$$
\begin{equation*}
\psi(x)=\frac{\varrho^{v \cdot \alpha D * \sigma_{G}}(x)}{\int \varrho^{v, \alpha D * \sigma_{G}}(z) \mathrm{d} z}, \tag{3.2}
\end{equation*}
$$

and ${ }_{\alpha} D_{G}^{* *}$ is the value of ${ }_{\alpha} D_{G}^{*}$ for $z=x-y$.
Proof. Let us suppose that

$$
\begin{equation*}
\mu(x)=\frac{S}{p(x)}, \tag{3.3}
\end{equation*}
$$

where S is a constant.
If ${ }_{\alpha} D_{G}^{* *}$ denotes the value of ${ }_{\alpha} D_{G}^{*}$ when $z=x-y$, then (2.19) gives

$$
\begin{equation*}
S . \int \varrho^{v \cdot \alpha D * * G}(z) \mathrm{d} z \leqq 1 \tag{3.4}
\end{equation*}
$$

Choosing S such that (3.4) holds with equality, it follows from (2.20) that

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{* *}\right) \geqq v \cdot{ }_{\alpha} D_{G}^{* *} \ln { }_{\alpha} D_{G}^{* *}+H(x)-\ln \int \varrho^{v,{ }_{\alpha} D * *_{c}}(z) \mathrm{d} z=R_{\mathrm{L}} \quad \text { (say) } . \tag{3.5}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
R_{\mathrm{L}^{\prime}}^{\prime}={ }_{\alpha} D_{G}^{* *} \ln { }_{\alpha} D_{G}^{* *}-{ }_{\alpha} D_{G}^{* *} \int(\ln \varrho(x)) \psi(x) \mathrm{d} x \tag{3.6}
\end{equation*}
$$

(3.7) $\quad R_{\mathrm{L}}^{\prime \prime}=-\int\left\{_{\alpha} D_{G}^{* *} \ln \varrho(x)\right\}^{2} . \psi(x) \mathrm{d} x+\left(\int_{\alpha} D_{G}^{* *} \ln \varrho(x) \psi(x) \mathrm{d} x\right)^{2}$.

From (3.7) it can be readily seen that $R_{\mathrm{L}}^{\prime \prime} \leqq 0$, therefore R_{L} is convex \cap function of v. Hence, there exists the unique maximum at some v satisfying $R_{\mathrm{L}}^{\prime}=0$, that is

$$
\begin{equation*}
{ }_{\alpha} D_{G}^{* *} \ln { }_{\alpha} D_{G}^{* *}={ }_{\alpha} D_{G}^{* *} \hat{l n} \varrho(x) \psi(x) \mathrm{d} x . \tag{3.8}
\end{equation*}
$$

Suppose that the value of ${ }_{\alpha} D_{G}^{* *} \ln { }_{\alpha} D_{G}^{* *}$ for v obtained from (3.8) be denoted by D_{v}, then from (3.5) it follows that

$$
R_{\mathrm{L}}=v D_{v}+H(x)-\ln \int \varrho^{v \cdot \alpha D * * \mathrm{c}}(z) \mathrm{d} z=H(x)+\int \psi(x) \ln \psi(x) \mathrm{d} x .
$$

IV. CONSTRUCTION OF $R\left({ }_{\alpha} D_{G}^{*}\right)$ FOR A SYMMETRIC MEASURE OF DISTORTION

If the number of input and output symbols are the same and if the cost of every correct transmission is α and that of any incorrect transmission is β (obviously $\alpha<\beta$) so that

$$
e_{i j}= \begin{cases}\alpha & \text { if } i=j \tag{4.1}\\ \beta & \text { otherwise }\end{cases}
$$

then we may refer to this as symmetric measure of distortion. We shall give a theorem on the construction of $R\left({ }_{\alpha} D_{G}^{*}\right)$ for the symmetric measure of distortion. We first prove two lemmas.

