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ON SOME PROPERTIES OF THE CLASS V(B, b, a) 

J. FUKA, Praha, Z. J. JAKUBOWSKI, Lodž 

(Received June 28, 1996) 

Summary. Let V denote the well known class of functions of the form p(z) = 1 + qi z +. .. 
holomorphic in the unit disc D and fulfilling the condition Re p(z) > 0 in D. Let 0 < b < 1, 
b < B, 0 < cv < 1 be fixed real numbers. V(B,b,a) denotes the class of functions p € V 
such that there exists a measurable subset F of the unit circle T, of Lebesgue measure 2JTQ, 
such that the function p fulfils Re p(e'°) >. B a.e. on F and Re p(e'°) > b a.e. on T \ F. 
In this paper further properties of the class V(B,b,a) are examined. In particular, the 
investigations included in it constitute a direct continuation of papers [6]-[8] and concern 
mainly the form of the closed convex hull of the class V(B, b, a) as well as the estimates of 
the functional Re{e'Ap(2)}, 0 ^ ; 6 D, A G (-tt.it), p £ V(B,b,a). This article belongs 
to the series of papers ([l]-[8]) where different classes of functions defined by conditions on 
the circle T were studied. 

Keywords: Caratheodory functions, closed convex hull, estimates of functionals 

MSC 1991: 30C45 

1. INTRODUCTION AND GENERAL REMARKS 

As usual, we denote by C the complex plane, by D = {z: \z\ < 1} the unit disc 
and by T = {z; \z\ = 1} the unit circle. Let S(M), M > 1, denote the class of 
functions of the form 

(1-1) f(z) = z + a2z
2 + ... + anz

n + ... 

holomorphic, univalent and such that | / ( ; ) | < M in D and let 5 = S(+oo). Denote 
by Vp, 0 ^ /3 < 1, the class of functions of the form 

(1.2) p(z) = l + qiz + ... + qnz" + ... 

holomorphic in D with Re p(z) > (i for z G D, and let V — V0. 
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As is well known, in the geometrical theory of functions one has studied, among 

other things, properties of selected classes of functions of the form (1.1) or (1.2). 

These classes were usually defined by imposing suitable geometrical conditions (e.g. 

the convexity of the domain / ( D ) ) or analytic ones (e.g. Re f'(z) > 0) in the disc 

D . One can also find papers (for example [10]) in which functions (1.1) of the class 

being defined were subjected to a condition they should satisfy on the circle T or for 

z £ D with modulus sufficiently close to 1. 

The article belongs to the series of papers [l]-[8]. In these papers, some classes of 

functions holomorphic in D (of form (1.1) or (1.2)) defined by two different conditions 

on the unit circle T were studied. 

In the paper [1] the authors investigated the class S(M,m;a), 0 < m <. M < oo, 

0 <. a ^ 1, of bounded functions of form (1.1) such that there exists an open arc 

la = Ia(f) C T of length 2lta such that , for each z\ 6 Ia, 

I S X D ^ J / W K M 

and for every z2 £ T \ Ia 

E5b9,-*«|/(*)|<»n-
Of course, S(M,m; 1) = S(M), M > 1, and S(M,m;0) = S(m), m > 1. 

In the paper [2], the class P(B,b;a) C V, 0 < 6 < 1, 6 < B, 0 < a < 1, of 

functions of the form (1.2) fulfilling the conditions 

(1.3) 

liminf Rep(z) > B for each Z\ € / „ 

liminf Rep(z) >. b for each z2eT\Ta 

D3z-,z2 

was introduced, Ia = Ia(p) still being an open arc of length 2na of the circle T. 

Evidently, V(B, b; 1) = VB, b <. B < 1 and P(B, b; 0) = Vb, 0 < 6 < 1. 

The idea of using open arcs of T of lengths 2na and 2^(1 — a) in the above 

definitions has certain analogies in the papers by P. T. Mocanu (see [9] and [1]). 

In the subsequent articles ([3]-[8]), various subclasses of the family P were again 

considered, with the difference that in place of arcs various subsets F of the circle 

T appeared. It is also known that if p 6 P, then Rep(z) has nontangential limits 

Rep(e l S) a.e. on (—it,it). So, instead of (1.3) the conditions 

(1.4) Rep(e i 9) >- B a.e. on F and Rep(el0) >- b a.e. on T \ F 

were adopted. 

