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K Y B E R N E T I K A — V O L U M E 25 ( 1 9 9 2 ) , N U M B E R 2, P A G E S 1 2 9 - 1 3 9 

CONSISTENCY OF AN ESTIMATE 
IN LINEAR REGRESSION 
WITH NON-NEGATIVE ERRORS 

K A R E L Z V A R A 

For a linear regression model with non-negative errors the method of regression coefficients estimation, 
that origins in Andel's procedure for AR(2), is described. The strong consistency of the estimate is 
proved. 

1. I N T R O D U C T I O N 

In some applications statisticians should look for a "boundary line" tha t can be ap

proached to only from one side. For example in [4] the authors search for the depen

dence of marginal possible grain yield on the size of a chosen growth factor. They fit a 

boundary line t h a t confines the data, thus separating real from nonreal s i tuat ions. The 

boundary line they est imate by least squares method on extremal observations. In our 

paper we propose a different method. 

A linear model is given by 

y , = x ' / 3 +a, i = l,..., n, (1) 

where (3 £ Rk is an unknown vector of parameters , x,- 6 Rk are known vectors and e< > 0 

are independent identically distributed random errors. Since we cannot assume tha t 

E e,- = 0, we will t ry to find some alternative to the method of least squares for es t imat ing 

/3. To this end we will suppose firstly tha t the random errors e,- are exponential ly 

dis tr ibuted with expectat ion 6. The density of j / i , . . . , yn is 

f(yu...,yn-,l3,e)=\9~nM-e~1pyi-X<l~)) if*>x./3foralH = l,...1n; 
I 0 otherwise. 

Therefore, the maximum likelihood est imate b n of /3 can be computed by maximizat ion 
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of x n b on a set Mn defined by 

Mn = {b e R* :x<b < j/,-, i s l n } , 

where 

x n = — > x,. 
1=1 

M a x i m u m likelihood est imate of 6 is given by 

tn = yn-x'nbn, 

where 

yn = - ^ y , 
1=1 

Similar problem for autoregressive process AR(2) was solved by Andel [1,2]. He proposed 
an e s t imate which is similar to b n . 

To show some properties of the est imator b n we will give an example. Let (3 = 

(<*,/?)', X; = ( l , x , ) ' , where 

/ xL, ieh = 
x<• = { , [ xv, i e iv = 

= {mv + \,..., mv Ą-k), _ 

{mv + k + 1 , . . . , mv + m), 

XL < xv are given reals and k, m, r are given integers. Let us have n = m(r + 1) > k 

observations y . , . . . ,yn. An est imate (a, b)' of («,/?)' is in M n only if 

and 

a + 6.T/, < 1/i,, where yL = miny, 

a + t i j ; < t/y, where yv = minyj . 
ie/c/ 

T h e maximizat ion of a + be over M n for every c € (x^, xy ) , especially for c = x n , implies 

tha t the last two inequalities must be fulfilled as equalities. It follows that the points 

(xL,yL), (xu,yu) must lie on the fitted line a,, + bnx. Then 

K = ^^ 
xv - a 

Let us define 

ev = min e; = yu — a — /3xv-
ieh 

From the well known properties of exponential distribution it follows that the random 

variables ex, and ey are independent and exponentially distributed with expectat ions 

0 , g 
fc(r+l) a ,K (m-A;)(r + l) ' 
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respectively. Considering 

it follows that 

Xv -xL 

eu ~ eL 

E1.-Ѓ+ » ' ' ' ' 
xrj — xL r + 1 V m — k kj" 

*,*.-(-i LVff ' Y+(i 
\xu-Xt,r + lJ \\m-kj \k 

„SE.....-I—LY ш + a v • xu~xLr-\-\J \\m — kj \k J k(n — k) J , 

E on = a + — — 1 , 
H; - i i r + 1 \ fc m — kj 

- - ( ^ ^ ) * ( ( ^ ) ^ ( T ) J ) -

« S E ^ 2 ( ^ z ^ T ) ! ( ( ^ ) ' + ( ^ - ^ . 

The estimate 6n is unbiased only for m = 2£. Because of zj, < xy, the estimate an 

is biased in this case. Therefore, at least one of the estimates an, bn is biased. But 
both of them are asymptotically (r —> oo) unbiased and their variances tend to zero. 
Therefore, the estimates an, bn are consistent estimates of a, fl. All these properties are 
valid for the estimates anc, bnc defined by maximization of a + be on the set Mn, where 
c € {xL,xy). The assumption on the exponential distribution of e,- enabled us to find an 
explicit expression of the characteristics of estimates an, bn. In the following part of the 
paper we will assume more general assumptions on distribution of e„ therefore we will 
prove only a strong consistency of the proposed estimates. 

