Kybernetika

Ludvík Prouza

Appendix to the article "On generalized linear discrete inversion filters"

Kybernetika, Vol. 8 (1972), No. 3, (264)--267
Persistent URL: http://dml.cz/dmlcz/125767

Terms of use:

© Institute of Information Theory and Automation AS CR, 1972
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

Appendix to the Article "On Generalized Linear Discrete Inversion Filters"

Ludvík Prouza

An expression for the mean square error of the inversion filter is derived and some consequences are shown.

1. INTRODUCTION

Let

$$
\begin{gather*}
B_{j}(z)=b_{j 0}+b_{j 1} z^{-1}+\ldots+b_{j h} z^{-h} \tag{1}\\
(j=0,1, \ldots, m)
\end{gather*}
$$

be Z-transforms of discrete signals, the signal with $j=0$ being wanted and the other disturbing. The signals are weighted by weights w_{j}, where $w_{0}=1, w_{j} \geqq 0$ for $j=$ $=1,2, \ldots, m$.

Let us define
(2)

$$
B(z)=b_{0}+b_{1} z^{-1}+\ldots+b_{s} z^{-s}, \quad(s \leqq h)
$$

with the aid of the relation

$$
\begin{equation*}
|B(z)|^{2}=\sum_{j=0}^{m} w_{j}\left|B_{j}(z)\right|^{2}, z=\exp i \omega . \tag{3}
\end{equation*}
$$

According to the known Fejér-Riesz theorem $B(z)$ exists and is unique if we choose its roots only on and outside the unit circle C_{1}.

Suppose $B(z)$ to have all roots only outside of C_{1}. Then, $B(z) B\left(z^{-1}\right) z^{5}$ is a reciprocal polynomial with roots $\zeta_{1}, \ldots, \zeta_{s}$ outside C_{1} and $\zeta_{s+1}, \ldots, \zeta_{2 s}$ inside C_{1} (the reciprocal values of the roots $\zeta_{1}, \ldots, \zeta_{s}$) and
(4) $B(z) B\left(z^{-1}\right) z^{s}=\frac{b_{0} b_{s}}{(-1)^{s} \zeta_{1} \ldots \zeta_{s}}\left(1-\zeta_{1} z\right) \ldots\left(1-\zeta_{s} z\right)\left(z-\zeta_{1}\right) \ldots\left(z-\zeta_{s}\right)$.

$$
\begin{equation*}
q_{0}+q_{1} z+\ldots+q_{s} z^{s}=\frac{b_{0} b_{s}}{(-1)^{s} \zeta_{1} \ldots \zeta_{s}}\left(z-\zeta_{1}\right) \ldots\left(z-\zeta_{s}\right) . \tag{5}
\end{equation*}
$$

Put

$$
\begin{equation*}
C_{j}(z)=\mathrm{A}(z) B_{j}(z) . \tag{6}
\end{equation*}
$$

In [2] there has been shown that $A(=)$ fulfilling
(7) $\frac{1}{2 \pi \mathrm{i}}\left\{w_{0} \int_{C_{1}}\left|z^{-T}-A(z) B_{0}(z)\right|^{2} \cdot|\mathrm{~d} z|+\sum_{j=1}^{m} w_{j} \cdot \int_{C_{1}}\left|A(z) B_{j}(z)\right|^{2} \cdot|\mathrm{~d} z|\right\}=\min$
is given by the expression

$$
\begin{equation*}
A(z)=\frac{z^{s-T}\left(r_{0}+r_{1} z+\ldots+r_{T} z^{T}\right)}{\left(1-\zeta_{1}-\right) \ldots\left(1-\zeta_{s} z\right)} . \tag{8}
\end{equation*}
$$

where $r_{j}(j=0,1, \ldots, T)$ result from the system of equations
(9)

$$
\begin{array}{ll}
q_{0} r_{0} & =b_{00}, \\
q_{1} r_{0}+q_{0} r_{1} & =b_{01}, \\
\vdots & \\
q_{T} r_{0}+q_{T-1} r_{1}+\ldots+q_{0} r_{T} & =b_{0 r},
\end{array}
$$

where $q_{j}=0$ for $j>s, b_{0 j}=0$ for $j>h$.
In [1], [2] has been shown that the minimum in (7) is $1-c_{0 T}$, where $c_{0 T}$ is the coefficient of z^{-T} in the development of (6), and also that $0<c_{0 T} \leqq 1$.

2. AN EXPRESSION FOR $c_{0 T}$

From the system (9) it is seen that r_{0}, \ldots, r_{T} are coefficients of the development

$$
\begin{equation*}
r_{0}+r_{1} z^{-1}+\ldots=\frac{b_{00}+b_{01} z^{-1}+\ldots+b_{0 n} z^{-h}}{q_{0}+q_{1} z^{-1}+\ldots+q_{5} z^{-s}} . \tag{10}
\end{equation*}
$$

