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K Y B E R N E T I K A — V O L U M E 15 (1979), N U M B E R 3 

An Intensional Approach to Questions 

PAVEL MATERNA 

Dedicated to Prof. Dr. Otakar Zich, DrSc. at the occassion of his 70th birthday 

Questions are shown to be either intensions (the values of which in the actual world one 
wants to know), or "constructions" that construct objects, or "meta-constructions" that construct 
constructions. 

The concepts of presuppositions (of questions), of redundant and of non-redundant answers 
to questions, of indirect and of partial answers, as well as some other concepts are defined. 
An application to defining the concept of a mass-problem is made in the Appendix. 

INTRODUCTION 

Making the present proposals of how to conceive questions I do not intend to make 
simultaneously confrontations with various existing theories of questions. Some 
remarks only: 

There may be various approaches to questions depending on what aspect of them 
we are interested in. Thus a psychological or a phenomenological theory of questions 
may be built up or the informational aspect may be stressed. Also, what is called 
"logical theory of questions" or "logic of questions" ([2], [5], N. Belnap, etc.) 
is not a homogeneous discipline; finally, the linguistic approaches include Chomskian 
ideas and, lately, the Montaguian ideas of applying logic to linguistics (see, e.g., 
[3]), as well as the traditional linguistic analyses. 

I shall focus my attention on the logico-semantical analysis of questions. Similarly 
as Hausser in [3] I reject the "indirect approach to questions", although he compa­
rison between direct and indirect questions is important and can be made within 
my approach. Various classifications of questions as known from the literature (see, 
e.g., [5]) will be also possible but they will not be primarily based on syntactical 
considerations. My starting point will not be an artificial formal language; it will 
rather be an attempt to make precise some fundamental semantical intuitions. 



All the semantical theories of questions known to me share at least one rather 
principal shortage: they are unable to distinguish between empirical and analytical 
questions. The semantics of most of them is based on extensionalist presuppositions. 
Hausser's attempt to take intensions into considerations is based on an extension 
of Montague's system. My conception is, essentially, an application of Tichy's system 
([11], [12], [14]) — here: the T-system — which I take to be most consequent 
intensionalist system (see also [6], [7]). 

In Ch. I. I briefly reproduce the main principles of the T-system, as this system is 
contained in the first chapters of [12], which is as yet not accessible. In Ch. II. 
I introduce the concepts which may be to my opinion a good starting point for build­
ing up a rather universal theory of questions. The author considers Ch. HI. ("Com­
ments") to be especially important. Finally, Appendix extends the author's concep­
tion to defining the mass problems. 

CHAPTER I. THE T-SYSTEM 

1. Types 

The logical foundations of the T-system consist in a modified version of Church's 
simple theory of types (see [1]). Because of this modification I shall reproduce the 
theory of types as it is formulated in the T-system. Besides some unessential details 
(like notational changes) no idea of my own is contained in this chapter. 

Def 1 A base is a family of mutually disjoint non-empty collections. 

Def 2 Let B be a base. Then 

i) any member of B is a type over B; 

ii) if;/, <*t, . . . , £„ are types over B, then t^u ..., {„) is a type over B, where 
rtf£i, ••-,%„) is the collection of functions which associate with every 
n-tuple of members of f.. . . . , £„ at most one member of rj. 

iii) The types over B are just those introduced in i), ii). 

Thus a type over B always is a non-empty collection: either one of the members 
of B, or a collection of functions. Over any base there arises an infinite hierarchy 
of types. 

Where there is no risk of misunderstanding we shall omit the phrase "over JS" 
assuming a base to be given in every such case. 

Def 3 Any member of a type t] is an object of the type rj, or, briefly, an rj-object. 

Example. Let B consist of the collections {A, 8, C], say a, {T,F}, say, /?, the collection 
of natural numbers {0, 1,2,...}, say, y. The type u.(P) consists of 42 = 16 functions 



fu . . . , f16. One of these a(/?)-objects, say, f4, is 

T A 

F -

where " - " means that the function in question is undefined at F. The type y(/?) 
consists of denumerably many functions, one of which is the y(/?)-object 

7 1 

F 541 . 

The type a(/3) (/?, /?, a) consists of 1712 functions one of which is the a(/?) (/?, /?, a)-
object 

TTA f15 

7 7 8 f15 

TTC f, 

TFA -

TFB f3 

TFC f2 

FT A -

FTB f, 

FTC fy 

FFA U 

FFB -

FFC -

2. Constructions 

We assume that for every type n (over some base) there are infinitely many abstract 
entities available which represent any //-object. Such entities we call variables, or, 
for the given type rj, ^variables. An f/-object is an instance of a variable of type tj 
(of an Tj-variable). There are, furthermore, infinitely many total functions called 
valuations that associate with each variable of a type exactly one object of the same 
type. Thus if a, /?, y are as in the above example, f4 is an instance of an a(/f)-variable, 
say, x3, as well as of infinitely many further variables of the type a(fi). We can say 
also that f4 is a y-instance of x3 for every valuation v such that associates the function 
f4 with the variable x3. 

Let us observe now the ways in which some object can be given. The most simple 
way is that one where the object is given directly. 



164 In our example, A is given directly as an oc-object, as well as 

T A 

F -

is given directly as an oc(/J)-object. 

Secondly, an object may be given by means of a valuation as an instance of a va­
riable. 

Thirdly, an object may be given indirectly, by means of some operations. In this 
way, e.g., 5 is given as the sum of 2 and 3 or as \J(2S). 

Instead of saying that an object is given in such and such way one can talk about 
kinds of a construction of an object. Thus we may say that A constructs itself, that for 
such valuations v that assign f4 to x u , xxx v-constructs f4, that 2 + 3 constructs 5, 
that 2 + x v-constructs 5 for all the valuations v such that they assign 3 to x, etc. 
A special case arises when no object is given, as e.g., when a construction 5 : 0 is 
given: we say that 5 : 0 is an improper construction. Similarly, 5 : x is said to be 
v-improper for all the valuations v that assign 0 to x. 

The foregoing intuitions can be summarized and generalized in the following 
definition: 

Def 4 Let n, £u ...,%„ be types (over a base). 

i) Any fj-object is an n-construction. Any ^-variable is an n-construction. 
Let A be an ^-object. Then A Y-constructs A for any valuation v (= A con­
structs A). Let x be an ^/-variable. Then x v-constructs the v-instance of x. 

ii) Let A, Bx, .. .,B„ben(£x, ..., £„) —, tj1, . . . , ^-constructions, respectively. 
Then A(BX, . . . , B„) is an n-construction called application of A to Bx, . . . 
. . . , B„.If, for a valuation v, at least one of A, Bx, . . . , 8„ is v-improper, 
then A(BX, ...,B„) is v-improper. Otherwise, let A, Bu . . . ,B„ be the 
objects v-constructed by A, B1( . . . , B„, respectively; if A is not defined at 
<Bj, . . . , 8„>, then A(BX, ..., B„) is v-improper. In the remaining case, 
i4(Bl5 . . . , B„) v-constructs the value of-A at <81, . . . , 8„>. 

iii) Let xx, ..., x„ be £._, . . . , <!;„-variables, respectively; if A is an n-construc­
tion, then Xxx, ..., x„(A) is an n(i;x, ..., ^-construction called xx, ... 
..., x„-abstraction of A. 