2. ASSUMPTIONS ON THE RANDOM ERRORS 

Let us suppose that the following assumptions are satisfied: 

(A) Let e j , . . . , e„ be independent identically distributed random variables. 

(B) Let P[e, > 0] = I. 

(C) Let P[0 < e, < e] > 0 for all e > 0. 
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L e m m a 1 . The constant c = 0 is a limit point of { e i } 0 ^ with probability 1. 

P r o o f . Let e > 0 be a given number. Let us consider the events 

G; = { w : 0 < e, < e } , i = 1 , . . . . 

From the assumptions (A) - (C) it follows that P[G,] = 6 > 0 for all i. The events 

G\, G . , . . . are independent and £ ] £ i P[G,] = oo. Borel-Cantelli lemma yields tha t 

infinitely many Gi occur with probability 1. O 

3. ASSUMPTIONS ON T H E REGRESSORS 

Investigating asymptot ic properties of b„ we will use a modified concept of the limit 

point of { x , } g ] . A point z € Rk is called a Q+- l imit point of the sequence {x,} 0!] if and 

only if there exists an infinite subsequence {x^}00.] and real numbers 0 <J Xj < 1 such 

tha t 

lim Xj Xi} = z. 

Our definition differs slightly from the definition by Wu [5] because we accept only pos

itive numbers Xj. The concept of <3+-limit point allows us to deal with unbounded se

quences. For example let x, = (1 , ( —l) ' i ) ' . The vectors (0 ,1) ' or (0, —1/10)' are examples 

of Q + - l imi t points of this sequence. 

T h e set of all Q+ - l imi t points of { x , } g ] will be denoted by Z. Let us consider 

M0 = P | {b £ Rh : z'b < z'/3} = (3 + M, 
Z62 

where 

M= f) {aeR*:z 'a< 0} . 
ze.z 

The set M is an intersection of closed half-spaces, therefore M is a closed convex cone. 

T h e set of all vectors c € R*-' with property that the function / ( x ) = c 'x is minimized 

on the convex set M for x = 0 is equal to 

M* = {c e Rh : c 'a > 0 for every a <E M } . 

M* is called a dual convex cone of the convex cone M. 

Let us denote 

K = < c e Rk : c = y~] ^ziy f°r s o m e Aj,. . . , Ar > 0, Zj , . . . ,z r € z, r e N > . 

onvex cone. Therefore it follows 

= { a € Rk : a ' ( - c ) > 0 for all c € A'} 

= I a 6 R* : a' ( ] T Aft ) < 0 for all A, > 0, Z, € Z,reU 1 

The set K is a convex cone. Therefore it follows 

( - A ' ) * = { a € Rk : a ' ( - c ) > 0 for all c € A'} 

= { a Є Rfc : a ' z < 0 f o r all z Є Z) 

= M. 
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Let us denote the closure of a set C by C, the interior of a C by C° and the affine 

subspace of Rk defined by vectors V], . . . , v m by A4(v 1 ; . . . , v,„). For every convex 

cone C it is true that C C 6'** = C, therefore 

{_My = ( - ( - A ' ) T = K" = K. 

We are interested in situations where a = Ois the only one point of maxima of function 

c 'a on M. This property reflects the shape of the cone. A convex cone C is said to be 

pointed if C does not contain x and —x at the same t ime for every nonzero x . 

L e m m a 2 . Let C be a convex cone in R*. Then we have 

(i) If C has an interior point, then C is pointed, 

(ii) If C is closed and pointed, then C* has an interior point. 

(iii) If C is closed and pointed, then there is some p _ Rk, such tha* p ' x > 0 for all 

nonzero x _ C. 

For the proof see [3, T h m . 3.13]. a 

L e m m a 3 . If the cone K is pointed, then there is some q 6 Rk, such tha t q 'c < 0 

for all nonzero c _ K. 

P r o o f . The assertion of the lemma follows from Lemma 2 (iii), if we take C = —K.O 

Now we can s ta te basic assumptions on the sequence { x , } ^ j for consistency of some 

est imates of /3. 

(D) There exist k linearly independent Q+- l imit points of sequence { x ; } g j . 

(E) The convex set K is pointed. 