The coefficient $c_{0 T}$ is given by

$$
\begin{equation*}
c_{0} r=\frac{1}{2 \pi \mathrm{i}} \int_{C_{1}} B_{0}(z) A(z) z^{r} \frac{\mathrm{~d} z}{=}, \tag{11}
\end{equation*}
$$

that is, the zero order term of the development
(12)

$$
\begin{gathered}
B_{0}(z) A(z) z^{T}=\frac{b_{00}+\ldots+b_{0 h} z^{-h}}{\left(z^{-1}-\zeta_{1}\right) \ldots\left(z^{-1}-\zeta_{s}\right)}\left(r_{0}+\ldots+r_{T} z^{T}\right)= \\
=\frac{b_{00}+\ldots+b_{0 h} z^{-h}}{\frac{(-1)^{s} \zeta_{1} \ldots \zeta_{s}}{b_{0} b_{s}}\left(q_{0}+\ldots+q_{s} z^{-s}\right)}\left(r_{0}+\ldots+r_{T} z^{T}\right)= \\
\quad=\frac{b_{0} b_{s}}{(-1)^{\zeta^{5}} \zeta_{1} \ldots \zeta_{s}}\left(r_{0}+r_{1} z^{-1}+\ldots\right)\left(r_{0}+\ldots+r_{T} z^{T}\right) .
\end{gathered}
$$

Thus
(13)

$$
c_{O T}=\frac{b_{0} b_{s}}{(-1)^{s} \zeta_{1} \ldots \zeta_{s}}\left(r_{o}^{2}+r_{1}^{2}+\ldots+r_{T}^{2}\right) .
$$

3. SOME SPECIAL CASES

There is seen from (13) that $c_{O T}$ is a nondecreasing function of T, thus the minimum of (7), being $1-c_{0 T}$, is a nonincreasing function of T. Since $c_{0 T} \leqq 1$, there exists the limit of $C_{O_{T}}$ for $T \rightarrow \infty$. From (13) with the aid of (12), (4), (5) and the Parseval indetity, there is
(14)

$$
\begin{gathered}
\lim _{T \rightarrow \infty} c_{0 T}=\frac{1}{2 \pi \mathrm{i}} \int_{c_{1}} \frac{\left(b_{00}+\ldots+b_{0 h} z^{-h}\right)\left(b_{00}+\ldots+b_{0 h} z^{h}\right)}{z^{-s}\left(1-\zeta_{1} z\right) \ldots\left(1-\zeta_{s} z\right)\left(z-\zeta_{1}\right) \ldots\left(z-\zeta_{s}\right) \frac{b_{0} b_{s}}{(-1)^{s} \zeta_{1} \ldots \zeta_{s}} \cdot \frac{\mathrm{~d} z}{z}=}= \\
=\frac{1}{2 \pi \mathrm{i}} \int_{C_{1}} \frac{B_{0}(z) B_{0}\left(z^{-1}\right)}{B(z) B\left(z^{-1}\right)} \cdot \frac{\mathrm{d} z}{z} .
\end{gathered}
$$

In the case of "pure" inversion, that is $w_{0}=1, w_{j}=0$ for $j=1, \ldots, m$, there is $B_{0}(z)=B(z)$, thus $\lim _{T \rightarrow \infty} c_{0 T}=1$.

Suppose further the "pure" inversion and $T=0$. Then from (9), (5), (13) one gets

$$
\begin{equation*}
r_{0}=b_{0} / q_{0}=1 / b_{h} \tag{15}
\end{equation*}
$$

and since
(16)

$$
b_{h} / b_{0}=(-1)^{h} z_{1} \ldots z_{h}
$$

there is
(17)

$$
c_{0}=\frac{1}{(-1)^{h} \zeta_{1} \ldots \zeta_{h}} \cdot \frac{b_{0}}{b_{h}}=\frac{1}{\zeta_{1} \ldots \zeta_{h} z_{1} \ldots z_{h}}=\frac{\zeta_{1}^{*} \ldots \zeta_{h}^{*}}{z_{1} \ldots z_{h}}
$$

$$
\zeta_{j}^{*}=\left\{\begin{array}{ll}
z_{j} & \text { for } \quad\left|z_{j}\right|<1, \tag{18}\\
z_{j}^{-1} & \text { for }\left|z_{j}\right|>1,
\end{array} \quad(j=1, \ldots, h)\right.
$$

This result has been derived in [1] with the unnecessary restriction that all roots z_{j} are simple.

The restriction $\left|z_{j}\right| \neq 1$ in (18) is substantial since we know that no stable filter of the form (8) exists if some roots ζ_{j} lie on C_{1}.

4. CONCLUDING REMARKS

From (9), (5), and (13) one sees that for $c_{0 T}$ expressions in the symmetric functions of the roots ζ_{j} can be derived, but they will be substantially more complicated than (17).

Furthermore, it is seen from (9), (10) that the sequence $\left\{r_{j}\right\}$ with $j>h$ is solution of a homogeneous linear difference equation with characteristic roots $\zeta_{s+1}, \ldots, \zeta_{2 s}$ lying inside C_{1}.

The initial conditions result from (9) or (10). This result may be useful in connection with (14) for computing (13) if T is substantially greater than h, especially if a "dominant" root ζ_{j} exists.
(Received December 23, 1971.)

REFERENCES

[1] Prouza, L.: On the Inversion of Moving Averages, Linear Discrete Equalizers and "Whitening'' Filters, and Series Summability. Kybernetika 6 (1970), 3, 225-240.
[2] Prouza, L.: On Generalized Linear Discrete Inversion Filters. Kybernetika 8 (1972), 1, 30-38.

VÝTAH

Doplněk k článku „ O zobecněných lineárních diskrétních inverzních filtrech"

Ludvík Prouza

V článku se odvozuje výraz pro střední kvadratickou chybu inverzního filtrua ukazují se některé důsledky.

Dr. Ludvik Prouza, CSc., Ústav pro vúzkum radiotechniky (Research Institute for Radio Engineering), Opočinek, p. Lány na Dülku.