Let v(x1; . . . , x„/X1, . . . , X„) be the valuation that differs from the valua­
tion v at most by assigning the objects Xx, . . . , X„ to the variables xx, . . . 
. . . , x„, respectively. Then the function Y v-constructed by Xxx, ..., x„(A) 
is the following function: where XX,...,X„ are ^ - , . . . , ^-objects, 
respectively, if A is v(x1, . . . , x„jXu ..., X„)-improper, Y is undefined at 
<X., . . . , X„>. Otherwise, the value of Y at <X ls . . . , Xa> is the object 
v(x1; . . . , x„/X1; . . . , Z„)-constructed by A. 



iv) The constructions are just n-constructions for some type n, as defined 165 
in i) — iii). 

Convention. Let objects and variables be called atoms. In the following text 
we shall denote 

variables by a, b, c, ..., 

objects by A, B, C, . . . , 

constructions by A, B, C, .... 

Def 5 Let x be a variable, A, Bj, . . . , B„ some constructions, 

i) If A is an atom, x has free occurrence in A iff A is x. 

ii) x has free occurrence in A(BU ..., B„) wherever x has free occurrence in 
A,BU ...,B„. 

iii) x has free occurrence in Xxlt ..., x„(A) wherever x has/ree occurrence in A 
and x is not identical with any of xt, ..., x„. 

iv) Where x occurs in A, we call this occurrence bound in A iff it is not a. free 
occurrence of x in A. 

Example. Base: {A, 8}, say a, {C, D, £}, say, /?, {F, G}, say, y. Let H be the following 

«(& V) (ft /^-object: 

CC K( 

CD -

C£ K: 

D C K2 

DD K4 

D £ Kj 

EC -

ED K2 

£ £ K2 

where Kx is 

CF A 

CG A 

DF A 

DG A 

EF A 

EG A, 



K2is 

CF A 

CG A 

DF A 

DG A 

EF A 

EG 8 , 

K4is 

CF A 

CG -

DF A 

DG A 

EF 8 

EG A. 

Then H(D, D) constructs K4, H(D,D)(C,G) is v-improper for every v, H(E, C) 
is v-improper for every v, H(£, D) (£, x) v rconstructs A if v, assigns F to x, and v2-con-
structs 8, if v2 assigns G to x. 

Xx(H(x, £)) is an cc(fi, y) (/^-construction which constructs the function, say, L: 

C Kt 

D Kx 

£ K2; 

Ajc(H(x, y)) v-constructs the function, say, M: 

C -

D K4 

£ K2 

if v assigns D to y. If v' assigns £ to y, then XxH(x, y) v'-constructs L. 

Remark 1. Notice that among all the kinds of construction only application can 
be v-improper for some v. 

Remark 2. Constructions are exactly what has been defined in Def. 4. Thus what 
is meant by a construction is not the artificial expression necessary for fixing (naming) 
this construction. Analogously, by the mathematical term 5 we mean the number 
itself, not the digit in question. 



Def 6 i) C is a subconstruction of C. 

ii) If C is A(BU ..., B„), then A, Bu ..., B„ are subconstructions of C. If C 
is tac., . . . , x„(A), then A is a subconstruction of C. 

iii) If X is a subconstruction of Y and V is a subconstruction of Z, then X is 
a subconstruction of Z. 

3. Languages 

A. Intensions and Extensions 

In the T-system languages are conceived as collections of expressions that express 
constructions and denote (name) those objects that are constructed by these construc­
tions. We show now briefly the way in which the base "of a language" can be recon­
structed. 

Two members of such a base are obviously the universe (of discourse), the elements 
of which are called individuals, and the collection of truth-values, the elements of 
which are T (truth) and F (falsity). The types of these two collections are t (ior'a)and 
o (omikron), respectively. The individuals (i.e., t-objects) are "elementary objects" 
which happen to have some properties. They are given a priori (the same holds about 
each element of any member of the base in question). 

Remark. This conception of individuals might be characterized as anti-essentialistic, 
and Hintikka would call it "ontological nudism" (see [4]). As for arguments motivat­
ing this conception and showing the untenability of essentialists' view-points see [11]. 

To make the logical analysis of a language deep enough it is necessary to add to 
the above members of a base the collection of time moments, the elements of which 
might be identified with either rational or even with real numbers. Let the type 
of this collection be T. Also, it may be useful to add a collection of numbers, say, 
natural numbers. Let the type of the collection of natural numbers be v0; if the 
collection of rational numbers is added, let its type be vx. 

Such an analysis of a language which would r>e based on the collections i, o, r, v0, v., 
would be a typically extensionalistic analysis. The T-system, however, has been built 
up mainly as a tool of a consequently intensionalistic analysis of language. The 
absurd consequences of extensionalism have been guessed already by G. Frege. 
Frege's (and Church's) solution is, however, unsatisfactory. According to Frege and 
Church expressions denote individuals, classes, truth-values etc., i.e., what is called 
"extensions" whereas they express "meaning" ("Sinn") or — by Church — inten­
sions, concepts. Yet while the relation of denoting is exactly definable and has been 
explored in such fundamental semantic works like Tarski's "Wahrheitsbegriff...", 
nothing definite can be said about the relation of expressing (a meaning). Likewise 



168 the concept of intension has not been introduced clearly enough, so that Quine et alii 
could be in a sense justificated for their criticism concerning such "obscure entities" 
as intensions are often supposed to be. 

Nevertheless, the possibility of exactly defining intensions has been guessed by 
Carnap and many of his followers, lately by Hintikka, Cresswell, Montague, Kripke 
and others. Thus what can be called "possible-worlds-semantics" ("p-w-semantics") 
has come into existence. 

The T-system is also a p-w-semantics. It differs, however, by many essential features 
from the other p-w-systems. We do not intend to make here a systematic comparison 
of the T-system with other comparable systems. It will perhaps suffice when we stress 
that the T-system enables to reject Quinean criticism of intensions based on the 
criticism of "possible individuals" (there are no such things in the T-system), to use 
and exact and sophisticated logical apparatus in order to analyze languages without 
neglecting the distinction between classes and properties, truth-values and proposi­
tions etc., to extend the intensionalistic conception so as to cover all the expressions 
of a of a language (not only "modal" or "oblique" contexts), etc. 

From the above it is perhaps clear that the remaining member of a base for a lan­
guage is the collection of possible worlds, or the "logical space". The type of this 
collection is a>. 

Remark. Intuitively, the character of the possible worlds is explained in the T-system 
as follows: Any language is connected with what Tichy calls "intensional basis". 
This is a collection of elementary traits which the objects constructible over the given 
universe may have or not have. To know which is the actual distribution of these 
traits over the objects in question is the same as to be omniscient. Yet all the thinkable 
(possible) distributions constitute an a priori given collection, namely the logical 
space (of the given language, of course). What is not a priori and what, therefore, 
has to be empirically established, is just which of these distributions is the real, 
actualized one. In other words, we do not know which of the possible worlds is the 
actual one. 

One of the fundamental claims made by Tichy is that what we primarily talk about 
are intensions rather than extensions (see especially [14]); therefore, we now shall 
clarify the concept of intension. 

To start with, let us analyze a simple English sentence; 

(S) The French President is older than the American President. 

According to the traditional extensionalistic view-points, the expressions "the 
French President" and "the American President" would denote (in 1978) d'Estaing 
and Carter, respectively, and the expression "(is) older (than)" would denote a binary 
relation between individuals. It can be shown, however, that using this kind of analy­
sis one cannot take into account the obviously empirical character of (S). Indeed: 



Let R be the relation of being older: since binary relations(-in-extension) are simply 
collections of ordered pairs, the pair <d'Estaing, Carter) either necessarily belongs 
to R, or it necessarily does not belong to R. In the first case (S) will be a necessarily 
true, in the second case a necessarily false sentence. Moreover, one should suppose 
that a necessary condition of understanding (S) is to know which objects are named 
by the particular phrases contained in (S), i.e., to know which object is named by 
"the French President" etc. This natural assumption is, however, incompatible with 
the above traditional analysis, because (S) will be understood by any user of English 
independently of whether he knows that the French President is d'Estaing and the 
American President is Carter. 

