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KYBERNETIKA- VOLUME 21 (1985), NUMBER 6 

STATE ESTIMATION IN DISCRETE-TIME 
DISTRIBUTED PARAMETER SYSTEMS UNDER 
INCOMPLETE PRIORI INFORMATION ABOUT 
THE SYSTEM 

JOZEF KORBICZ 

The algorithm of the state estimation is presented for linear discrete-time distributed parameter 
systems in case of incomplete priori information concerning system parameters and statistic 
characteristics of noises. The algorithm is based on the correction of the covariance matrix of 
the estimation error taking into consideration a real, not theoretical, error. Digital simulation 
results confirm the algorithm stability and its practical utility. 

1. INTRODUCTION 

The basic state estimation method in lumped [1], [2] and distributed parameter 
systems (DPS) [3], [4] is the Kalman filter method. Numerous applications of this 
method in various branches of science, technology confirm a wide range of its pos­
sible use [1], [5]. Practical realizations of the Kalman filter (see [6], [7], [8]) show 
that the real estimation error expressed by the covariance matrix exceeds considerably 
the values calculated theoretically. The basic reasons for the divergence of the 
optimal filter may be, among other things, as follows: i) inaccuracy of the mathemati­
cal model of the system applied at filter synthesis, ii) calculation errors of digital 
systems, iii) lack of complete information concerning noise characteristics acting 
on the dynamic system and the measurement system. The above mentioned resons, 
except for calculation errors, are errors resulting from incomplete priori information 
about the real system. 

The problem of filter estimates convergence for lumped parameter systems was 
solved by means of two various methods. The first one consisted in synthetizing 
adaptive filter algorithms which make it possible to obtain not only state vector 
estimates, but also parameter estimates [9] or statistical characteristics of noises 
[10] too. The drawback of such a solution consists in considerable complication of 
the algorithm filter calculation program. The adaptive Kalman filter for DPS [10] 
is similarly disadvantageous where characteristics of noises distributed in space are 
indentified. 

470 



From the calculation complexity point of view, the other methods based on 
"weighing" the covariance matrix are more advisable. These methods consist in 
correcting the covariance matrix or the filter gain matrix in case where the real 
values of these matrices differ from those calculated theoretically. 

The aim of this paper is to propose a practical algorithm of the state estimation 
for multi-dimensional linear discrete-time DPS in case of incomplete priori data 
concerning both system parameters as well as the noises acting on the system. Ap­
plying the covariance matrix correction method the stability of the given algorithm 
was shown on the simple example of digital simulation. 

2. PROBLEM STATEMENT 

Consider a linear discrete-time stochastic DPS described by 

(1) F(x, k + 1) = SexY(x, k) + A(x, k) U(x, k) + B(x, k) W(x, k), 

xeQ, k=l,2,...,K 

defined on the open spatial domain Q of an r-dimensional Euclidean space Er, 
Q c Er, with smooth boundary dQ. Above k = 1,2, ...,K is the discrete time, 
x is the spatial coordinate r-dimensional vector, Y(x, k + 1) is the n-dimensional 
state vector of the system, U(x, k) is the p-dimensional control vector, <gx is a linear 
spatial (n x n) matrix differential operator, A(x, k) and B(x, k) are (n x p) and 
(n x q) known matrices. W(x, k) is the Gaussian stochastic process with zero mean 
and the covariance matrix 

(2) Z[W(x, k) WT(y, I)] = Q(x, y, k) Skl, x, y e Q 

where Skl is the Kronecker delta function, E[*] denotes the expectation operator 
and " T " denotes the transpose of a matrix. 

The initial and boundary conditions for (1) are given by 

(3) Y(x,k)\k = 0= Y0(x), xeQ 

(4) pxY(x, fc) = 0 , xedQ, k=l,2,...,K 

where fix is a linear spatial (n x n) matrix differential operator while Y0(x) is the 
Gausssian vector-function with mean %(x) and the covariance matrix 

(5) E[(Y0(x) - Y0(x)) (Y0(y) - %(y))^ = P0(x, y) . 