In particular, in the preprint [3] F is a given closed subset of T of Lebesgue measure 

2TCO and the class P(B,b,a;F) of functions (1.2) satisfying conditions (1.4) on this 

set F is considered. 
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In [4] and [5] F is still a given closed subset of T of Lebesgue measure 2iia but the 

authors consider the class V(B,b,a;F) of functions (1.2) satisfying conditions (1.4) 

on the set F or on the set F r = { f e T ; e~~'Tf £ F} for some r = T(P) £ (—rc,rc). In 

reports [4], [5] they also consider the class 

V(B,b,a) = {JV(B,b,a;F) 
F 

where F C T satisfies the conditions mentioned above. 

Since the rotations (Ia)r of the arcs Ia are admissible already in the class 

V(B,b,a), whereas /„ are closed sets, therefore the replacement of the arcs Ia by 

arbitrary closed sets of measure 2TM seemed natural. What is more, the fulfilment 

of suitable conditions at each point of the set was abandoned and replaced by the 

fulfilment of them almost everywhere. 

It turned out ([6]) that all main results from [4], [5] are preserved when, in the 

above-mentioned definitions of the classes, in place of F we take a given measurable 

subset of the unit circle T of Lebesgue measure 2HQ. The analogous assumption 

about the sets F is used also in paper [8]. The following definition was adopted 

there. 

Def ini t ion 1.1. Let 0 ^ b < 1, b < B, 0 < o < 1 be fixed real numbers. By 

V(B, b, a) we denote the class of functions p 6 V such that there exists a measurable 

set F = F(p), F C T , of Lebesgue measure ?7i(F) = 2TCQ. such that the function p 

fulfils (1.4) a.e. on F and T \ F . 

In [8] (Ths. 4, 5) it was shown that a) V(B,b,a) is not convex, b) V(B,b,a) is 

not compact, i.e. not closed, in the topology given by the uniform convergence on 

compact subsets of D. It was shown there that the functions p„ £ V(B,b,a) which 

realize the maximum modulus of the n-th coefficient in the class V(B,b,a) ([C], Th. 

8) converge to a function p 0 6 V not belonging to V(B, b, a). So, the following three 

natural questions arise: 

(a) What is the closure of V(B, b, a)? 

(b) What is the closed convex hull of V(B, b, a)"! 

(c) Which are the compact subsets of V(B, b, a)1 

The replacement of the closed sets F by measurable sets, mentioned before, not 

only allowed to generalize the results known earlier, but it is just essential on account 

of questions (a), (b) and (c) to be considered in the second section of this article. 

In the third section we will obtain an estimate of the functional Re{e i Ap(;)}, 

0 ^ z £ D, A £ ( - i t , - ) , defined in the class V(B,b,a). The theorem proved there 

generalizes the corresponding results from the paper [8] (Th.3). 

Questions (a), (b), (c) and formulations of the main theorems were given in [7], 
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2. THE CLOSED CONVEX HULL OF P(B,b,a) 

In this section we give answers to questions (a), (b) and (c). 
We denote by A(A) the normalized Lebesgue measure on T, i.e. A(T) = 1. Denote 

by XA the characteristic function of the set A. Here we treat the function /(e1 '): 
T -> C as the function f(t): (-TC,TC) -» C, too. 

(a) We will need the following lemmas. 

Lemma 2.1. Let a e (0,1) be a given. reaJ number. Let c, i-i be arbitrary real 
numbers fulfilling 0 < c ^ 1, 0 < fi ^ 1, en = a. Let Ifl C T be an arbitrary arc 
on T, A(/„) = «.. TJ;en tbere exists a sequence {F„}"= , of measurable subsets of I/t 

such that 

(2.1) A(F„)=a, n = l , 2 , . . . , 

and 

(2.2) tJie sequence of measures XF„ dA converges weakly to the measure cxi,, dA. 

P roo f . Since c e (0,1), cu = a, we have u>. a. In the trivial case fi = a put 
F„ = /,,, n = 1,2,..., thus (2.1) and (2.2) are fulfilled. So, let // > a. Without loss 
of generality, suppose that the midpoint of /,, is the point z — 1, write I = In - 1 
and define 

F„= "(J pW 
k=-n+l 

where 

FW = {z e T ; : = e ^ , ^ < f < ^ 
for k = - n + l , . . . , - l , 0 , l , . . . , n - 1. 