Thus our analysis of (S) has to differ from the extensionalistic one at least so as 
to enable 

a) to make evident the empirical character of (S), 

b) to let the particular phrases contained in (S) name such entities that are known 
to any user of the language if he understands (S). 

Note that from b) one easily derives the requirement that (S) should name some 
other entity than a truth-value, because knowing the truth-value of (S) is not a ne­
cessary condition for understanding (S). 

To start with b), understanding, e.g., the term "the American President" is the 
same as knowing the concept of being the American President (rather than knowing 
who actually is the American President). Therefore, we now have to answer the 
following question: What sort of object is the concept of (being) the American 
President? 

Tichy's answer is sufficiently intuitive. Modifying this answer by taking into 
account the time factor we claim that the concept of the American President is 
a function that associates with any possible world a partial function that associates 
with any time moment at most one individual. 

Thus the concept of the American President associates with the actual world 
a function which associates, e.g., with all the time moments during January 1978 the 
individual J. Carter and which is at any time moment before 1776 undefined. This 
function associates with some other possible woild a function which is undefined at any 
time moment before 1830 (in such a possible world the United States of America 
came into existence not before 1830) and which associates with the time moments 
in the January 1978 the individual G. Ford. 

What is important, is that if one knows the concept (e.g., of the American President) 
one is theoretically capable to "compute" its value for the given time moment for the 
given possible word, e.g., for the world he lives in (i.e., for the actual world, or, 
in other words, dependently on which of the possible distributions of the elements 
of the intensional basis in question over the given objects is the actualized one). 

The functions of this kind will be called individual concepts and their type is - as 



170 has been verbally stated — i(r) (w). Now we can say that the phrases like "the French 
President", "the highest mountain in the world", "the discoverer of radioactivity", 
"Pegasus" etc. name individual concepts. 

Take such phrases as "(to be) red", "(to be) clever", "(to be) 170 cm tall", "(to be) 
a whale", "(to be) older than the French President" etc. A rigid extensionalist would 
say that such phrases denote classes of individuals (the class of red things, the class 
of whales etc.). A class of individuals can be identified with the function the domain 
of which is the universe and which takes as its values T or F according to whether 
the given individual does or does not belong to the class. (We do not exclude the case 
that the function is not defined at some individual.) Thus the type of any class of 
individuals is 0(1). In general, let n be some type. Then o(n) is the type of any class 
of the ^-objects. 

If our extensionalist were right in claiming that the above phrases name classes 
of individuals, it would mean that being, e.g., a whale or being red is fully determined 
by which individual is meant. Yet we have already adduced some criticism of this 
view-point. No individual is necessarily red, necessarily a whale, necessarily 170 cm 
tall etc. Individuals happen to be red, whales, 170 cm tall etc. Thus the above phrases 
cannot name classes of individuals: instead, they name properties of individuals. 

Properties of individuals (in general: of n-objects) are functions whose domain 
is the logical space and whose values are functions that associate with any time 
moment at most one class of individuals (in general: of /j-objects). Their type is, 
therefore, o(i) (T) (CO) (in general: o(r\) (T) (CO); as we shall see, it can be also o(i) (co), 
similarly as the type of individual concepts may be simply t(a>)). 

The property of, e.g., being 170 cm tall, is a function whose va'ue at the actual 
world is the function that associates with any time moment t class of those indi­
viduals which — at the moment t — are actually 170 cm tall. From this point of view 
understanding the above phrases is tantamount to knowing some criteria for deter­
mining whether an individual at the moment t has or has not the given property, 
rather than being acquainted with concrete classes of individuals. 

Since classes may be conceived of as unary relations-in-extension, nothing essen­
tially new will be said about phrases like "older", "(to be) between . . . and 
"to like more . . . than . . . " etc. They obviously do not name relations-in-extension 
between individuals (in general: between £ r , . . . , £,„- objects), the type of which is 
o(t, . . . , t) (in general: o(£u ..., £„)). They again denote functions from possible 
worlds: these functions use to be called relations-in-intension and their type is 
o(i, ..., t) (T) (CO) or o(t, . . . , t) (co) (in general: o(cj., . . . , Q (T) (CO) or o($u ..., Q . 

» ) • 
Now, what does name the whole clause (S) ? Certainly we shall not answer: 

a truth-value, as an extensionalist (including Church) would do. (By the way, most 
of the adherers of the other p-w-systems would deny this answer for some kinds of 
context only.) A semantic analysis of a sentence cannot take into account the actual 
truth-value: this would mean that one mixes up understanding with verifying. 



The object named by (S) is an example of what are called propositions. These are 
functions associating with every possible world a function which associates with any 
time moment at most one truth-value. Thus (S) denotes a function which at the 
actual world takes T at the time moments, e.g., during the January 1978, which is 
undefined at all the time moments when there is either no American or no French 
President, etc. This proposition is at the time moments during January 1978 false 
in some other possible worlds. 

Individual concepts, properties, relations-in-intension, propositions are examples 
of intensions. We now adduce a general definition: 

Def 7 Let n be a type (over some base "of a language"). Any ^(oj)-object will be 
called intension. 

(This is a harmless — in our paper — simplification of an inductive definition 
by Tichy.) 

Remark. One would probably expect that intensions should be defined as n(x) (eo)-
objects. This is, however, unnecessary: the following examples of English phrases 
reveal that there are such n(o))-objects where, for every type £, n + £(T), which one 
intuitively would like to classify as intensions: "The American President at noon 
January 2nd, 1978" (type i(co)), "to be red at four o'clock April 1st, 1967" (type 
o(i) ((a)), "The date of the beginning of the Second World War is September 1st, 
1939" (type o(co)). 

All the objects that are not intensions will be called extensions. Phrases that are 
meant as labels of some individuals (proper names, e.g., "Prague") denote directly 
those individuals. Similarly, names of numbers denote extensions. Names of classes 
("prime numbers") and of relations-in-extension (mathematical relations) denote 
extensions. Phrases naming truth-values (in a sense this concerns mathematical and 
logical theorems) name eo ipso extensions, too. Especially we can show that the 
functions known as (the denotata of) logical connectives and quantifiers are extensions. 

Take,e.g., the phrase "not" and assume that it corresponds to the logical connective 
called negation. Since negation has truth-functional character, it is clear that the 
function, say, ~ , named by the above phrase is defined as follows: 

T F 

F T 

and that its type is o(o). Similarly, the binary logical connectives have the type o(o, o). 

Remark. Since not only total functions are taken into account in the T-system, 
no third "truth-value" is needed. Such a system is, truth-functionally, equivalent 
to the Bochvarian three-valued logic. 



The objects named by the phrases like "every", "some" etc. are called quantifiers. 
The universal quantifiers, W, are objects of the types o(o(n)). They associate a class 
of the type o(n) with T, if this class contains all elements of n, and with F otherwise. 
The existential quantifiers, I", are objects of the same types, which associate a class 
of ^-objects with T, if this class is non-empty, and with F otherwise. Instead of 
IJ''(Xx(A)), Zn('kx(A)) we usually write VxA, 3xA, respectively, (x is an ^-variable.) 

