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KYBERNETIKA CISLO 5, ROCNIK 6/1970

Simple Automata

GABRIEL THIERRIN

In a recent article Barnes [1] introduced the notion of full subautomaton. We show that a subset
of the set of states of an automaton & is the set of states of a full subautomaton of « if and only if
itis a class of a congruence of .. An automaton with only trivial subautomata is called simple. Every
minimal full subautomaton of an automaton is a simple automaton. To every maximal congruence
of an automaton is associated a simple automaton. Some characteristic properties of an automaton
are given in this paper. For example, an automaton is simple if and only if it has only trivial
congruences. If the group of automorphisms of a simple automaton has more than one element,
then the automaton is a permutation automaton and the order of the group is a prime number
which is equal to the' number of states of the automaton.

DEFINITIONS AND PRELIMINARY RESULTS

Definition 1. An automaton is a triple o = (S, I, M) where

(1) S is a nonempty finite set (the set of states);

(2) I is a monoid, that is a semigroup possessing a unit element e (the monoid
of inputs);

(3) M is a function (the next state function) mapping S x I into S such that

M(M(s, x) y) = M(s, xy) and M(s, e} =s
forall x, yelI and se S.
Definition 2. Let & = (S, 1, M) be an automaton. A subautomaton of the auto-
maton o is a triple &' = (§’,I', M') where

(1) S is a nonempty subset of S;

(2) I' is a submonoid of I such that ee I';

(3) for all se 5’ and all x eI, we have M(s, x) € §';
(4) M’ is the restriction of M to S’ x I".
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Definition 3. Let o = (S, I, M) be an automaton. A subautomaton # = (', 1I', M)
with the property that if x eI and M(s, x) € S’ for at least one s€ S’ then xel’,
is called a full subautomaton (Barnes [1]).

Definition 4. Let of = (S, I, M) be an automaton. Every equivalence relation
R on S, such that s = ¢(R) implies that M(s, x) = M(¢, x) for all x €1, is called
a congruence of .

Let S be the set of all classes of a congruence R of the automaton &/ = (S, I, M).
For every 5 e 5 (5 being the class of s € S) and for every x 1, let us define M(5, x) =
= 1\7(5-,;) We obtain then an automaton &/ = (5, I, M) which is called the quotient
automaton of o/ by R. We write & = #|R. .

Let H be a subset of the set of states S of the automaton o/ = (S, I, M). For every
seS,let H:s = {x|xel, M(s,x) e H}. We define s = ((Ry) if and only if H : s =
= H :t. We see easily that Ry, is a congruence of /. If R is a congruence of &/ and
if H is a class of R, then H is also a class of Ry and R € Ry, that is s = t(R) implies
that s = 1(Ry).

Proposition 1. 4 nonempty subset H of S is a class of a congruence of the auto-
maton o/ = (S,1, M) if and only if M(H,x) n H % @ implies that M(H, x) < H,
where M(H, x) = {M(h, x) | he H}.

Proof. It is obvious that the condition is necessary. In order to show that it is
sufficient, we shall prove that H is a class of the congruence Ry. Let s, s, € H and
xeH :sy. Then M(s,, x)e Hand M(H, x) n H # 0. Hence M(H,x) < H,xe H : s,
and H :s; < H :s,. By symmetry, we have H :s, & H :s.. Therefore H :s; =
= H :s,and s, = 5,(Ry). Let s; = ((Ry). Then, fromee H :s,and H s, = H 11,
it follows that ¢ € H. Therefore H is a class of Ry,.

Proposition 2. Let ./ = (8,1, M) be an automaton. A nonempty subset S’ of
S is the set of states of a full subautomaton o’ = (S',I', M’} of « if and only if S’
is a class of a congruence R of .

Proof. Let.#’ = (8,1, M') be a full subautomaton of o7 and let M(S', x) A S’ +
% . Then there exists se S’ such that M(s, x) e S’ This implies that x e I and
M(S’, x) =S'. Hence, by Proposition 1, S’ is a class of a congruence of .&/.

Let S’ be a class of a congruence R of . LetI' = {x | xel, M(S’, x) < §’}. This
set I' is a submonoid of I and e e I'. The automaton &’ = (S, I, M) is a full sub-
automaton of . Indeed, if M(s, x)e §" with se §’, then M(S’, x) 0 S’ * § and,
by Proposition 1, M(S’, x) € S'. Therefore xe['.

MINIMAL FULL SUBAUTOMATA

If E is a finite set, the number of elements in E is denoted by |E1



Definition 5. A full subautomaton &/’ = (S',I', M’) of the automaton o =
= (S, 1, M) is said to be minimal if

(1) Is] > 1,

(2) for every full subautomaton A" = (S”, I", M") of o/ such that " < §', we have
S =1

Every automaton .o/ such that [SI > | contains at least one minimal full subauto-
maton.