Clearly, the intervals F,\ are mutually disjoint, F„ C /,, and A(F„) = a. 
Let / be a given function continuous on T. We have to show that 

lin^j f(t)XF„(t)d\(t) = Jcf(t)x,„(f)d\(t) =: J cfXi„ dA. 
T T T 
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Fiгst, 

(2.3) l/(*)xғ„(*)dЛ(t) = VJ / /(ř)dЛ(ŕ) 

(2feм+aҡ)/l 

- E / /«>=- E / /»§ 
\2k^-CK)/l 

т^+aк/i 

where e i<T"" = exp(2knn\/l) is the midpoint of the arc F „ * \ A: = - n + 1,...,—1,0, 

1 , . . . , 7 1 - 1 . 

On the other hand, by the definition of the Riemann integral and taking into 

occount that c = a/\x, we have 

/ cf(t)Xll. (t) dA(t) = jt Jim £ [/(efi'') fj 

= lim [f £ /(ef-"') 
, w c x > L ( fe=-»+i 

Now, let e > 0 be given. There exists ?ii such that, for n > " I , 

(2-4) | /c / ( t )x/„( í )dЛ(ŕ)-y £ /(e"-")! 

Since / is continuous on the compact T , there exists S > 0 such that, for 

1*1 ~ * 2 | <<5, *1,*2 6 (-"-.TO, 

(2.5) | /(*i) - / ( * î ) | < - £ . 

From (2.5) we obtain, for n >. n2 = [KO/S] + 1, 

•;,"+*«/( 

£ [я^)f]- £ / /røž 
n- l -? '+-->" 

E 
fc = - n + l , t . 

fc=-П+l , i ) ' 

Л^" )-/(*) hг 



From this inequality and (2.3), (2.4) it follows that , for n ^ inax(n 1 , n 2 ) , 

| J cf(t)Xi„ (0 dA(0 - J f(t)xF„ (t) dA(t) | < e 
T T 

and Lemma 2.1 is proved. Q 

L e m m a 2 .2 . Let a £ (0,1) be a given real number. Let a = Yl CkXh ^>e a st('P 
fc=i 

function on T sucJi that 
(i) Ik C T , A; = 1 ,2 , . . . , n, are mutually disjoint arcs with A(/fc) = ;ifc > o, 

(ii) Ck, 6 ( 0 , 1 ) , 

(iii) £ ckLik = a. 
fc=i 

Then there exists a sequej3ce {Fm}™=1 of measurable subsets of IJ J t c T such 
fc=i 

tiiat 

(2.6) A(F,„) = o, 371 = 1 ,2 , . . . . 

and 

(2.7) ti3e sequence of measures \ F „ , dA converges weakly to the measure ad\. 

(Xk 

P r o o f . Denote ak = ckLik, k = 1 ,n. Because of (i), (ii), (iii), we have 

G (0 , a ) . By (ii), /j,k ^ a*. Putt ing I)L = Ik, k = l , . . . , n , in Lemma 2.1, we 

see that , for each k = l , . . . , n , there exists a sequence {F;„ } m = 1 of measurable 

subsets Fin' C Ik such that A(F;n ' ) = ak, m = 1,2,..., and the measures XF„, dA 

converge weakly to the measure CkXh dA- Putt ing F,„ = ]T F m , we see that F,„ 
fc=i 

is measurable, F,„ C (J h and 
fc=i 

A(Fm) = J2 A(FLfc)) = f > = ^ t f t = o, 
fc=i fc=i fc=i 

so (2.6) is fulfilled. 

On the other hand, the measures XF„, dA = £ XpW dA converge weakly to the 
fc=i ' " ' 

measure ( Y ckXh) dA = <rdA. The proof is complete. • 
fc=i 
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Let a e (0,1). Denote by Sa the set of all step functions a = £ CfcX/i fulfilling 
/c = l 

conditions (i), (ii), (iii) from Lemma 2.2. Denote 

Ca = I / e L1 (T) ; / ( t ) € (0,1) a.e. dA, f f(t) d\(t) = a\. 

T 

L e m m a 2 .3 . Sa is dense hi Ca in the metric of L'(T). 

P r o o f . Let e > 0 and an arbitrary function / 6 Ca be given. We have to show 

that there exists a function a € Sa such that J T \f - a\d\ < e. 