B. Expressions and Constructions 

According to Frege and Church, a meaningful expression denotes an extension 
and expresses its "sense" ("meaning"), where the "sense" of the expression E is the 
"concept" of the object which is denoted by E. Since "concept" might be explicable 
as intension, one can imagine that the schema of these interrelations has the following 
form: 

E 
denotes / \ expresses 

)S \ 
object intension 

(extension) 

In the T-system this form is essentially modified: 

E 

denotes / \ expresses 
/ \ 

intension construction 

form 

constructs 

(In some cases "intension" may be substituted for by "extension" — see A. about 
names of extensions.) 

Thus if E is a sentence one gets: 

Frege-Church T-system 
sentence sentence 

denotes f ^ ^ expresses denotes ^ / \ ^ expresses 

truth-value proposition proposition an O(T) (ct>)-
construction 

On the basis of the T-system schema one can define two kinds of synonyms: 

Def 8 Two expressions E« and E2 that express constructions of the type n(£t, ..., £„), 
n 2: 1, are weakly synonymous iff E\ denotes the same object as E2. Any two 
expressions E t and E2 are strongly synonymous iff E t expresses the same 
construction as E2. 



Example. Where A, B are names of individuals A, 8, respectively, the sentence 1731 

(Sj) A is older than B 

is weakly synonymous with the sentence 

(S2) B is younger than A 

because (S,) denotes the same proposition as (S2), 
while 

V(2) 

is strongly synonymous with the expression 

the square root of 2. 

In the T-system a special kind of construction is distinguished: the "linguistic 
constructions". Tichy's hypothesis is that every meaningful expression of a language 
is principally unambiguously analyzable so that the result of this analysis is a lingu­
istic construction. Terminologically, this construction is just what Tichy calls the 
analysis of the given expression. 

The reproduction of the definition of "linguistic constructions" would call for 
a very detailed exposition. Therefore, we shall not introduce the concept of linguistic 
constructions at all. Our applications of the T-system will, however, be not as precise 
as they would be if we used this concept. Instead, we shall give some examples of 
intuitive analyses of some expressions. 

Take the sentence 

(I) The tallest man in the world is a friend of A , 

where A is a name of the individual A. For the sake of simplicity, let G be the atom 
which is the tallest man in the world. It is clear that G is of the type I(T) (co). Further­
more, if H is the relation-in-intension of being a friend (of), i.e., if H is of the type 
o(i, i) (T) (CO), then we can analyze (l) as follows: 

(V) Xw(Xt(H(w)(t)(G(w)(t),A))), 

where w, t, are co-, T-variables, respectively. 

Applying Def 4 we can derive the type of (!'), which should be — according to what 
has been said — o(x) (co). The process of this derivation can be represented by the 
following table: 



Construction Type The relevant part 
of Def 4 

H(w) o M ( т ) •0 
H(w)(0 o(t, 0 ü) 
G(W) t(т) ü) 
G(w)(t) l ü) 
A t i) 
H(w)(0(G(w)(0,A) 0 ü) 
ЦH(w)(0(C(w)(0,A)) o(т) iü) 
(ľ) o(т)(ш) iii) 

Let the value of G in the world W at the time moment S be the individual B, i.e., 
let 5 be the tallest man . . . in W at S. Let the value of H in W at S be a relation-in-
extension, one member of which is the pair <8, A>. It follows then from Def 4 that (1') 
constructs in W at S the truth-value T. We say that (1) is true in W at S or better that 
the proposition named by (l) is true in W at S. To claim that (1) is true at S is the 
same as to claim that among the possible worlds in which the proposition denoted 
by (l) is true at S is the actual world. (Since the semantics cannot determine which 
of the possible worlds is the actual one the problem of the truth-value of (l) in the 
actual world cannot be, of course, solved semantically.) 

Another example: (C is the name of an individual C) 

(2) C believes that the tallest man in the world is a friend of A 

The phrase " to believe" denotes an atom, say, K, that is a relation-in-intension 
between an individual and a proposition. Thus the type of K is o(t, o(x) (oS)) (z) (<a). 
We analyze (2) as follows (we omit some parentheses without risking an ambiguity): 

(2') XwXt(K(w) (t) (C, XwXt(H(w) (t) (G(w) (t), A)))). 

The type of (2') is again O(T) (CO), as one can see from the following table: 

Construction Type 

K(w) 0(t,0(T)(a,))(T) • 

K(W)(O °M*)H) 
C i 

K(w)(0(C,(l ')) 

X<K(w)(0(C,(l'))) O(T) 
XwXt(K(w)(t)(C,(r))) O(T)((O) 

Another example: 

(3) C believes that the tallest man in the world was a friend of A 



Taking into account "was" in the subclause we get 1 7 5 

(3') XwXt(K(w) (t) (C, XwXt 3C( A (< (f, t), H(w) (/') (G(w) (t'), A))))) 

where t' is a T-variable and < is the familiar o(r, T)-object. 

Indeed, giving such and similar examples cannot be considered as being a satisfac­
tory substitute for introducing a collection of rules of analysis for expressions of 
a (natural) language. Making up such a collection is, however, primarily a task for 
a linguist (who also has to take into account that natural languages are not "pure 
languages" in the sense of our considerations). Thus analyzing in the following text 
English expressions we shall do it intuitively, assuming that there are some rules 
which would justify our intuitions. 

CHAPTER II. QUESTIONS 

We shall suppose that a language Lwith the corresponding base BL is given. Thus 
talking about constructions, types etc. we mean constructions, types etc. with respect 
to BL. Examples will be given for L being a fragment of English (BL being a priori 
given to any user of English). Since no natural language is a "pure language" (which 
should contain no ambiguities and other "defects") many simplifications on the level 
of applying theoretical principles to real phenomena have to be admitted. 

Furthermore, if a concept will be introduced not precisely enough, this introduc­
tion will be labelled as Pseudodef rather than Def. Pseudodefinitions should fix some 
intuitions; they would become definitions if some terms they contain were reduced 
to phrases that are intuitively perfectly clear (as the most simple mathematical 
terms are). 

Def 9 Let (£onstr0 be the collection of just those constructions which contain no free 
occurrence of a variable. The following kinds of members of Gonstr0 are 
of importance: a-conslructions ("analytic"): they are non-atomic )j-con-
structions where n is not £(OJ) for any type £,. s0-constructions: they are 
>j(co)-constructions where for every type £ holds n 4= C(T). 
srconstructions: they are n(t) (co)-constructions. s0- and ^-constructions 
will be called s-constructions ("synthetic"), a- and s-constructions will be 
called q-constructions. 

Def 10 An object constructed by an s-construction is an s-question. An a-construc-
tion is an a-question. s-questions and a-questions are questions. 

Def 11 A question Q is a trivial question iff either Q is an a-question, or Q is an 
s-question and there is an object A such that Q(w) = A for every valuation. 



Thus the construction 5 is not a trivial question because it is no question at all, 
but the construction + (3, 2) is a trivial question. The object constructed by 
Xw( + (3, 2)) (i.e., the function which assigns to every possible world the number 5) 
is also a trivial question. Another example is the proposition constructed by 

XwXt(Older(w) (t) (A, 8) ~> Younger(w) (t) (B, A)) 

(where Older and Younger are the relations-in-intension of being older and being 
younger, respectively, and the connective of implication is written in a traditional 
manner). 

Remark. Instead of "~(A)" , " A ( A , B)", etc., " = (A, B)" we shall write "~A", 
"(A A B)", etc., "(A = B)". 

Pseudodef 1. A q-expression (of the language L)is an expression (or L) which expresses 
a ^-construction. 