Proposition 3. A full subautomaton o' = (S',I', M') with |S’| > 1 of the auto-
maton o = (8,1, M) is minimal if and only if for every nonempty subset T of
S', T # S’ the equality T: s, = T :5, with sy, s, € S’ implies that s, = s,.

Proof. The condition is necessary. Let T :s; = T :s, with s;,s,€S’ and let
us suppose that s; % 5,. We have s; = s,(R;). and by Proposition 2, S’ is a class
of a congruence R of «/. The intersection Ry = Ry n R is a congruence of & and
we have s; = s,(R,). Let S, be the class of the congruence R, containing s, and s,.
By Proposition 2, there exists a full subautomaton s/, = (Sy, I,, M,) of & such
that Sy is the set of states of «7,. Since |S;| > 1and S, & S, we have because of the
minimality of &', S; = S"and T :s; = T :s;for all 5; € S".Since T #+ S§’, there exists
se S’ such that s¢ T. If te T, then ee T:t = T :s and M(s,e) = se T which is
a contradiction.

The condition is sufficient. Let &, = (S, I,, M) be a full subautomaton of =/
such that §;, = S" and let us suppose that |S,| > 1. Then S, is a class of the congruen-
ce Rg,. Hence S, :s; = S, :s, for every pair s, s, € S;, which is a contradiction.

Proposition 4. Let o/ = (S, I, M) be an automaton and let S’ be a subset of S
such that IS’] > 1. The set S" is the set of states of a minimal full subautomaton
of o if and only if

(1) There exists sy, s, €S’, sy % s,, such that S’ :s; = §' :s,.
(2) For every nonempty subset Tof S', T + S, the equality T:s;, = T : s, With
Sy 8;€ 8, implies that s; = 5.

Proof. The condition is necessary. This follows immediately from Proposition 2
and 3.

The condition is sufficient. We have only to show that S’ is a class of the congruence
Rg.. Let Sy be the class of Rg. containing s,. Then s, € S; and it is obvious that S; <
< S.IfS, & S',then Sy :s; = S, : 5, implies that s, = s,, which is a contradiction.
Hence S, = S'. ’

Proposition 5. Let o' = (S’, I', M’) be a minimal full subautomaton of the auto-
maton o = (8,1, M). For every s' € S', we have either M'(s', I') = S' or |M'(s',1')| =
= 1.
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Proof. Let M'(s',I'} # §'. Then &” = (S',I’,M"), with §" = M'(s',I'} and
I” = I', is a full subautomaton of <. Since S" < S’ and &/’ is minimal, we have
[$"] = |M(s, 1) = L.

Let us remark that the condition iM’(S',I’)| = 1 is equivalent to the condition
M(s',I') = s/, since eel” and M(s, e) = 5.

SIMPLE AUTOMATA

Definition 6. An automaton . = (S, 1, M) is called simple if for every full sub-
automaton &' = (S, I', M") of o we have S’ = Sor [§'] = 1.

In other words, an automaton & is simple if the only full subautomata of < are
the subautomaton & = (S,I, M) and the full subautomata with only one state.

Every automaton &/ = (S, 1, M) such that |S| < 2is simple.

Definition 7. A nonempty subset H of the set of states S of the automaton & =
= (8,1, M) is called disjunctive if the equality H :s; = H :s; with s, 5; € S implies
that s; = s;.

Proposition 6. Let & = (S, 1, M) be an automaton. Then the following three
conditions are equivalent:

(1) o is simple.

(2) Every congruence of o/ is trivial, that is R is the equality or R has only one
class.

(3) Every nonempty subset H of S, H = S, is disjunctive.

Proof. (1) implies (2). This follows immediately from Proposition 2.

(2) implies (3). Let us supposc that there exists a nonempty subset H of S such
that H + S and H : s; = H : s; with s;  s;. Then the congruence Ry is not the
equality. Let ue Hand v¢ H. Since ee H:uand e¢ H :v, we have H:u % H :v.
Therefore, S is not a class of Ry and Ry is a non trivial congruence of &, which is
a contradiction.

(3) implies (1). Let A’ =(S',I', M’) be a full subautomaton of &/ such that
S| > 1. Since every non empty subset H of S, H = 0, is disjunctive, then o is, by
Proposition 3, a minimal full subautomaton of &. Therefore §' = § and & is simple.

Definition 8. A congruence R of the automaton & = (S, I, M) is called maximal
if:

(1) Sis not a class of R.

(2) If R’ is a congruence of & such that R < R’, then S is a class of R".