Since the set of all continuous functions on T is dense in L J ( T ) , there exists a 

continuous function g on T , g(t) ^ 0 on T, such that 

(2.8) J\f-g\d\<\e. 
T 

Put fcj = min( l ,p) . Then fci(t) ^ 0 on T and 

J\f- /Ml dA = J \f - hx\d\ + J | / - fci|dA 
T Ti T 2 

where T t = {t; g(t) =J 1}, T 2 = {«; g(t) < 1}. So, by the fact that 0 < / < 1 and 

by (2.8), we have 

J | / - fci|dA = J (l - f) d\ + J\f~g\ d\ ^ / (</ " / ) dA + J \f - g\ dA, 
T Ti T 2 Ti T 2 

therefore 

(2.9) J\f~ln\d\^ J\f-g\d\<\e. 
T T 

Next we put fc = max(0, h\)- Then fc is a continuous function and we obtain 

f|/-fc|dA= / |/-fc|dA+ J \f-h\d\ 
T ' '1^0 0 < h i < l 

= / (/-0)dA+ J |/-fci|dA 
M^O 0 < / I , ^ 1 

^ J (/-fci)dA+ / |/-fci|dA, 
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so, by (2.9), we have 

(2.10) J\f-h\dX^J\f-hl\dX<\e 
T T 

and 

(2.11) 0 ^ h < 1, h(t) ^ 0 ( e T . 

Because of the uniform continuity of h on T , there exists S > 0 such that 

(2.12) \h{h) - h(t2)\ < \e for \h - t2\ < S, h,heT. 

Divide T into n > 1/6 mutually disjoint congruent arcs IL, A(ij) = £, I = 1, . . . ,n, 

choose an arbitrary point a/ 6 // and put 

s(t) = h(at) for * e Ii, I = l , . . . , n . 

Of course, this choice may be made so that there exists l0 such that 

(2.13) /j(a/()) j= 0. 

From (2.12) we have \h(t) - s(t)\ < \e and so 

(2.14) J\h-s\AX<\e. 
T 

Summing up, we have constructed a step function 5 fulfilling (i) and, by virtue of 

(2.11), (2.13), also (ii) from Lemma 2.2. Moreover, by (2.10) and (2.14), 

(2.15) J |/ - s\ dX < 1 1 / - h\ dX + I \h - s\ dA < | e . 
T T T 

It remains to take account of condition (iii). In virtue of J T / dA = a, from (2.15) 

we get 

a - | e < / sdA < a + | e . 

T 

If / T s dA = a, the assertion is obvious. So, let first 

a < / s dA < a + |ff. 
T 
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We have to modify s to a step function a fulfilling (i), (ii) and, moreover, 

/ adX = a, \f - a\dX < e. 

T T 

So, for c 6 (0,1), let us consider the function 

<p(c) = I min(s,c)dA. 

T 

Prom the definition of min(s(i), c) we have 

\<p(c) -<p(c + Ac)\ < |Ac|, 

so, <p is continuous on (0,1). As min(s(i),0) =. 0 and p(l) = JTsdX, we have 

<p(0) = 0 and <p(l) > ex. By the Bolzano theorem, there exists Co e (0,1) such that 

V3(c0) = a and 0 < JT(s - min(s, c0)) dA < a + \<t — a = \e. 

Hence, putting a = min(s,co), we have a E Sa and 

f\f-a\d\<í\f-s\ dX + J \s - a\ dX 

If a - | e < JT s dA < a, we consider the function 

0(c) = / max(s,c) dA 

T 

for c £ (0,1) and obtain quite similarly the desired result. Lemma 2.3 is proved. • 

T h e o r e m 2 . 1 . The closure ofV(B,b,a) is the set of all functions p e V which 

can be represented in the form 

(2.16) p{z) = b+^ljf{t)
el±ldt + {i^v)q(z), 

Z E D , t] = Ba + 6(1 - a ) , 

where f is an arbitrary measurable function on (—it, rt) with the following properties: 

(2.17) 0 <./(«)<. 1 a.e. on {-~,~), 
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(2.18) 1 / 

and q is an arbitrary function in V. 

P r o o f . Of course, functions (2.16) are holomorphic in D , p(0) = 1 am 

Rep(z) > b in D , therefore p e P. 

Let us recall the following well known fact. The set of positive measures // o 

total mass 1, endowed with the topology given by the weak convergence of measures 

is homeomorphic to the set V, endowed with the topology given by the uniforii 

convergence on compact sets in D . 

Let now p be a given function of the form (2.16). In virtue of Lemma 2.3, the 

function / can be approximated by functions an e Sa fulfilling conditions (i). (ii 

and (iii). 