Remark. Pseudodef 1 would become a definition, if the relation of expressing 
(a construction) were given by a collection of rules of analysis (see the concluding 
considerations in Ch. I.). 

Pseudodef 2 An interrogative transformation (IT) is a function which associates 
with every ^-expression E a set of expressions satisfying the following 
conditions: 

i) If E is an a- or s-expression and the relevant ^-construction expressed 
by E is an o- or o(a>)- or O(T) (co)-construction, then IT associates 
with E any grammatically correct expression that differs from E 
by containing the question-mark and — as the case may be — by 
having a changed word-order and/or an inserted auxiliary verb, 
i) holds approximatively for English; it is insufficient, e.g., for Polish. 

ii) If E is a ^-expression of any kind and the type of the ^-construction 
expressed by E is other than in i), then JT associates' with E any 
grammatically correct expression that differs from E by containing 
the question-mark, by having inserted at least one "wh-expression" 
like "which are", "who is" "what is", and — as the case may be — 
by having in the remaining part a changed word-order. 

The following table shows some possibilities of meaning-preserving substituting 
some phrases for by other phrases (the italics marks the beginning of the relevant 
^-expression): 



"original" phrase 

which are the reasons of the fact that 
which are the cause of the fact that 
which is the time when 
which is the place where 
which is the way how 
what is the number of 

possible variant 

why 
why 
when 
where 
how 

how many . . . there are 

Convention. The expression E to which an IT is applied will be called the ITE-input, 
the resulting set of expressions will be called the I TB-output. 

Pseudodef 3 An interrogative E-sentence is any member of the 7TE-output. An 
interrogative sentence is an interrogative E-sentence for some a-expres-
sion E. 

Remark. The expression E will be called the core of the given interrogative E-sen­
tence. 

An interrogative sentence A differs from its core B only in that A demonstrates 
the interrogative attitude of the (potential) speaker to the question which is either 
identical with the a-construction expressed by B (the case of a-questions) or con­
structed by the ^-construction expressed by B (the case of s-questions). This is to say 
that the interrogative mood is something what does not bear a semantic character. 
The pragmatic character of this mood in this connection is stipulated in [9], [10]. 
Indeed, questions are entities to which one can adopt an interrogative (infer alia) 
attitude: thus according to Def 10 one can adopt the interrogative attitude (which 
does not exclude the possibility of adopting another attitude) to constructions 
(a-questions) and to intensions (s-questions). The circumstance (demonstrated by the 
interrogative mood) that one adopts just the interrogative attitude is relevant to the 
"internal pragmatics" (see [9]) rather than to semantics. 

Pseudodef 4 Let A be an interrogative E-sentence. 

i) If E is an a-expression we say that A a-asks the question which is 
identical with the a-construction expressed by E. 

ii) If E is an s-expression we say that A s-asks the question which is 
constructed by the s-construction expressed by E. 

iii) A asks the question Q iff A a-asks Q ot A s-asks Q. 

Def 12 Q is a yes-no-question iff Q is an a-construction of type o or Q is a proposition. 
Q is a which-question iff Q is a question and Q is not a yes-no-question. 



178 Pseudodef 5 Let A be an interrogative sentence which asks the question Q. Then 

i) A is trivial iff Q is a trivial question; 

ii) A is a yes-no-interrogative sentence (a which-interrogative sentence) 
iff Q is a yes-no-question (a which-question). 

Example. 1) The interrogative sentence 

(1) Is 7(64) greater than 7? 

is trivial: the core of (l) is the sentence 

7(64) is greater than 7 , 

which expresses the a-construction 

(!') >U(64),7). 

Since (V) is an o-construction, (1) is also a yes-no-interrogative sentence. 

2) The interrogative sentence 

(2) Which are the colors? 

is trivial: the word "color" names the class of colors, i.e., an o(o(i) (x) (co)-object — 
thus the core of (2) expresses the a-construction Xx(Col(x)). where x is an o(i) (T) (m)-
variable. It is also clear that (2) is a which-interrogative sentence. 

3) The interrogative sentence 

(3) Which is the even prime number? 

is trivial. The construction expressed by the core of (3) is 

(3') ix(Pr(x) A Ev(x)), 

where x is a v0-variable, Pr is the class of prime numbers and Ev the class of even 
numbers. (3') is an a-question. 

4) The interrogative sentence 

(4) What is subtracting? 

might be conceived of as expressing a mass problem (see Appendix) or as a trivial 
interrogative sentence. In this last case the construction expressed by the core of (4) is 

(4') Xxy(-(x,y)), 

where x, y are, say, vt-variables. 



5) The interrogative sentence 

(5) Is the American President older than the French President? 

is not trivial. The question asked by (5) is the proposition constructed by the s r con-
struction 

(5') Xw Xt(Older(w) (t) (Amp(w) (t), Frp(w) (t))) , 

where w, t are as usually and the abbreviations make clear which atoms they stand 
for. 

6) The interrogative sentence (a famous one!) 

(6) Is the French King bald? 

is not trivial. The question asked by (6) is the proposition constructed by the sr 

construction 

(6') Xw Xt(Ba(w) (t) (Frk(w) (t))). 

1) The interrogative sentence 

(7) Who is the Pope 1. I. 1978 at noon? 

is not trivial. The question asked by (7) is the individual concept constructed by the 
s0-const ruction 

(7') Xw(ix(x = Po(w)(S))), 

where x is an t-variable, Po is the Pope, i.e., an object, and S is the time moment 
determined by the date in (7). 

Remark. Similarly as in (3'), ix(A), where x is an ^-variable and A is an o-construc-
tion, stands for l(Xx(A)), where / is an n(o(n))-ob]cct: it is the function which asso­
ciates the unit classes of ^-objects with the only member of the given class and is 
undefined at the other classes. 

8) The interrogative sentence 

(8) Is A older than B, or is he younger than B? 

is a non-trivial which-interrogative sentence. The core of (8) is the expression 

the only true proposition from: that A is older than B, and that A is younger than B, 
which expresses the following s^construction: 

(8') Xw Xt(ix(Tr(w) (t) (x) A (x = Xw Xt(Older(w) (t) (A, 8)) v 

x = Xw Xt(Younger(w) (t) (A, 8))))) 



where x is an O(T) (co)-variable and Tr is an O(O(T) (O»)) (T) (co)-object: it is the function 
which associates every possible world with a function which at any time moment t 
associates every proposition true at t with T and every other proposition with F. 
In other words, it is the property of propositions "being true". 

Remark. We shall see in Ch. III. that no analysis (in the sense of Ch. I. B.) of mathe­
matical alternative interrogative sentences is possible in our system. This regrettable 
fact will be, of course, explained. 

Before we define answers to questions we shall define the important concept 
of presuppositions of questions. Leaving aside the "pragmatic presuppositions" 
(see, e.g., [5]) we construct our definition so as to make it very universal. Thus one 
can see that various kinds of presuppositions of questions being known from the 
literature can be understood as special instances of our concept, all satisfying Def 13. 
Also, it is not without interest that our definition does not presuppose — as, e.g., 
Kubihski does - that the concept of answer has been already defined. 

Def 13 i) Let Q be an a-question of type n. The presupposition of Q is the con­
struction 

3x(x = Q), 

where x is an ^-variable. 

ii) Let Q' be an SQ-question. 
A presupposition of Q' is any proposition that takes the value T in the 
world W if Q' takes a value in W. 

iii) Let Q" be an s^-question. 