L e m m a 4 . Let assumptions (D), (E) be satisfied. A point c € Rk is an interior point 

of K if and only if there exist some Ai > 0 , . . . , Ar > 0, Z\ _ Z, . . . , zT _ Z, r £ N such 

that 

dimyVf(z, , ..., zr) = k (2) 

and 

c = J^ A.z,-. (3) 
i= l 

P r o o f . Let the assumptions of the lemma be satisfied. Then it follows from (3) tha t 

c 6 K. Let vectors Z\,...,Zk be linearly independent. Let us denote Z = ( z i , . . . , z „ ) . 

The mat r ix Z is regular, therefore 

max HZ-'sH2 _ max s ' fZZ'Y ' s = 62 > 0. 
Ils||=,n ||s||-.i 
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Let 0 < e < mini<j<t Xj/S and let us denote A/ = (A,, . . . , \k)'. The vector A/ +e Z_1s 
has only non-negative coordinates, hence 

c + es = Z(A7 + e Z _ 1 s ) + V^ A ^ 
i=k+\ 

is a non-negative linear combination of z , , . . . ,z r and c + es g K. The point c is an 
interior point of K. 

Now, let the existence condition of the lemma be not satisfied. It means that 

d\n\M(zi,...,zT) = d < k (4) 

for every positive combination (3). From (D) it follows that there exists some z r+i ~ Z, 
such that dimM(z\, • •. , z r + i )= d+l. If the point c were an interior point of K, then 
for sufficiently small e > 0 it would follow 

cj = c + ezr+i € K, 

c2 = c - ezr+i € K. 

Let Ar+i = e, then Ci = E;=i A,Z;. From the definition of cone K we can write 

c2 = £ ( A f / 2 ) z f , A f > 0 , zfEZ 

for some q > 0. (It can be proved that q < k.) But the vector c can be also written in 
the form 

c = I (c, + c2) . X > , / 2 ) z , + £ ( A f /2)zf. 
.=i 3=\ 

Equation (4) holds if for some of z(, t = l , . . . , r + 1, there exist <*,• > 0,i ^ t, i = 

l , . . . , r + l , and a f > 0, j = \,...,q, Ei=i «> + E*=i " f > 0 so that 

r+ l q 

Z,+ VJ «-.». + £ «f-f = °-
•#«. •'=! 3=1 

But from Lemma 3 there exists some q £ R * such that q'z < 0 for all non-null z € Z. 
Therefore we found the contradiction 

r+ l q 

0 = q'z, + ] T a.q'z,- + ^ a f q'zf < 0 
i#(, i=i j = i 

and the point c cannot lie in the interior of K. • 
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4. CONSISTENCY O F ESTIMATES 

We will introduce a modified est imate. Let b n c be a vector maximizing c 'b on M n and 

let us denote 

Nc= { b e R f c : c ' b > c ' / 3 } . 

The set Mn is an intersection of n closed half-spaces, therefore M n is a closed convex 

set. The same holds for Nc. For every b € Mn,n = 1 , . . . , we have (cf. assumpt ion (B)) 

xtf < x'i/3 + a = y{ 

therefore /3 € Mn D Nc. 

Let us define intersection of all sets M n , i .e. 

M0=f]Mn= lim Mn, 

L e m m a 5. If assumptions (A) - (C) are satisfied then M 0 C Mp almost surely. 

P r o o f . If b £ M 0 , then 

xjb < y; = x'i/3 + a, i = 1 , . . . . 

For every z £ Z there exist { . j } J l n 0 < Aj < 1, such that l im J _ 0 0 AjX^ = z. From the 

sequence of inequalities 

A_,x-tb < Xjx'i P + Aye.v, j = 1 , . . . 

we can select with probability 1 a subsequence (cf. Lemma 1) such that 

lim e, jr = 0. 

Then , in the limit, we get z ' b < z'/3 and therefore b 6 Mp almost surely. D 

T h e o r e m 1. Let the assumptions (A) - (E) be satisfied and let c € K". Then b n c 

is a consistent es t imate of /3. 

P r o o f . We will use Lemma 2 with C = M. We know that M* = -K has an interior 

point (e. g. c) , and hence the only maximum of c 'a on M is a = 0, and hence the only 

maximum of c 'b on Mp is b = /3. It follows tha t Mp C\ Nc = {/9}. But we know t ha t 

/? € M 0 Pi Nc and M0 C Mp a.s.. Then, the only limit point of {b n c } is /3 almost surely, 

therefore b n c is a consistent est imator of (3. D 

We have proved a consistency of b n c for every c 6 K". However, according to the 

motivation introduced at the beginning of our paper, we expect tha t the choice c = x„ is 

appropria te . Results of a simulation experiment (see Chapter 6) confirm well this choice. 