So, the functions 

^/*<«>£- - -* 
2TCO: J e1' - z 

converge uniformly on compact sets in D to the function 

2na J e1' — z 

Hence the functions pn € V(B,b,a) of the form (2.16), where / = an, converge 

uniformly on compact sets in D to the function p, so the assertion of Theorem 2.1 

is proved. C 

(b) An immediate consequence of Theorem 2.1 is the following 

C o r o l l a r y 2 . 1 . The closed convex hull of V(B, b, a) is the same as in Theorem 2 A 

It is essential here that the set of all functions / fulfilling conditions (2.17) am 

(2.18) is convex, and that the class V is convex. 

(c) Let A C V(B,b,o). Denote by A0 the set of the characteristic functions of al 

sets F C T , A(F) = Q, on which (1.4) holds for some p € A. 

T h e o r e m 2.2. The subset A C V(B.b,a) is compact if and only if the set A0 i 

closed in L ^ T ) . 
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This theorem can be obtained by a thorough analysis of the proof of compactness 

of the class V(B,b,a;F) (see Th. 3 in [6]). Detailed considerations will be carried 

out in the next paper. 

3. ESTIMATION OF FUNCTIONAL Re{elAp(~)} 

A. In the paper [8] (Th.3), sharp estimates from below and from above of the 

functional Rep(,z), 0 / 2 € D , p £ V(B,b,a), were established. At present, we will 

take up an analogous task, but for the functional Re{e'Ap(,z)} where A is an arbitrary 

fixed parameter from the interval (—it, n). We will also formulate some corollaries 

concerning the set of values of the functional G(p) = p(z), p G V(B, b, a). 

Let us first recall (see [3] Th. 4 and Th. 5, [C] Corol.2) that the extreme points in 

the class V(B, b, a; F) arc of form 

(3.1) p( ; ; 7 j F) = 6 + - ^ - y J !±£ d t + (i_,,)£!l±£ 7 G R , z £ D . 
F 

Since 

V(B,b,a) = \JP(B,b,a;F) 
F 

where the sum is taken over all subsets F C T of Lebesgue measure 2na, it is clear 

that, for z G D fixed, 

(3.2) inf(sup) ; ) e P ( B i 6 ,c t )Re{e i Ap(^)} = mf(sup)7 ,F{Re[e i Ap(- 7 , F ) ] ; 

7 e (-it,-), F c T, m(F) = 2na}, 

where we denote by m(E) the Lebesgue measure of a measurable set E C T, m(T) = 

2K. Since with each function p e V(B, b, a) the function q(z) = p(ez), \e\ = 1, Z € D , 

is also contained in V(B,b,a), it is sufficient to determine 

(3.3) sup{Re[e i Ap(r;7.F)]}, inf {Re[eiAp(r: 7, F)]} r e (0,1). 
7 , F 7,F 

For z = 0 we have p(z) = 1 for each function p £ V(B, b, a), therefore the case r = 0 

may be omitted. 

Furthermore, 

(3.4) ^ - 7 = P r ( 7 ) + l Q ' ( " ) 
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where 

1 — / 2r sin "y 
( 3-5) P^ 'T^^+T-' ^> = -r-2^s7 + r*' 

so, from (3.4) and (3.5) we have 

(3.6) R e { e i A ^ i ^ } = L ' r ( 7 , A ) , 7 € ( - - , * ) , A € ( - * , * ) , r e (0,1), 

where 

(3.7) C/r(7, A) = f>,(7) cos A - Qr(j) sin A. 

Hence our problem reduces to the following one: 
Find 

(3.8) sup t/,.(7,A), inf rj,(7,A) 
T € < - K , K ) - , 6 < - K , K ) 

and 

(3.9) supl / r/r(f,A)df; F C T, m(F) = 2rto I, 

{/,,., (3.10) inf / Ł/r(t,Л)dť; F c T , r a ( F ) = 2ю . 

B. We will determine (3.8) first. For this purpose, let us notice that from (3.5)-
(3.7) we obtain 

(3.11) U(y) =: Ur(% A) = ^osA + asinA-sin 7 

1 — a cos 7 

where 

(3.12) a = _ i _ _ 6 ( 0 ) 1 ) i c = l ^ e ( 0 ) i ) . 

Consequently, 

(3.13) Vb)-n ^ ^ w 

(1 - acos 7 ) 2 
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where 

(3.14) L(y) = : Lr(y, A) = (cos 7 - a) sin A - c sin 7 cos A. 

From (3.14) and (3.12) we have 

(3.15) (1 + r2)L(y) = r2 sin(7 + A) - 2rsin A - sin(7 - A). 