A presupposition of Q" is any proposition that takes the value T in the 
world W at the time moment S if Q" takes a value in W at S. 

Examples. 9) Take the interrogative sentence 

(9) Is 5 :0 greater 5? 

According to Def 13 the presupposition of (9) is the construction 

(9') 3 x ( x = > ( : ( 5 , 0 ) , 5 ) ) , 

where x is an o-variable. 

Note that (9') does not construct T. The necessary condition for constructing T 
is for (9') - as well as for any presupposition of an a-question — that every sub-
construction of it such that no variable has a free occurrence in it is proper. This 
condition is not satisfied for the subconstruction 

:{S,0). 



10) The interrogative sentence (6) asks the * rquestion constructed by (6'). Among 
the presuppositions of this question there is the proposition constructed by 

(6") Xw Xt(3x(x = Frk(w) (.))) . 

Since this proposition takes in the actual world, say, in July 1978, always the value F, 
it is clear that the proposition which is the s rquestion constructed by (6') takes 
in the actual world at the above time moments no value at all. 

11) Take the interrogative sentence (8). A presupposition of the question construct­
ed by (8') is — when we use "Trwtx" as abbreviation for the maximal subconstruc-
tion of (8') beginning with "Tr(w) (t) (x)" — the proposition constructed by 

(8") Xw Xt(3x(Trwtx)). 

Take a world W and a time moment S where A and 8 are twins. It is clear that the 
proposition constructed by (8") takes F in W at S. At the same time, the function 
constructed by (8') takes in W at S no value. Notice that nobody can offer a right 
answer to our question in W at S. 

12) The interrogative sentence 

(12) Does A know that B is older than C? 

asks the question constructed by the .^-construction 

(12') Xw Xt(Kn(w) (t) (A, Xw Xt(Older(w) (t) (B, C)))) . 

The construction 

(12") Xw Xt(Older(w) (t) (6, C)) 

constructs a presupposition of the question constructed by (12'): if the proposition 
constructed by (12") does not take Tin the world W at S, then the question constructed 
by (12') takes in W at S no value. 

Taking over Hausser's term ([3]) we define the concept of a redundant answer to 
a question. 

Def 14 i) Let Q be an a-question. A redundant answer (RA) to Q is any construction 

Q = A , 

where A e (Eonstr0, the type of A = the type of Q, and A differs from Q 
not only by bound occurrences of variables. 

ii) Let Q be an s0-question. Furthermore, where C is a construction of type 
n(co), let C be defined as follows: Xw(C) is the construction C. Then 
an RA to Q is any proposition constructed by 

Xw(CQ = A) . 



where CQ is the construction constructing Q, A s £onstr0 and A is of the 
same type as C'Q. 

iii) Let Q be an ^-question. Furthermore, where C is a construction of type 
n(x)(oi), let C" be defined as follows: XwXt(C") is the construction C. 
Then an RA to Q is any proposition constructed by 

Xw Xt(CQ = A), 

where the conditions are analogous as in ii). 

Def 15 Let PQ be a presupposition of the question Q. Let CPQ be the construction 
constructing PQ, C and C" be as in Def 14. 

i) If Q is an a-question, then the refutation of Q is the construction 

~3x(x = e) • 

ii) If Q is an s0-question, then the proposition constructed by 

Xw(~CPQ) 

is a refutation of Q. 

iii) If Q is an s,-question, then the proposition constructed by 

XwXt(~C';Q) 

is a refutation of Q. 

Def 16 An a-construction is true iff it constructs T. A proposition of type O(OJ) is true 
iff it takes T in the actual world. 
A proposition of type O(T) (of) is true at (the time moment) S iff it takes T 
in the actual world at S. 

Def 17 Let Q be an a-question or an s0-question. A right RA to Q is such an RA to Q 
that is true. Let Q' be an s rquestion. The right RA to Q' at S is such an RA 
to Q' that is true at S. 

Two very simple statements might be easily proved: 

Statement 1. For every question Q there is an RA to Q. 

Statement 2. Let Q, Q' be as in Def 17. There is a right RA to Q iff every presupposi­
tion of Q is true. There is a right RA to Q' at S iff every presupposition 
of Q' is true at S. 

Corollary. There is no right RA to Q (no right RA to Q' at S) iff at least one refuta­
tion of Q (of Q') is true (true at S). 



Examples. Two RA's to the question (l ') are: 

a) > (s/(64), 7)=T and 

b) > U(64), 7) = F. 

The presupposition of (l ') is true. The right RA to (l ') is a). 

The right RA to the question asked by (2) is the construction 

Xx(Col(x)) = Xx(x = White v x = Red v . . . v x s Black) . 

The right RA to (3') is the construction 

ix(Pr(x) A Ev(x)) = 2 . 

Let D~ be some definition of subtracting Let Dx be the construction which is the 
result of substituting the v^v^ v^-variable x for the atom - (subtracting) in D~. 
Then a right RA to (4') is the construction 

Xxy(-(x, y)) = JZ(DZ) , 

where z is an v1(v1, vj-variable. 

Let S be the time moment June 1st, 1978, midnight. No refutation of the question 
constructed by (5') is true at S, therefore there is a right RA at S to this question, 
namely the proposition constructed by 

(5") Xw Xt((Older(w) (?) (Amp(w) (t), Frp(w) (t))) = F) 

(which is, be the way, the same proposition as that one constructed by 

Xw Xt(~Older(w) (t) (Amp(w) (t), Frp(w) (t))).). 

Let S be as in the preceding example. A refutation of the question asked by (6) 
is true at S: indeed, there is no French King at S.Therefore, there is no right RA at S 
to this question. 

Take now the question asked by the interrogative sentence 

(13) Who are the three tallest men in the world? 

Let C1 3 be the construction expressed by the core of (13), i.e., the construction 
constructing the question asked by (13). Notice that an RA to this question will be 
any proposition constructed by 

Xw Xt(C[z = Xx(x = Avx = Bvx=C)), 

where A, 6, C are individuals, whereas propositions named by sentences like 

The three tallest men in the world are the French President, the Governor of ..., 
the most famous piano player 



184 are not RA's to this question in the sense of our definitions (NB the condition A e 
e Constr0 in Def 14!). 

Let us abbreviate the subconstruction of (8') that begins with ix as "C 8 " . Let A 
be in the actual world (at some moment S) older than 8. Then the right RA at S to the 
question asked by (8) is the proposition constructed by 

(8") Xw Xt(C8 = Xw Xt(Older(w) (t) (A, 6))) . 

Def 17 i) Let the construction 

Q = A, 

say, C, be an RA to an a-question Q. A non-redundant answer to Q with 
respect to C (NRAC) will be the object constructed by A. 

ii) Let the proposition constructed by the construction 

Xw(C'Q - A), 

say, C, be an RA to an s0-question Q. NRAC to Q will be the object 

constructed by A. 

iii) Let the proposition constructed by the construction 

Xw Xt(CQ = A), 

say, C be an RA to an ^-question Q. An NRAC to Q will be the object 
constructed by A. 

Def 18 i) Let Q be an a-question. The right NRA to Q is the object constructed by Q. 

ii) Let Q be an s0-question. The right NRA to Q is the value of Q in the 
actual world. 

iii) Let Q be an 5^-question. The right NRA to Q at S is the object which is 
the value of Q in the actual world at S. 

Statement 3. Let E be an RA and G an iVRAE to the question Q. Then E is a right 
RA (at S) to Q iff G is the right NRA (at S) to Q. 

(This is easily provable by means of confrontation of Def 14, Def 17, and Def 18.) 