It is assumed that the equation (1) with boundary (4) and initial (3) conditions 
have the uniquely solution depends continuously on the initial, boundary and control 
data i.e. the problem is well posed in the sense of Hadamard. 

The state Y(x, k) is estimated from measurements which are taken at the select 
discrete N points xJ, j = 1,2, ...,N of the coordinate space Q = Q u dQ such as 

(6) Z(k) = H(k) YN(k) + V(k) 
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where Z(fc) is the miV-dimensional observation vector, YN(x) is the niV-dimensional 
state vector at the measured points, H(k) is (mN x nN) known matrix which charac­
terizes the measurement system, V(fc) is the Gaussian white noise with zero mean 
and the covariance matrix 

(7) E[V(fc) VT(/)] = Rik) 8kl. 

It is also assumed that the stochastic processes W(x, k), V(k) and Y0(x) are mutually 
independent i.e. 

(8) B[W(x, k) V\l)] = 0 , E[WKx, k) YT(y)] = 0 , E[V(fc) Y0
T(y)] = 0 

We assume that both parameters of mathematical model (1), i.e. the matrices 
A(x, k), B(x, k) and parameters of the operator SCX, as well as the covariance matrices 
Q(x, y, k) and R(k) are approximate values of the real system. The problem consists 
in the synthesis of a stable algorithm of the state estimation for the system (1) —(8) 
with incomplete priori data of its parameters and stochastic characteristics of noises. 

3. PROBLEM SOLUTION 

3.1. Optimal filter in case of complete priori data 

Optimal algorithms filter for this case in the various manner by many authors 
were derived. So, Watanabe (see [11]) used Wiener-Hopf theory and the discrete-
time innovation theory to derive discrete-time distributed filtering algorithm. Ana­
logous results were obtained by Omatu (see [12]). Based on an unibiased and mini­
mum variance estimation error criterion, the optimal filter was derived. According 
to this work [12] the optimal algorithm filter can be described by the set of equations 

(9) f(x, k + 1 | k + 1) = <£xt(x, k\k) + A(x, k) U(x, k) + 

+ KN(x, k + 1) [Z(fc + 1) - H(k + 1) JS% Y(k | fc)] 

(10) KN(x, k + 1) = PN(x, fc + 1 | fc) HT(k + 1). 

. [R(k + 1) + H(k + 1) PNN(k + 1 | fc) Hr(k + l ) ] " 1 

(11) P(x, y, k + 1 | fc) = <£XP\X, y, k \ fc) £?] + B(x, fc) Q(x, y, k) Br(y, fc) 

(12) P(x, y, fc + 1 | fc + 1) = 

= P(x, y, k + 1 | fc) - KN(x, fc + 1) PT
N(y, fc + 1 | fc) 

with boundary conditions 

(13) Pj(x,k + l | f c + l ) = 0 , xedQ 

(14) pxP(x, y, k + 1 | fc) = 0 , xedQ, yeQ 

(15) P(x, y, k + 1 | k)pT = 0 , yedQ, xeQ 

All 



where Y(x, fc + 1 | fc + l) is the vector estimate of Y(x, k + l), KN(x, /c + l) is the 
filter gain matrix at the measured points xJe Q, j = 1,2, ..., N i.e. 

(16) KN(x, fc + 1) = [K(x, x\k + 1) K(x, x\ fc + l) ... K(x, xN, k + 1)] 

while K(x,xJ, k + 1), j = 1,2, ...,N is an gain matrix. P(-) is a filtering error 
covariance matrix given by 

(17) P(x, y,k+ 1 | fc + 1) = E[8Y(x, fc + 1 | fc + 1) <5YT(y, fc + 1 | fc + 1)] 

(18) P(x, y, k + 1 | fc) = E[<5Y(x, fc + 1 | fc) SYr(y, fc + 1 | fc)] 

(19) PN(x, fc + 1 | fc) = [P(x, x\ k + 1 | fc) P(x, x2, fc + I | fc) ... 