Lemma 1. Let $R\left({ }_{\alpha} D_{G}^{*}\right)$ be defined for some source X with probability $P=$ $=\left\{p_{0}, p_{1}, \ldots, p_{M-1}\right\}$ and distortion matrix $\left\{\varrho_{i j}\right\}$ and suppose the new distortions are formed by multiplying each row of the distortion matrix by a constant i.e.,

$$
\hat{\varrho}_{i j}=C_{i} \cdot \varrho_{i j}
$$

then

$$
\begin{equation*}
\widehat{R}\left({ }_{\alpha} D_{G}^{*}\right)=R\left({ }_{\alpha} D_{G}^{*} / C\right) \tag{4.2}
\end{equation*}
$$

where $C=2^{\Sigma_{i} p_{i} \log c_{i}}$ and \hat{R} is defined for the source X and distortion $\hat{\varrho}_{i j}$.
Proof. We know that

$$
\hat{R}\left({ }_{\Omega} D_{G}^{*}\right)=\min I(X ; Y)
$$

subject to the constraint

$$
\begin{equation*}
2^{\Sigma_{i} \Sigma_{j} p_{i} q_{j / i} \log e_{i j}} \leqq{ }_{\alpha} D_{G}^{*} \tag{4.3}
\end{equation*}
$$

or

$$
2^{\Sigma_{i} \Sigma_{j} p_{i} q_{j / i} \log \rho_{i j}} \leqq{ }_{\alpha} D_{G}^{*} / C,
$$

which by definition is $R\left({ }_{\alpha} D_{G}^{*} / C\right)$.
Lemma 2. Let p_{0} be the probability of the source letter corresponding to a row with all entries 1 in the distortion matrix. Then

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right)=\left(1-p_{0}\right) \hat{R}\left(\left({ }_{o} D_{G}^{*}\right)^{1 /\left(1-p_{0}\right)}\right), \tag{4.4}
\end{equation*}
$$

where \hat{R} is defined for the distortion matrix with row of I's deleted, the source being $(1,2, \ldots, M-1)$ with input probability distribution

$$
\begin{equation*}
p^{*}=\left(\frac{p_{1}}{1-p_{0}}, \frac{p_{2}}{1-p_{0}}, \ldots, \frac{p_{M-1}}{1-p_{0}}\right) \tag{4.5}
\end{equation*}
$$

Proof. The geometric distortion ${ }_{\alpha} D_{G}$ is not affected by omitting the distortion corresponding to the reproduction of source letter O . Thus to minimize $I(X ; Y)$ we must choose $q_{j / i}$ so that $I\left(x_{0}, Y\right)=0$. With this choice

$$
\begin{aligned}
R\left({ }_{\alpha} D_{G}^{*}\right) & =\min I(X ; Y)= \\
& =\min \left[p_{0} I\left(x_{0} ; Y\right)+\sum_{i=1}^{M-1} p_{i} I\left(x_{i} ; Y\right)\right]= \\
& =\min \left[\left(1-p_{0}\right) \sum_{i=1}^{M-1} \frac{p_{i}}{1-p_{0}} I\left(x_{i} ; Y\right)\right]
\end{aligned}
$$

The constraint is

$$
\sum_{i=0}^{M-1} \sum_{j} p_{i} q_{j / i} \log \varrho_{i j}=\log _{\alpha} D_{G}^{*}
$$

But

$$
\sum_{j} q_{j / 0} \log \varrho_{0 j}=0
$$

Therefore,

$$
\sum_{i=1}^{M-1} \sum_{j} \frac{p_{i}}{1-p_{0}} q_{j / i} \log \varrho_{i j}=\frac{1}{1-p_{0}} \log _{\alpha} D_{G}^{*}=\log \left({ }_{\alpha} D_{G}^{*}\right)^{1 /\left(1-p_{0}\right)}
$$

So by the definition of $R\left({ }_{\alpha} D_{G}^{*}\right)$, we obtain the desired result.

Theorem 4.1. Under symmetric measure of distortion
(4.6) $\quad R\left({ }_{\alpha} D_{G}^{*}\right)=\left(1-\sigma_{K-1}\right)\left[H_{M-K+1}(X)-\hat{H}\left(\Delta_{K-1}\right)-\Delta_{K-1} \log (M-K)\right]$
for

$$
{ }_{\alpha} D_{G}^{*(K-1)}<{ }_{\alpha} D_{G}^{*} \leqq{ }_{\alpha} D_{G}^{*(K)}, \quad \text { for } 2 \leqq K<M+1,
$$

where

$$
\sigma_{K}=\sum_{i=0}^{K-1} p_{i}, \quad \text { for } \quad K \geqq 1 ; \quad \sigma_{0} \equiv 0
$$