Proposition 7. Let o = (S, I, M) be an automaton. Then

(1) Every minimal full subautomaton s’ = (8',1', M) of & is a simple auto-
maton. :



(2) If R is a maximal congruence of o, the quotient automaton M/R is a simple
automaton. :

Proof. (I) Let &" = (S",1", M") be a full subautomaton of &/'. It is obvious
that «/” is also a full subautomaton of /. Since &' is minimal, we have S”" = §’
or S| = 1 and &' is simple.

(2) It is obvious that every congruence of «//R is trivial. Hence, by Proposition 6,
/R is simple.

Definition 9. An automaton o = (S,1, M) is called strongly connected if for
any pair of states s, s; € S, there exists an x € I such that M(s;, x) = s;.

Let us remark that every full subautomaton of a strongly connected automaton is
also strongly connected.

Definition 10. An automaton & = (S, 1, M) is called pseudo-strongly connected if

(1) Is| > 1.
(2) S has a null state so, that is a state s, such that M(so, x) = s, for all xel.
(3) For any pair s;,5;€ S, s5; + 5o, there exists an x €I such that M(s;, x) = s;.

Proposition 8. Every simple automaton & = (S,1, M) such that |S|>2 is
either strongly connected or pseudo-strongly connected.

Proof. Let us suppose that 7 is not strongly connected. Then there exists at least
one state s, such that M(sy,I) + S. The subautomaton &' = (S’,I', M) where
S’ = M(so,I) and I' = I, is a full subautomaton of /. Since S’ + S, we have
|S'] = 1 and M(so, ) = so. Hence s, is a null state of S. If s; is a null state of S,
56 % So, then 7" = (S", 1", M"), where S” = {s,, s5} and I” = I, is a full subauto-
maton of /. But this is impossible, since |S[ > 2 and &/ is simple. Therefore for
every state s = so, we have M(s, I) = S and & is pseudo-strongly connected.

Let S be a nonempty finite set and let I be a semigroup of mappings of S into S
acting on the right of S, that is for every se S and every ael, (s)a is the image of s
by the mapping a. If the identity mapping belongs to I, then the triple o7 = (S, I, M)
where M(s, a) = (s)a is an automaton. If I is the set of all mappings of S into S,
then & =.(S, I, M) is a simple automaton which is strongly connected. If |S| > 1,
if s is a fixed clement of S and if I is the set of all mappings of S into S such that
(so) @ = so, then o = (S,1, M) is a simple automaton which is pseudo-strongly
connected and which has null state s,.

Remark. The automaton o = (S = {1,2},1 = {a}, M(l,a)= M(2,a) =1)
shows that Proposition 8 is false if |S| = 2.~
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AUTOMORPHISMS OF A SIMPLE AUTOMATON

Definition 11. Let o/ = (S,1, M) be an automaton and let % be a one-to-one
mapping of S onto S. The mapping « is an automorphism of s if a(M(s, x)) =
= M(a(s), x)forallse Sand x e 1.

The set G(.szl) of all automorphisms of an automaton forms a group. If & is strongly
connected and if & is an automorphism such that a(s,) = s; for some s;€ S then o
is the identity mapping (Fleck [2]). This implies that the order of G(a7) divides the
number of states in S (Weeg [4]).

Proposition 9. Let o = (S, I, M) be a simple automaton and G(o/) be the group
of automorphisms of #.If |G(of)| > 1, then |G(s7)| is a prime number and |G(sZ)| =
= |S|. Furthermore, o is a permutation automaton, that is the equality M(s;, a) =
= M(s;, a) implies that s; = s,

Proof. From |G(&)| > 1, it follows that |S| > 1. First, we shall consider the
case where |S| = 2. Obviously |G(s#)| = |S| = 2. Let us suppose that = is not
a permutation automaton. Then there exists s, € S and a € I such that M(S, a) = s,.
Let S = {sq, 5,}. Since |G(/)| = 2, there exists « € G(«7) such that o(s;) = s, and
o(s;) = so. Hence s, = M(so, a) = M(a(s,), a) = e(M(sy, a)) = a(s;) = s;, which
is a contradiction. '

Let us suppose now that |S| > 2. Let K be a subgroup of G(«) and, for every
se S, let K(s) = {ofs)| ae K}. The triple &' = (S',1', M) where S’ = K(s) and
I' = {x|xel, M(S', x) < S’} is a full subautomaton of &. Indeed, let M(z, x) e S’
with te §'. There exists e K such that = os) and M(t, x) = M(x(s), x)
= o M(s, x)). Since a{M(s, x)) € §', there exists € K such that a(M(s, x)) = (s
Since K is a group, we have M(s,x) = o 'f(s). If §eK, then M(5(s), x)
= §(M(s, x)) = su~" B(s) e K(s) = S'. Therefore M(S',x) < S’ and xe I’

Since the automaton « is simple, for every se S and for every subgroup K of
G(s7) we have either [K(s)| = 1 or K(s) = S.