Examples. The right NRA to the question (l ') is 7". The right NRA to the question 
(3') is 2. 

An NRA to the question asked by (8) is the proposition that A is older than 8. 
Whether this proposition is a right NRA at S to this question depends on the actual 
state of affairs at S. 



Remark. Answers, as well as questions, are in our conception not expressions 
of a language (being either constructions or intensions). Asking a question (in the 
commonly used sense, not in the sense of Pseudodef 4) means adopting an interrogat­
ive attitude to an entity. In the same way, answering a question means using the 
language for naming the answers in our sense. Therefore, something like "answering 
expression" — analogously as in Pseudodef 3 - might be defined. Thus for example 
the expressions of English naming the truth-values are "yes" (naming T) and "no" 
(naming F), Since an NRA to a yes-no-question is T or F, answering in English 
a yes-no-question means to say "yes" or "no" (or to formulate a refutation of the 
question). 

Def 19 Let Sx, S2 be interrogative sentence asking 

i) the a-questions Qlr Q2, respectively; Sx is equivalent to S2 iff Qx differs 
from Q2 at most by Q2 being the result of a collisionless overnaming 
of the (bound) variables occurring in Qt; 

ii) the s-questions Q[, Q'2, respectively; Sx is equivalent to S2 iff Q\ = Q2. 

Remarks. Since expressions of a language do not contain (bound) occurrences 
of variables, i) reduces to the requirement that Sx differs from S2 by at most some 
semantically irrelevant grammatical features. 

One not very intuitive consequence of i) is that, e.g., the interrogative sentence 

Which is the sum of three and five? 

is not equivalent to the interrogative sentence 

Which is the sum of five and three? 

This may seem to be surprising, of course, but no absurdity is present. Matters 
of this kind are connected with the special character of a-constructions; a little more 
will be said in Ch. III. 

Def 20 Let Q be a non-trivial ^-question. 

i) If 8 is an RA to Q, then any other proposition that takes T in at least one 
possible world and implies B (i.e., is such that 8 takes T in every world in 
which this proposition takes T) will be called an indirect answer to Q. 

ii) If 8 is an RA to Q, then any other proposition that takes F in at least one 
possible world and is implied by 8 will be called a partial answer to Q. 

Examples. Take the question asked by (5). An indirect answer to it will be, e.g., 
the proposition that some individual, say, C is younger that the French President 
and at the same time older than the American President: it is clear that this proposi-



186 tion implies that the American President is not older than the French President, so 
that an RA to the given question is implied. A partial answer to the above question is, 
e.g., the proposition that the American President is not younger than the French 
President: this proposition is implied by one of the RAs to the given question. 

To take a which-question, consider the question asked by the interrogative sentence 

How many students on the Oxford University are active sportsmen? 

Recall that the core of this interrogative sentence is the expression "the number 
of the students of the Oxford University which are active sportsmen". A partial 
answer to this question is, e.g., the proposition named by the sentence 

The number of the students on the Oxford University which are active sportsmen 
is not less than 250. 

Indeed, this proposition is implied by any RA to it according to which the number 
of the students etc. is N, where N is at least 250. 

Remark. Unlike the NRA's, the indirect and the partial answers always are pro­
positions. 

CHAPTER III. COMMENTS 

1. The Main Idea 

The main idea stimulating the present conception of questions consists in explicat­
ing the following intuition: 

/ / we ask a question, then we wish to know an entity which is co-determined by the 
question. 

In our conception, if the question is a construction (the case of a-questions), then 
the object we wish to know is the result of a procedure which is given by this con­
struction. On the other hand, if the question is an intension, then the object we are 
interested in is the value of this intension in the actual world, or, as the case may be, 
in the actual world at a given time moment. 

Thus the core of any yes-no-s-interrogative sentence expresses a construction 
which constructs a proposition. In such a case, using the interrogative sentence we 
do not wish to know the proposition named by the core of this sentence — we do 
know this proposition when understanding the sentence. We wish to know the truth-
value being taken by this proposition in the actual world (at the moment S). Similarly 
asking who is the American President (at the moment S) we already know the indi­
vidual concept named by the expression "the American President"; we are interested 



in knowing which individual is the value of this concept in the actual world (at S). 
Or, using an alternative interrogative sentence 

Au or A2, ... or A„? 

we already know the concept of such a proposition which is true and is one of the 
propositions named by Au ..., A„; what we wish to know is the value of this concept 
in the actual world (at S), i.e., the concrete proposition satisfying in the actual world 
(at S) the criterion given by this concept. 

The above idea explains the way in which we have defined RAs and NRA's to 
questions. 

Notice also that the logical analyses made according to this idea are not subject 
to the restrictions which are necessary within the 1st order systems (see, e.g., [8]). 

2. Some Troubles 

It may be hoped that showing (instead of hiding) some troubles connected with 
our conception will help to find such remedies which will bring about further deve­
lopment of this conception. 

a) Firstly, one special case, not too harmful but requiring our attention: take the 
alternative question asked by the interrogative sentence 

(Alt) Is A younger than B, or is B older than A? 

Intuitively, the best reaction to such a question would be refuting it. Yet in our 
conception no reason for a true refutation can be found. Indeed, our question is 
constructed by 

\w\t(jx(Tr(w)(t)(x) A (x = \w \t(Younger(w) (t) (A, B)) v 

v x = \w \t(Older(w) (t) (B, A))))) 

Let us assume that A and B are of different age (in the actual world at S). Then both 
the interesting presuppositions of our question Q hold (in the actual world at S): 
the first presupposition is constructed by 

\w \t(3x(Tr(w) (t) (x) A (x = \w \t(Younger(w) (t) (A, B)) v 

v x =\w \t(Older(w) (t) (B, A))))) 

and under the above assumption, is true (at S); the second presupposition is construct­
ed by 

\w \t(\fy Vz(((Tr(w) (t) (y) A (y = \w \t(Younger(w) (t) (A, B)) v 

v y = \w \t(Older(w) (t) (B, A)))) A 

A Tr(w) (t) (z) A (z = \w \t(Younger(w) (t) (A, B)) v 

v z = \w \t(Older(w) (t) (B, A))))) -> y -> z)) 



'1188 Since, however, the proposition constructed by 

(C.) Xw Xt(Younger(w) (t) (A, B)) 

is identical with the proposition constructed by 

(C2) Xw Xt(Older(w) (t) (8, A)) 

(i.e., the sentence "A is younger than B" is weakly synonymous with the sentence 
"B is older than A"), this second presupposition holds, too. Thus there is a right RA 
and a right NRA to Q; e.g., the right NRA will be the proposition constructed by 
(Ct), or which is the same, by (C2); the way of specifying this proposition is not 
determined within our conception: the name of the NRA may be 

A is younger than B 
as well 

B is older than A. 

We repeat that this solution is not what one intuitively would expect: answering Q 
in the above way we can be suspected of joking. Nevertheless, the troubles arising 
from this disharmony with our intuitions (or with our prejudices?) are not too great. 

b) The main troubles are however, connected with a-questions and mathematical 
interrogative sentences. 

Let us begin with the problem of alternative mathematical interrogative sentences. 
Take, e.g., the sentence 

(Alt') Is V(64) greater than 7, or smaller than 1? 

The attempt to analyze sentences like (Alt') in the manner which would be analo­
gous to the analysis of the alternative interrogative s-sentences will break down. 
We shall show this as follows: Assume that asking a question Q asked by (Alt') 
we wish to know the only object that is true and is identical with just one of the 
objects named by "y/(64) is greater than 7" and "V(64) is smaller than 7". We 
might be, therefore, tempted to take for the construction Q the following construc­
tion: 

(*) rx(x = T A (x = >(V(64), 7) v x = <(V(64), 7))). 