$$
\begin{equation*}
{ }_{\alpha} D_{G}^{*(K)}=\beta^{\sigma_{K-1}}\left[\alpha \log \alpha+(\beta \log \beta-\alpha \log \alpha)(M-K) \frac{p_{K-1}}{1-\sigma_{K-1}}\right]^{1-\sigma_{K-1}} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{gather*}
\Delta_{K}=\left\{\frac{\left(\frac{\alpha_{G}^{*}}{\beta^{\sigma_{K}}}\right)^{1 /\left(1-\sigma_{K}\right)}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right\}, \tag{4.8}\\
\hat{H}\left(\Delta_{K}\right)=-\Delta_{K} \log \Delta_{K}-\left(1-\Delta_{K}\right) \log \left(1-\Delta_{K}\right) ;
\end{gather*}
$$

also $H_{M-K}(X)$ is the entropy of the source $\left(p_{K} /\left(1-\sigma_{K}\right), \ldots, p_{M-1} /\left(1-\sigma_{K}\right)\right.$, provided that $p_{0} \leqq p_{1} \leqq \ldots \leqq p_{M-1}$.

Proof. We have indicated in Theorem 2.1 that the set $\left\{q_{j / i}\right\}$ giving $R\left({ }_{a} D_{G}^{*}\right)$ is given by

$$
q_{j / i}=q_{j} \mu_{i} Q_{i j}^{v_{i j} D * G} \text { for all } i \text { and } j,
$$

where q_{j} 's satisfy the constraint

$$
\begin{equation*}
\mu_{i} \sum_{j} q_{j} \varrho_{i j}^{v \cdot i} D *_{G}=1 \quad \text { for all } i . \tag{4.9}
\end{equation*}
$$

For symmetric measure of distortion, it has been shown in [6] that

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right) \geqq H(X)-\hat{H}(\Delta)-\Delta \log (M-1), \tag{4.10}
\end{equation*}
$$

where $H(X)$ is the source entropy,

$$
\Delta=\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}
$$

and

$$
\hat{H}(\Delta)=-\Delta \log \Delta-(1-\Delta) \log (1-\Delta)
$$

with equality in (4.10) if

$$
\begin{equation*}
{ }_{\alpha} D_{G}^{*} \leqq \alpha \log \alpha+(\beta \log \beta-\alpha \log \alpha)(M-1) p_{0}, \tag{4.11}
\end{equation*}
$$

p_{0} is the minimum input probability and q_{j} in (4.9) under this measure is given by

$$
\begin{equation*}
q_{j}=\frac{p_{j}\left[\beta^{\lambda \beta}+(M-1) a^{\lambda \alpha}\right]-\alpha^{\lambda \alpha}}{\beta^{\lambda \beta}-\alpha^{\lambda \alpha}} . \tag{4.12}
\end{equation*}
$$

All q_{j} 's will be non-negative if

$$
\begin{equation*}
p_{j} \geqq \frac{1}{\beta^{\lambda \beta} \alpha^{-\lambda \alpha}+(M-1)} . \tag{4.13}
\end{equation*}
$$

Denote

$$
\begin{equation*}
{ }_{\alpha} D_{G}^{*}=\alpha \log \alpha+(\beta \log \beta-\alpha \log \alpha)(M-1) p_{0}={ }_{\alpha} D_{G}^{*(1)} . \tag{4.14}
\end{equation*}
$$

Then for ${ }_{\alpha} D_{G}^{*}>{ }_{\alpha} D_{G}^{*(1)}$ [3], output zero will never be used and we can therefore remove it from the output alphabet and delete the corresponding column from the distortion matrix without affecting $R\left({ }_{a} D_{G}^{*}\right)$. Thus for ${ }_{\alpha} D_{G}^{*}>{ }_{\alpha} D_{G}^{*(1)}$ we have $M \times$ $\times(M-1)$ distortion matrix $\left\{\varrho_{i j}\right\}$ with all β 's in the first row. Dividing the first row by β and using Lemma 1 , we have

$$
\begin{equation*}
R\left({ }_{\alpha} D_{G}^{*}\right)=R^{(1)}\left({ }_{\alpha} D_{G}^{*} / \beta^{p_{0}}\right), \tag{4.15}
\end{equation*}
$$

where $R^{(1)}$ corresponds to the matrix

$$
\left\{\varrho_{i j}^{(1)}\right\}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{4.16}\\
\alpha & \beta & \ldots & \beta \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\beta & \beta & \ldots & \alpha
\end{array}\right) .
$$

Using Lemma 2, we get

$$
\begin{equation*}
R^{(1)}\left({ }_{\alpha} D_{G}^{*}\right)=\left(1-p_{0}\right) R^{(2)}\left(\left({ }_{\alpha} D_{G}^{*}\right)^{1 /\left(1-p_{0}\right)}\right) . \tag{4.17}
\end{equation*}
$$