We are able to return to the est imate b n . The last assumption for its consistency is 

(F) Let l i m ^ o c x n = ^ € K". 
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T h e o r e m 2. Under the assumptions (A) - (F) b n is a consistent es t imate of /3. 

P r o o f . For sufficiently large n the vector x„ lies in K° and the assumptions of 

Theorem 1 are satisfied. • 

5. R E G R E S S I O N LINE 

Let us consider a model of regression line. In this special case k = 2, xt = ( l , x , ) ' , 

/3 = (/?i,/?2)', therefore the conditions (D), (E) and (F) can be simplified. 

Let us denote 

xL = liminf x,, xy = l imsupx , . 

It the sequence {x ,}?^ were not bounded from above (from below) then we define xu = oo 

(xL = —oo). Let x 0 be a finite limit point of { x , } ^ , . Then A ( l , x 0 ) ' for A > 0 are Q+-

limit points of { x , } ^ j . If xy = oo or xL = — oo then the corresponding <2+-limit points 

of { x i } g t are A(0,1) ' or A(0, —1)' for A > 0. Assumption (D) is not satisfied only if every 

Q + - l imi t point of { x , } ^ j is a multiple of some fixed vector. This can happen only in 

two cases: 1) if xL = xu = x 0 and x0 is finite; 2) if xL = —oo, xu = oo and there does 

not exist any finite limit point of { x ; } ^ , . Therefore, for regression line the condition (D) 

can be replaced by the condition 

(D') T h e r e exists a finite limit point of the sequence {x ,}°^ and simultaneously xL < xu 

holds. 

In th is case the cone K is generated by the <5+-limit points expressed in the following 

way: 

for a finite limit point x 0 of sequence {xi}°lt, 

for xL = — oo, 

for xu = oo. 

Evidently, the cone K (and then K, because K can always be generated by two Q+-

limit points only) is in the half-plane [0, oo) x R1. This cone is pointed except of the case 

when xL = —oo and xy = oo simultaneously. Therefore condition (E) can be replaced 

by the new condition » 

(E') At least one of the values xL or xy is finite. 

T h e o r e m 3 . Let conditions (A) - (C), (D') and (E') be satisfied. Then for any 

c £ (xL, xu) maximization of the function a + bc over Mn yields to a consistent es t imator 

of parameters a , /?. 

Condition (F) can be replaced by the condition 
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(F') Let limn_»00.fn = x0 £ (xL,xv). 

It is easy to verify that for a regression line the conditions (F) and (F') are equivalent. 

Theorem 4. Under the assumptions (A) - (C), (D'), (E') and (F') bn is a consistent 
estimate of parameters of a regression line. 

6. SIMULATION EXPERIMENT 

To verify properties of the proposed estimate a simulation experiment with the regression 
line 

m = A) + fi\Xi + e;, i = 1 , . . . ,n, 

for j30 = 0, /?i = 1 and n = 2ra, was made. To compare behavior of the estimate of slope 
/?i for different designs i ' i , . . . , «„, we choose the following designs: 

f 1, t = l , . . . ,m , 
A : xi = \ \ • \ 

{ —1, i = m + 1, . . . ,n\ 

B . , = f ( 4 i - 2 ) / n , t = l , . . . ,m , 
' \ 4 - ( 4 t - 2 ) / n , t = m + l , . . . , n ; 

c . f (4 i -2 ) /n , i = l , . . . ,m , 
\ —1, i = m + 1,.. . ,n. 

For each of the proposed designs it holds 

£>./n = 0, £>, | /n = l. 
.= i i=i 

The first ideas about the dependence of behavior of the estimate on the distribution 
of error term can be obtained from the three following choices of distributions: 

E: exponential with expectation 1; 

U: uniform on (0,2i/3); 

AN: absolute value of N(0,7r/(7r - 2)). 

In all three cases Vare; = 1 and assumptions (A), (B) and (C) are fulfilled. 
The sensitivity of the estimate of regression line slope on the choice of the parameter c 

(see the definition of b n c estimate) is shown by computation of estimates for c = 0 (= x), 
c = —0.5 and c = 0.5. For each combination of design, distribution of error term and the 
constant c, 1000 simulations were computed for n = 10, 20, 50 and 100 and only 100 
simulations were computed for n = 200. 