Yet, unfortunately, (*) is not what we wish to get. The range of x are the truth-values, 
but what we are interested in, is not a truth-value (we cannot answer Q by saying 
"yes" or "no"). In the case of alternative s-questions the relevant object is a proposi­
tion. No a-construction, however, constructs a proposition, so that this solution is 
impossible. 

One apparent way out is thinkable: we could let the a-subconstructions of (*) be 
substituted for by s-constructions like 

Xw > (7(64), 7) ; 



such constructions construct trivial questions, of course. Our analysis of (Alt') will 
then be 

(**) \wix(Tr'(w) (x) A 0 - \w(>(J(64), 7)) v x = Xw(<(J(64), 7)))) 

Since, however, every construction of this kind constructs the concept of a trivial 
proposition (i.e., of such a proposition that associates every possible world with Tor 
every possible world with For is underfined at every possible world), the consequences 
of this "way out" are absolutely counterintuitive. 

Remark. In (**) the atom TV has been used. Its type is easily derivable, its character 
is analogous to the character of Tr. 

Thus we come to the second point concerning the a-questions. It is impossible 
within our system to define an equivalence relation between two interrogative a-sen-
tences in such a manner that the conditions of S1's being equivalent to S2 were 
weaker than those in Def. 19. If some analogy with Def 19 ii) were used for defining 
equivalence of interrogative a-sentences, then the interrogative sentence 

Is ,/(64) greater than 7? 

would be equivalent to the sentence 

Does it hold that the sum of the angles in an Euclidean triangle equals 180°? 

Similarly, the sentence 

How many edges has a tetraeder? 

would be equivalent to the sentence 

Which is the greatest common divisor of twelve and eighteen? 

This is counterintuitive, which can be easily seen from the following consideration. 
Any definition of the equivalence of interrogative sentences has to take into 

account the principle according to which the interrogative sentence S t asking Qt 

is equivalent to the interrogative sentence S2 asking Q2 iff, for every individual X, 
the proposition that X asks Qt is identical with the proposition that X asks Q2. 

Applying Def 19 ii) to the non-trivial interrogative sentences we obviously satisfy 
this principle: the proposition that, e.g., C asks whether A is younger than 8 is the 
same proposition as that C asks whether B is older than A. On the other hand, nobody 
will be disposed to claim that the proposition that C asks whether ^(64) is greater 
than 7 is the same proposition as that C asks whether it holds that the sum of the 
angles in Euclidean triangle equals 180°. Similarly, asking who is the latest husband 
of Mrs. A is the same as asking who is the man whom Mrs. A has last time married; 



but asking how many edges has a tetraeder is not the same as asking which is the 
greatest common divisor of twelve and eighteen. 

This problem is a very fundamental one and its solution would make it possible 
to solve not only the other troubles with the a-questions and mathematical interro­
gative sentences but also the famous problems connected with the "belief sentences". 

Now we shall sketch an orientation towards this solution. 

Let an individual X ask an s-question Qs. By asking Qs X manifests his attitude 
towards an intension: X wishes to know the value of this intension in the actual 
world (at S). 

Let X ask an a-question Qa. By asking Qa X manifests his attitude towards 
a construction: X wishes to know the object constructed by Q*. 

Therefore, there are two principally different groups of asking-relations: 

I. Relations-in-intension between an individual and an intension, i.e., 
0(1, t](x) (co)) (T) (co)-objects where n is a type. 

II. Relations-in-intension between an individual and a construction. In our 
conception (better to say: in the T-system) there is no possibility of dealing 
with such relations except only verbally because the bases that are considered 
within this system do not contain a collection of constructions. We would have 
to shift our position "one level higher" and let the constructions that construct 
the objects over our original base(s) become members of a new "meta-base". 
(It would be then also necessary of course to define the new "meta-construc-
tions".) 

Thus e.g. only such indirect questions are analyzable within our system which 
contain the names of the asking-relations from the 1st group. 

This approach to the above problems gives some hints concerning the problem 
of analyzing alternative and other — no more such simple as here — mathematical 
interrogative sentences. It seems that the core of such sentences is also analyzable 
only within a system based on a meta-base: indeed, using, e.g., an alternative mathe­
matical interrogative sentence we wish to know neither a truth-value nor a proposition: 
what we wish to know is rather the only construction such that constructs truth and 
is one of the constructions determined by the particular members of the question. 

Thus the following schema may be adduced: 

Asking a question which is one wants to know 

an intension its value in the actual 
world (at S) 

an a-construction the object being constructed 

a meta-construction the construction being 
constructed. 



APPENDIX: MASS PROBLEMS 

We now briefly show that our approach to questions is easily generalizable to 
defining mass problems. Our attention will be confined to what is commonly conside­
red to be a mass problem; the mass problems are supposed to be mathematical 
constructions, so that no intension will be involved, although a generalization in this 
direction is thinkable. The limits of our generalization are the same as those considered 
in Ch. III. in connection with meta-constructions. 

Def Al Let Q be an a-question, i.e., an a-construction. Let Q(AX, ..., A„jxx, . .., x„) 
differ from Q just by containing, for every i = 1, . . . , n, x ; instead of every 
occurrence of the object Ai in Q, where Xj, . . . , x„ are variables of appro­
priate types and such that they differ from every variable with a bound 
occurrence in Q. We call 

Q(AU ...,A„jxu ...,x„) 

a p-construction. 

Def A2 Let Q(AU ..., A„jxu ..., x„) and Q(A1, ..., A„jx'u ..., x'„) be two p-con-
structions differing one from another at most by the circumstance that, 
for at least one i, 1 ^ i ^ n, x\ differs from x ;. We say that Q(AU ..., A„ : 
: xlt ..., x„) constitutes the same mass problem as Q(AU ...,A„jx'u ...,x'„). 
We abbreviate this by writting Q(AU ...,A„jxu ...,x„) CMP Q(AU ... 
. . . , A n j x ' u . . . , x ' „ ) . 

Obviously, the relation CMP between constructions is reflexive, symmetric and 
transitive. This justifies the following definition: 

Def A3 Any abstraction class of the relation CMP is a mass problem. Let the mem­
bers of a mass problem be Q(AU ..., A„jxu . . . , x„), Q(AU ..., A„jx[, ... 
...,x'„), etc., where xu...,x„ are the alphabetically first n (mutually 
different) variables. This mass problem will be called the mass problem 
with respect to Q(At, ..., A„jxu ..., x„). The question Q will be called - as 
well as any question Q(AU ..., AjBu . . . , B„) — an instance of the mass 
problem with respect to Q(AU ..., A„jxu ..., x„). The mass problem 
with respect to Q(AU ..., Ajxu . .., x„) will be denoted by ^ Q ^ , AnY 

Def A4 A solution to ^Q^AU...,A„) is a n algorithm (i.e., a Turing machine, or a recur­
sive function, or a normal algorithm, etc.) that for every valuation v(x1, . . . 
. . . , x„/X1; • . . , X„) computes the object (if any) v(x1, . . . , xB/X1( . . . , X„)-
constructed by Q(AU ..., A„\xu . . . , x„). 

Def A5 A mass problem is solvable iff there is a solution to it. 



Def A6 The mass problem j# f i ( 4 j An) i s equivalent to the mass problemSPQ'{A, 4n) 

iff the solutions to the former compute the same function as the solution 
to the latter. 

(Received October 16, 1978.) 
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