From (4.15) and (4.17), we have

$$
\begin{equation*}
\left.R\left({ }_{\alpha} D_{G}^{*}\right)=\left(1-p_{0}\right) R^{(2)}\left({ }_{\alpha} D_{G}^{*} / \beta^{p_{0}}\right)^{1 /\left(1-p_{0}\right)}\right) \tag{4.18}
\end{equation*}
$$

for ${ }_{\alpha} D_{G}^{*}>{ }_{\alpha} D_{G}^{*(1)}$ and $R^{(2)}$ corresponds to the $(M-1) \times(M-1)$ matrix and the source

$$
p^{* *}=\left(\frac{p_{1}}{1-p_{0}}, \frac{p_{2}}{1-p_{0}}, \ldots, \frac{p_{M-1}}{1-p_{0}}\right)
$$

A lower bound of $R^{2}\left({ }_{\alpha} D_{G}^{*}\right)$ can be obtained similarly which is valid for

$$
{ }_{\alpha} D_{G}^{*} \leqq{ }_{\alpha} \log \alpha+(\beta \log \beta-\alpha \log \alpha)(M-2) \frac{p_{1}}{1-p_{0}},
$$

where p_{1} is the second lowest probability. Thus the second break point occurs at ${ }_{\alpha} D_{G}^{*(2)}$, where

$$
\left({ }_{\alpha} D_{G}^{*(2)} / \beta^{p_{0}}\right)^{1 /\left(1-p_{0}\right)}=\alpha \log \alpha+(\beta \log \beta-\alpha \log \alpha)(M-2) \frac{p_{1}}{1-p_{0}} .
$$

Hence

$$
R\left({ }_{\alpha} D_{G}^{*}\right)=H(X)-\hat{H}\left(\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right)-\left(\frac{{ }_{\alpha} D_{G}^{*}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha)}\right) \log (M-1)
$$

for

$$
{ }_{\alpha} D_{G}^{*} \leqq \alpha \log \alpha+(\beta \log \beta-\alpha \log \alpha)(M-1) p_{0}
$$

and

$$
\begin{aligned}
R\left({ }_{\alpha} D_{G}^{*}\right)= & \left(1-p_{0}\right)\left[H_{M-1}(X)-\hat{H}\left\{\frac{\left({ }_{\alpha} D_{G}^{*} / \beta^{p_{0}}\right)^{1 /\left(1-p_{0}\right)}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right\}-\right. \\
& \left.-\left\{\frac{\left({ }_{\alpha} D_{G}^{*} / \beta^{p_{0}}\right)^{1 /\left(1-p_{0}\right)}-\alpha \log \alpha}{\beta \log \beta-\alpha \log \alpha}\right\} \log (M-2)\right]
\end{aligned}
$$

for

$$
{ }_{\alpha} D_{G}^{*(1)}<{ }_{\alpha} D_{G}^{*} \leqq{ }_{\alpha} D_{G}^{*(2)}
$$

where

$$
H_{M-1}(X)=-\sum_{i=1}^{M-1} \frac{p_{i}}{1-p_{0}} \log \frac{p_{i}}{1-p_{0}} .
$$

Continuing this way, we get the desired result.

Aknowledgement. We express our sincere thanks to Dr. B. D. Sharma, Reader in the Faculty of Mathematics, Delhi University for the help and guidance in the preparation of this paper and to the referees of this paper for his helpful comments.
(Received January 31, 1973.)

REFERENCES

[1] T. Berger: Rate Distortion Theory. Prentice Hall, N. J., 1971.
[2] R. G. Callager: Information Theory and Reliable Communication, Wiley, N. Y. 1968
[3] J. T. Pinkston: An Application of Rate Distortion Theory to a Converse to the Coding Theorem. IEEE Trans. Information Theory IT-15 (1969), 56-61.
[4] C. E. Shannon: Coding Theorems for a discrete source with a fidelity criterion. Tn: Information and Decision Processes (Ed. R. E. Machol). McGraw Hill, N. Y. 1960.
[5] B. D. Sharma, J. Mitter, Y. D. Mathur: Geometric Measure of Distortion, Statistica. XXXIII (1973) 4, 589-597 (Bologna).
[6] B. D. Sharma, Y. D. Mathur, J. Mitter: Bounds on the Rate-distortion function for geometric measure of distortion. Revue Francaise d'Automatique, Informatique et Recherche Operationnelle (1973), R-2, 29-38.
Y. D. Mathur, J. Mitter; Department of Mathematics, University of Delhi, Delhi-7. India.