Let A e (0,TI). Then the right-hand side of (3.15) is treated first as a function 

of the variable r with the parameters A and 7. Next, from the results obtained by 

elementary considerations, we infer the behaviour of the function L of the variable 

7. The case A = 0 is examined as a limit case of the earlier results. Consequently, 

L e m m a 3.1. Let 71 (r, A), 72(r, A), r e (0,1). A e (0,TI), be functions defined by 

the formulae 

(3.16) 

with 

7i(r) = : 71 ('', A) = 2 arctan ( —— tan - J , 

7 2 ( ' ' ) = : 72 (r, A) = - 2 arctan ( — — cot - j 

1 - )• 2r 
(3.17) 7 i ( r , 0 ) = 0 , 7I(?-,TI/2) = 2 arctan = arccos -, 

lim_7i(r,A) = ж , r Є (0,1) 

and 

(3.18) lim 7.(r, A) = -it, 7 2(r, tt/2) = - 2 arctan - , 

lim_72(r,A) = 0, r e (0,1) 

whereas L r (7,A), 7 6 (-71,71). is the function (3.14). TJien, for any r e (0,1) and 

A e (0,JC), we Jiave 

( < 0 when -71 <. 7 < 72(r, A) or fi(r, A) < 7 < it, 

= 0 when 7 = 72(r,A) or 7 = 7 l ( r . A ) , 

> 0 when 72(r,A) < 7 < -n(r, A). 

Formulae (3.11), (3.13) and Lemma 3.1 (including (3.19)) imply 
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L e m m a 3 .2 . For any r e (0,1), A e (0,TC), the function (3.11) is (i) de 

creasing in the intervals {—TC,72(r,A)), (7i(r, A),TC), (ii) increasing in the interva 

(72('",A),7i(r,A)), and 

(3.20) m a x t / ( 7 ) = tv( 7 i ( ' " , A), A) = ( 1 + ' ^ + 2 ' ' , 

(3.21) mmC/(7) = U,.(y2(r, A), A) = ( - + ' ^ - - r , 

Tiie functions 71 (r) and 72('') <'ire defined by formulae (3.10). 

Let A G <—7t,0). Then A = A + n £ (0,TI) and from (3.7) we have 

(3.22) r / r(7,A) = - r j r ( 7 , A ) , 

whereas from (3.16) 

(3.23) 72(r, A) = 7 l ( r , A), 7 l ( r , A ) = 72(r ,A). 

Consequently, (3.22), (3.23) and Lemma 3.2 imply 

L e m m a 3 .3 . For any r e (0,1), A 6 (-T.,0) the function (3.11) is: (i) decreas

ing in the interval (71 (r, A), 72(r, A)), (ii) increasing in the intervals (—TC,7i(r, A)), 

(72('", A), re) , and 

(3.24) max f 7(7) = ^ . ( 7 i ( ' " , A ) , A ) = ( 1 + ' ' 2 ) C ° S A + 2 '-
1 - r 2 

(3.25) min t / (7 ) = t/,.(72('", A), A) = ( 1 ± ' ^ ^ - • 

Tiie functions 71 (r) and 72(r) are defined by formulae (3.23). 

The bounds (3.8) have thus been determined. 

R e m a r k 3.1. Lemmas 3.2 and 3.3 are certainly known. They can be obtained 

directly from the fact that the set of values of the functional H(p) = p(z), 0 / z £ D , 

p e V, is the disc \w - s\ ^ Q where s = (1 + r 2 ) / ( l - r 2 ) , Q = 2 r / ( l - r 2 ) . In t h e 

consideration carried out here, for each A £ (—TC,TC), the points 71 (r, X) and 72 (r. A) 

indispensable in further investigations and applications have been determined a n d 

examined. 
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C. Wo proceed to determine the bound (3.9). 

Let A e (O.K). Since Ur(l) has the period 2K, we may suppose that F C {o" ; 

t e (72,72 + 2TI)}. Denote F , = F n {e l f; t € (72,7l>} a n d F j = F 0 {e"; t € 

(71,72 + 2 K ) } . Since (Lemma 3.2) the function Ur(l) is increasing in (72,71) a u d 

decreasing in (71,72 + 2K), so, applying the known lemma ([6], L. 4) to the intervals 

(72,7i), (71,72 + 2lt) and to the sets F i , F 2 , we obtain 

(3.26) 

íur(t,\)dt<í í Ur(t,X)åt, 

F, 7 1 - , n ( F i ) 

7 1 +m(F 2 ) 

fur(t,\)dtś í Ur(t,X)át, 

thus by (3.26), 

7 i + m ( F 2 ) 

(3.27) fu,.(t,\)dt^ J Ur(t,X)dt. 