... P(x, x*, fc + 1 | fc)] 

(20) Pm(k + 1 | fc) = 

~P(x', x1, fc + 11 fc) P(x\ x2, k + 1 | fc) . . . P(x\ xN, k + 1 | fc)" 

P(xN, x1, k + 1 | fc) P(xN, x2, k + 1 | k) ... P(xN, xN, fc + 1 | k) 

and i f*[ - ] = diag [.Sfxi[-] i f x 2[-] ... i f x N [ - ] ] is the discrete-space operator at 
the measured points. Above <5Y(x, fc + 1 | fc + l) = Y(x, fc) - Y(x, fc + 1 | fc + 1) 
and <5Y(x, fc + 1 | fc) = Y(x, k + 1) - Y(x, fc + 1 | fc) are filtration error and one-
step ahead prediction error, respectively. 

Equations (10) —(12) can be solved off-line while filter realization (9) —1̂ 12), 
since their solution depends only on priori data of the system, i.e. matrices A(x, fc), 
B(x, fc), H(k), R(k), Q(x, y, fc) and operator ifx form. This solution does not depend 
on measurements data Z(fc) and it is a theoretical solution. Such dependence is not 
necessary in the case when mathematical model of system (1) —(8) corresponds 
completely to the real system. From the practical point of view this assumption is 
difficult to realize at least of two reasons. Firstly, while determining a mathematical 
model of the real system it is theoreticaly impossible to take into consideration all 
static properties of the system what always leads to certain simplifications. Secondly, 
a mathematical model corresponding to a real system is, as a number of applications 
show (see [13]), complicated and not convenient system at the synthesis of control 
systems. The activity of the control system designer consists in compromising 
between a precise and at the same time simple model. 

3.2. Suboptimal algorithm in case of incomplete priori data 

It follows from the above that while practically realizing the algorithm of the state 
estimation the problem of a greater or smaller indefinitness of priori data about the 
system almost always arises, and this turn is the reason of the filter estimates di­
vergence. 

The filtering covariance matrix may be corrected by introducing a definite cor-
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rection coefficient S(fc). The correction coefficient is equal S(k) = 1 when the esti­
mates are convergent and S(fc) > 1 when they are divergent. To determine coef­
ficient S(fc) we shall use the convergent condition of the optimal filter estimates 
expressed by an inequality (see [14]) 

(21) XT(k + 1) X(k + 1) = y Tr{E[X(fc + 1) XT(k + 1)]} 

whereX(k + 1) = Z(fc + 1) - H(k + 1) YN(k + 1 [ fe) » H(k + 1) dY^k + 1 | fc) + 
+ V(fc + 1) is the innovation process, y is the coefficient (y > 1), Tr{ •} is the operator 
of matrix trace {•}, SYN(k + 1 | fc) = YN(k + l) - YN(k + 1 | fe) is the filtered 
error at the measured points. 

It follows from the definition of the innovation process [15] that it is a stochastic 
process and its realizations are measurable. It can be proved in a simple way that it 
is the white noise with the zero mean and covariance matrix given by (see [12], [15]) 

(22) E[X(k + 1) XT(k + 1)] = 

= H(k + 1) PNN(k + 1 | fc) HT(k + 1) + R(k + 1). 

If we assume for convergent condition (21) that y = 1, it will be the case of the 
greatest sensibility of criterion. In this case inequality (21) takes the form of an 
equality 

(23) XT(k + l)X(k + 1) = Tr{E[X(fc + I) XT(k + l)]} 

from which it follows that 

(24) X(k + 1) XT(k + 1) = E[X(k + 1) XT(k + 1)] . 

It is necessary to pay attention to the fact that the left sides of conditions (21), (22) 
and (24) can be determined on the basis of measuring innovation process and the right 
sides - by using property (22). From (22) and (24) follows 

(25) X(k + 1) XT(k + 1) = H(k + 1) PNN(k + 1 | fe) HT(k + 1) + R(fe + 1) . 