In Table 1 standard deviations of the slope estimated by the proposed method are 
compared with standard deviations of the slope estimated by the least squares methods 
that can be computed directly. It is obvious that for medium values of n the new estimate 
has smaller variability. 
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Table 1: Standard deviations of the slope. 

71 

Pгoposed estimate 
LS 

71 

c = -0.5 c = 0 c = 0.5 LS 
71 E U AN E u AN E U AN 

LS 

10 0.139 0.339 0.219 0.142 0.322 0.223 0.138 0.345 0.226 0.316 
20 0.070 0.197 0.127 0.071 0.195 0.126 0.074 0.200 0.137 0.224 

A 50 0.028 0.093 0.055 0.030 0.091 0.054 0.027 0.086 0.057 0.141 
100 0.014 0.046 0.030 0.014 0.046 0.029 0.014 0.044 0.030 0.100 
200 0.008 0.028 0.012 0.006 0.021 0.016 0.009 0.020 0.017 0.071 
10 0.195 0.437 0.320 0.161 0.395 0.295 0.216 0.434 0.304 0.275 
20 0.102 0.278 0.188 0.084 0.251 0.148 0.113 0.270 0.184 0.194 

B 50 0.044 0.133 0.087 0.036 0.117 0.068 0.042 0.128 0.083 0.122 
100 0.021 0.069 0.044 0.0-17 0.059 0.033 0.022 0.076 0.046 0.087 
200 0.011 0.035 0.021 0.009 0.031 0.015 0.010 0.038 0.020 0.061 
10 0.158 0.366 0.251 0.159 0.389 0.256 0.177 0.392 0.274 0.294 
20 0.078 0.230 0.141 0.080 0.231 0.138 0.102 0.266 0.169 0.207 

C 50 0.032 0.104 0.062 0.031 0.096 0.062 0.044 0.111 0.081 0.131 
100 0.017 0.054 0.030 0.015 0.053 0.032 0.021 0.067 0.042 0.093 
200 0.009 0.023 0.015 0.009 0.023 0.017 0.012 0.033 0.016 0.065 

Table 2: Biases of the slope. 

n 
c = -0.5 c = 0 c = 0.5 

n E u AN E u AN E u AN 

10 0.000 0.002 0.005 0.007 0.018 0.013 -0.002 -0.003 -0.001 
20 -0.001 0.004 0.004 -0.001 0.003 -0.003 0.001 0.000 0.001 

A 50 0.001 -0.003 -0.001 -0.002 -0.004 0.000 -0.000 -0.002 -0.003 
100 0.001 -0.001 0.000 -0.000 0.000 -0.002 -0.001 0.001 -0.001 
200 0.000 0.001 -0.002 0.000 0.001 0.002 -0.000 -0.002 -0.001 

10 -0.051 -0.137 -0.094 -0.003 0.010 0.008 0.070 0.136 Ö-.076 
20 -0.041 -0.122 -0.069 -0.004 0.007 0.003 0.046 0.117 0.076 

B 50 -0.016 -0.043 -0.032 -0.002 -0.000 -0.000 0.015 0.050 0.032 
100 -0.007 -0.022 -0.016 0.000 -0.000 -0.002 0.009 0.029 0.019 ' 
200 -0.006 -0.013 -0.009 -0.001 -0.001 -0.000 0.003 0.013 0.005 

10 -0.011 -0.007 -0.008 -0.001 -0.033 -0.015 0.057 0.121 0.080 
20 -0.003 0.001 -0.003 -0.003 -0.012 -0.007 0.036 0.113 0.067 

C 50 -0.001 -0.008 -0.003 -0.001 0.001 -0.004 0.015 0.037 0.031 
100 -0.001 -0.003 -0.001 -0.001 -0.003 -0.000 0.008 0.023 0.016 
200 -0.002 -0.001 -0.001 0.000 -0.002 0.000 0.006 0.012 0.006 
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In Table 2 biases of the slope est imated by the proposed method are given. It is obvious 
t h a t the choice of c different from c = x can cause a bias of the proposed est imate. In 
our experiment the es t imate is unbiased under an inappropriate choice, of c only in the 
case t h a t the es t imate is not dependent on the concrete value of the constant from a 
given interval ( i .e . design A, design C for c G (—1,2/n)). 
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