F 7 . - m ( F i ) 

Here m ( F i ) + m ( F 2 ) = 2KQ, 0 s; m ( F i ) «: 7 i " 7 2 , 0 S= m ( F 2 ) «: 2 K + 72 " 7 i - Hence 

denoting m(Fi ) = 2K.T, m ( F 2 ) = 2KJ/ and 

71+2717/ 

(3.28) n(x,y)=:nr(x,y;X)= J U,.(t,\)dt. 
71-27tx 

we realize that we have to determine 

(3.29) max )i(x, y) 
V (x, v )6M,(a,A) 

where 
(3.30) 

M, 
) 
r(a,\) = [(x,y) É R 2

; 0 ^ ^ : [ L ^ r ^ , O ^ y ^ l - — ^ 1 , x + y = a } . 

Put 

(3.31) 7 o = 7 o ( r ,A) = 7 i - 2 - 2 . 

Then from (3.16)-(3.18) we have 

(3.32) ^ r - a r c t a n - ) - ^ , r € ( 0 , l ) , Ae (0 , i t ) . v ' 2rsrnA 



Since r 6 (0,1), A £ ( 0 , K ) and therefore 70 € (0,TC/2) is fixed, we easily see tha t the 

set (3.30) is given by 

Mr(a,\) = {(x,a~x);0^x^a} if 0 < a < -1, 
K 

(3.33) Mr(a,X) = \(x,a~x);0^x^l^\ if 2° ^ a ^ 1 _ 2-1, 
<• 7t J K K 

Mr(a,X) = \(x,a~x);a-l + ?°<_x^?-) if 1 - -- < a < 1. 
<• 7C K J K 

Let 

(3.34) V(x)=ii(x,a-x). 

By (3.28) and (3.34), 

(3.35) V'(x) = -27t[Ur(7i - 2nx + 2na, X) - Ur(-,x - 2ICI, A)], 

(3.36) V"(x) = 47c2[U;(7i - 2K.T + 2 m , A) - Ur(7i - 2nx, A)]. 

By (3.33), 0 <: x <_ 7 0 / K and consequently, 71 - 2 K X € (72,71), so Ur(7i - 2 T C I , A ) > 0 

for x £ (0, 7O/K) . From (3.33) we also have 71 + 2lc(a - x) G (71, 2K + 72), therefore 

U|(7l - 2KO; + 27ca, A) < 0 for x € (0 ,7 0 /TC) . Consequently, from (3.36) we infer that 

V"(x) < 0, i.e. that V'(x) is a strictly decreasing function in the corresponding 

interval (0 ,a ) or ( 0 , 7 0 / K ) or (a - 1 + 7 O / K , 7 0 / K ) . But from (3.35) and (3.31) we 

have 

V'(0) = - 2K[Ur(7l + 2 m , A) - Ur(7i, A)], 

(3.37) V'(a) = - 2K[U r(7l, A) - Ur(7i - 2ita,A)], 

V'(loM = - 2K[Ur(72 + 2-a , A) - Ur(72, A)], 

V'(a - 1 + 70/K) = - 2K[Ur(72 + 2TC) - Ur(72 + 2K - 2ita)]. 

Since a € (0,1) and the function Ur attains the maximum at the point 7 l and the 

minimum at the point 72, therefore from (3.37) we have 

(3.38) V'(0) > 0, V'(a) < 0, V'(<yo/n) < 0, V'(a - 1 + 70/11) > 0. 

From (3.38) we see by (3.33) that , for any a e (0,1), A £ ( 0 , K ) , 7O € ( 0 , K / 2 ) , there 

exists a unique root XQ of the equation V'(x) = 0 with xo G Ir(a,X) where 

{ (0 ,a ) if 0 < a < 7 o / 7 t , 

( 0 , 7 O / K ) if 7O/K ^ a < 1 - 7O/K, 

(a - 1 + 7O/K, 7O/K) if 1 - 7O/K < a < 1. 
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Here 70 is from (3.32). 

So, by (3.35), x0 = x0(r, a, A) is given by the equation 

(3.40) t / r(7i - 2KX + 2Tta,A) = UT(ji - 2icx,A). 

From (3.11), (3.12) and (3.40) we obtain an equation of the form 

(3.41) r 2 sin(7i - 27tx + Tta + A) - 2r sin A • cos Tta - sin(7i - 2nx + ita - A) = 0. 

Since V'(x) is a stricly increasing function in a suitable variability interval of x 

and V'(xo) = 0 only at the point x0, therefore 

(3.42) maxV(x) = V(x0). 