In the case when estimates are divergent the correction of the filtering covariance 
matrix may be made by multiplying it by the scalar coefficient S(fc), i.e. 

(26) P(x, y, k + 1 | fc) = S(fc + 1) SexP(x, y, k\k)SfT + 

+ B(x, fc) Q(x, y, fc) BT(y, fc). 

For calculating of the coefficient S(fc + l) rewritten the equation (26) for measured 
points only, i.e. 

(27) PNN(k + 1 | fc) = S(fc + 1) SS*PNN(k \k)Sel + BN(k) QNN(k) BT(k) ' 

where BN(k) = [B(x\ fc) B(x2, fc) . . . B(xN, fc)] 

'Q(x\ x\ fc) Q(x\ x2, k) ... Q(x\ xN, k)~ 
(28) QNN(k) = 

Q(xN, x\ k) Q(xN, x2, k) ... Q(xN, xN, k) 
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Now substituting (27) to (25) gives 

(29) S(k + 1) H(k + 1) <?*PNN(k | k) <?lHr(k + 1) 

= X(k + 1) Xr(k + 1) - H(k + 1) x 

x BN(k) QNN(k) BN(k) H\k + 1) - R(fc + 1) 

X 

э 
Initial condition Vx),P

0
U,y),y / 

X(K+D = z(k+D-H(k+D«
)(
 Y

M
(klk) 

ř;.E(k+1|k)=íexíM(klk)if).
T

+BB(k)QNS(k)B5(k) 

G K K (k + D=fl(k + DP H 1 J (k+i |k)H T (k + D + R(k+D 

Tr{x(k + DX T (k+D-H(k+1)B н (k)Q и ы (k)B T (k)H T (k + D-R(k+1)] 

T r ( н ( k + 1 ) X x P (k |kW T H T (k + 1)} 

P(x,y,k+1]k)=S(k + DX x ř(x,y,k lk)X T +B(x,k)Q(x,y,k)BT (y,k) 

K H (x ,k + D=P, I (x ,k + 1 |k)H T (k+l) [R(k + D+H(k + DP.. H (k + l | k )H T (k + D]" . 1 

P(x,y,k+1 Ik+D-Ptx.y .k+lIkí-K^x.k+DHÍk+DPnty.k+l |k) 

í ( x , k + 1 | k + D = í x 5 ( x l k l k ) + A ( x , k ) U ( x , k ) + K í j ( x ) k + D X ( k + D 

Q STOP ^ 

Fig. 1. Practical algorithm of the discrete-time distributed filter. 

475 



Since S(k + l) is a scalar, then determining the traces of the right and left side of 
equality (29) we get 

(30) S(k + 1) = 

- Tr{X(fc + l)XT(fc + 1) - H(k + 1) BN(k) QNN(k) BT
N(k) HT(k + 1) - R(k + 1)} 

Tr{H(fc + 1) J?*PNN(k | fc) SflHT(k + 1)} 

Finally, the algorithm of the discrete-time distributed filter with the correction of the 
filtering error covariance may be presented as on a block diagram Fig. 1. According 
to the block diagram in case of satisfying the convergence condition (21) the optimal 
filter algorithm is realized and S(k + l) = 1. In the other case the filtering covariance 
matrix Pjvjv(fc + 1 | k), the filter gain KN(x, k + l) and the covariance P(x, y, k + 
+ 1 | fc + 1) are corrected. The covariance Pjvjv(fc + 1 | fc) is multiply by S(k + 1) > 
> 1 and then P(x, y, k + 1 | fc), KN(x, k + 1) and P(x, y,k + l\k) are calculated. 

4. EXAMPLE 

As an example we shall consider a system described by a thermal conductivity 
equation in the form 

/ ^ <3Y(x, t) , 32Y(x, t) TT, , , „,, , 
(31) — i - U = a2 ^ ^ + c U(x, t) + b W(x, t) 

dt dx2 

with boundary and initial conditions 

(32) Y(0, t) = Y(L, t) = 0 , 0 = x ^ L, L = 1 

Y(x,0|t = o = Y0(x) = sin (TIX/L) 

The measurement system is described by an equation 

(34) Z(t) = YN(t) + V(t), N - 5 . 