Let s be a statc of  such that M(s,I) = S. Since |S| > 2, such a state exists by
Proposition 8. Let a e G(«/) such that ofs) = 5. Then « is the identity mapping.
Indeed, for every ¢ € S there exists a € I such that M(s, a) = tand a(t) = a(M(s, a)) =
= M(o(s), a) = M(s,a) = 1. Let «, Be G(s£), « + B. Then «s) + B(s). Indeed, if
afs) = B(s), then o™ f(s) = s and o~ § is the identity mapping. Hence « = § which
is a contradiction. Let K be a subgroup of G(«) such that |[K| > 1. Then |K(s)| =
=S| = |K|. Therefore |G(4)| = |S| and G(A) has only trivial subgroups. If follows
then that the order of G(4) is a prime number.

Finally, let us show that 4 is a permutation automaton. Let us suppose the conlrary.
Then thereexist s, £ € S, s % £,and a € I such that M(s, a) = M(t, a). By Proposition 8,
for at least one of the states s and ¢, let s for example, we have M(s, I) = S and then
G(s#) (s) = S. Therefore, there exists an automorphism o« such that «(s) = ¢ and
M(t, a) = M(x(s), a) = a(M(s, a)) = «(M(t, a)). Let u = M(t, a). There exists an




automorphism f# such that f(s) = u. Then we have f(s) = u = a(u) = af(s). Since 349
M(s, I) = S, this implies that = af. Therefore, o is the identity mapping and 5 = 1,
which is a contradiction.

Examples. Let & = (S = {1, 2, 3}, 1= {a, b, c}*, M) where {a, b, ('}*' is the free monoid
generated by the set {a, b, c} and where M is defined by the following table:

[ b |
|

a
1 1
2 2
3 1

W W
w NN

This automaton & is simple and its group of automorphisms has only one element.
Let & = (S= {I, 2, 3}, I= {a}, M) where M is defined by

| a

W
L ]

This automaton & is simple and its group of automorphisms is the group of order 3.
SIMPLE SEQUENTIAL MACHINES

Definition 12. A sequential machine is a quintuple # = (S, 1,0, M, /1) where

(1) Sis a finite nonempty set of states;

(2) Iis a finite nonempty set of inputs;

(3) M is a function mapping S x I into S (the next state function);
(4) O is a finite nonempty set of outputs;

(5) 4is a function mapping S x [ into O (the output function).

Let I* be the set of all finite sequences of inputs, including the null sequence A.
With the operation of concatenation, I* is a monoid and the triple & = (S, 1%, M)
becomes an automaton with the extension to I* of the next state function M. Every
congruence of the automaton 7 is said to be a congruence of the sequential machine
. The congruences of a sequential machine .4 are an important tool in the theory
of serial or parallel decompositions of ./ (see Hartmanis and Stearns [3]).

A sequential machine .# = (S, I, 0, M, J) is said to be simple if the automaton
o = (S, I*, M) is simple.

Proposition 10. A sequential machine 4 is simple if and only if .4 has no non-
trivial serial decompositions of its state behavior.

Proof. Following Hartmanis and Stearns [3], a sequential machine .# has a non-
trivial serial decomposition of its state behavior if and only if there exists a nontrivial
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congruence of .#. The proposition is then an immediate consequence of this result
and Proposition 6.
(Received June 23, 1969.)
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VYTAH

Jednoduché automaty

GABRIEL THIERRIN

Barnes zavedl neddvno ve své prdci [ 1] pojem tipiného podautomatu. V této praci
bude ukdzdno, Ze podmnoZina mnoZiny stavil automatu & je mnoZinou stavl vipl-
ného podautomatu & prévé tehdy, kdyZ je tfidou né&jaké kongruence na /. Jedno-
duchy automat je automat, ktery md pouze trividlni podautomaty. Ke kazdé maxi-
madlni kongruenci na automatu je asociovdn jednoduchy automat. Nékteré charak-
teristické vlastnosti jednoduchych automati jsou popsdny v této prdci. Na pfiklad,
automat je jednoduchy prdvé tehdy, kdyz md jen trividlni kongruence. Jestlize grupa
automorfismt jednoduchého automatu m4 vice nez jeden prvek, pak tento automat

je permutaéni automat a fdd grupy je prvodislo, které je rovno poctu stavii automatu.

Professor Gabriel Thierrin, Département d’informatique, Université de Montréal, Case Postale
6128, Montréal 101, Canada.
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