The parameters and input deterministic signal U(x, t) in equation (31) are: a2 = 1, 
b = 1-5, c = 10, and U(x, t) = l(t). Noise characteristics W(x, t) and V(t) correspond 
to the expressions: R(t) = diag [c2,] = diag [0-032], Q(x, y, t) = a2

w = 5 . 10"3 . 
For exact derivation of the discrete-time model of the system (31) it is necessary to 

apply a rigorous approach, for example given by Watanabe (see [11]). Here will be 
consider some simple approach only. Using the difference scheme 

(35) dY(x, t) ^ Y(x, k + 1) - Y(x, k) 

• dt At 

the discrete-time model of the system (31) may be described by 

(36) Y(x, k + 1) = S?xY(x, fc) + cU(x, fc) + bW(x, k) 

where JSfx[*] = [•] + Ata2 32[-]/ax2, c = Jfc, 5 = Atb, At = 0-01 is the sampling 
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interval. Differential operator of the system (31) £"x['] = fl2(d2[*]/dx2) is a self-
adjoint and has an eigenvalues A; and an eigenfunction ^,(x) as follows: A, = (irca)2, 
if/J^x) = ^/(2) sin (iroc). The truncation number of the expansion coefficient was 
applied as M = 5. 

Dynamic system (31), measurement system (34) and the filter (9) —(15) and (21), 
(27), (30) were simulated on the computer EC-1022 using Fourier's method. While 
the realizing the filter it was assumed that system parameters and noise characteristics 

Y(x,k), Y(x,kik) 

Z(xik) 

1.4 -

1.3 

1.2 

1.1 

1.0-

0.9 

0.8 

0.7 
c.б H 

0.5 

0.4 

0.3 

4 

x = 0.4 ; PQ(x,y)= 0.2 

x 4 = 0 . 4 ; j = 4 

10 12 14 16 20 22 24 26 28 30 32. 

Fig. 2. Dynamic of the estimation process: 1) the real signal, 2) the measurement signal, 3) the 
state estimate of the optimal filter at the exact parameters, 4) the state estimate of the optimal 
filter at the approximations parameters, 5) the state estimate of the filter with correction at the 

approximations parameters. 

differ from the real values and are: a2 = 2, b = 0-5, c = 0, a], = 10" 2 , aw = 
= 8 . 10" 4 . Simulation results are presented in Fig. 2. It follows from Fig. 2 that in 
the case when system parameters and parameters assumed in the filter are equal 
then the estimate Y(x, k) is convergent, i.e. the filter is stable. The operation of the 
modified filter algorithm presented in this paper can be evaluated comparing simula­
tion results (see signals 4 and 5 in Fig. 2). Owing to the application the correction 
method of covariance matrix, divergent filter estimates become convergent. 
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5. CONCLUSIONS 

A synthesis of control systems for a great number of complex technological objects 

of power industry, (nuclear power), chemical, metallurgical, cement and others due 

to required control quality, should be based on the results of a control theory of 

stochastic DPS [16]. One of the basic requirements of control system synthesis is 

state or/and parameters estimation. The filter algorithm presented in this paper 

makes it possible to avoid basic difficulties connected with practical realization of 

the distributed filter. Reducing the requirements concerning the precise knowledge 

of the mathematical model and noise characteristics give the possibility to realize 

a stable algorithm. In the our algorithm the covariance matrix, similarly as in an 

optimal algorithm for linear systems, can be determined off-line and only its cor­

rection and the estimates should be determined on-line since they depend on the 

measurement data. 

Another practical problems connected with the distributed filter realization for 

the DPS are: the state estimation and measurement location for the non-linear 

systems. The works in this direction will be presented later. 

(Received January 11, 1984.) 
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