In view of (3.34), (3.29), (3.28) and (3.27), we have determined the bound (3.9) for 

AG (0,Tt). 

If A = 0, then from (3.17), (3.18), (3.31), (3.33) and, next, from (3.11), (3.35) and 

(3.36) we easily conclude that 

maxV(x) = V(x0), x0 = \a. 

Hence the case A = 0 may be added to the case A G (0,TI) considered before. 

So we have 

L e m m a 3.4. For any r e (0,1), A € (0,Tt) we have 

(3.43) max/i(.r, a - x) = u.(x0, a - ,r0) 

where x = x0 is the only root of equation (3.41) belonging to the interval Ir(a,\) 

defined in (3.39). The set F* C T for which the function (3.28) attains its maximum 

(3.43) is of the form 

(3.44) F* = {e i (; t e <7i(r,A) - 2Tt.r0,7i(r, A) + 2Tta - 2nx0)}. 

Let A e (-Tt,0). Put A = -A. Then A e (0,Tt) and from (3.28) and Lemma 3.4 we 

get 
maxu,r(x,a - x; A) = u,r(x0,a - x0,X) 

where ,T0 is the only root of the equation 

r2 sin(7i (r, A) - 2itr + na + A) - 2r sin A • cos an - sin(7i (r, A) - 2it.r + Tta - A) = 0 

belonging to the interval Ir(a, A). 

213 



It remains to use the fact that A = —A in the formulae for the above-mentione 
functions. It also turns out that the case A = — it may be added to the previot 
results. So, we have 

Lemma 3.5. For any r 6 (0.1), A G (-TC,0), 

(3.45) max//(:r, a - x) = n(a - y0,tjo) 

where x = yo is the only root of the equation 

(3.46) r2sin(7i(r,A) + 2Tcx-Tca + A)-2rsinA-cosKa-sin(7i(j',A) + 2T[.r-T[a-A) = 0. 

belonging to the interval 

{ (0,a) if 0 < a < -TQ/TC, 

(0,-7O/TC) if - W t < a ^ l + 7 o / T c , 

(a - 1 - 7O/TC,-7O/TC) if l + 7o/TC<a<l . 

The set F** C T for which the function (3.28) attains its maximum (3.45) is of th 
form 

(3.48) F** = {eu ; t e (71 (r, A) - 2rca + 2ny0,71 (r, A) + 2TCJ/0)}. 

Conseciuently, in order to determine (3.9), one should calculate the integral 

ti 

(3.49) K = K(r,X,tut2) = fu,.(t,\)dt, 

t\ 

where (t\,t2) is the interval (71 — 2KS 0 ,7I — KXO + 2TCC1) or (71 +27ij/o-2rca,7i +2wy0 

It turns out that 

(3.50) K = 2 cos A • arctan c r-r- - -r—r- - sin A • log -. 
L cos 2

2 ' — ocos 2
2 ' J 1 — 0cost2 

Let us determine u.(x0,a - xo) and //.(a - y0,y0). From (3.28) and (3.49) we ge 

H(x0, a - xo) = K(r, A, 71 - 2TC:I:0, 71 - 2TCCO + 2ica), A e (0. -
(3.51) 

u(a -y0,y0) = K(r, A, 71 +2nya - 2na,-fl +2mj0), A e (-TC,0 
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Consequently, from (3.50) and (3.51) we get 

fi(x0, a - x0) = 2 cos A • arctan 

(3.52) 

— sin A • log 

cos кo - «cos(7i - 2к.т0 + KQ)J 

1 - dCOs(7l - 2тcж0) 

1 - a cos(7i - 2к:i;0 + 2 к o ) : 

(3.53) 

/Í(Q- — j/o, j/o) = 2 cos A • arctan 

— sin A 

COS тм - a cos(7i + 2тtj/o - кo) J 

l - o cos(7i + 2кj/o - 2кo) 

1 - ocos(7i + 2 K J / 0 ) 

Summing up, (3.1-3.3), (3.G), (3.27), (3.28) and Lemmas 3.2-3.5 imply 

T h e o r e m 3.1. Let p 6 V(B,b,a), 0 / ; e D , ; = re1*", A £ ( - K , K ) . Then 

{ 6cosA+ - ^ - M - o . a " *o) + (- - , / ) ( 1 + ' ' 2
1

) " " A + 2 r 

(3.54) Re{e iAp(z)} < ' 
if л е (о,к), 

6 cos А + В^/л(а - у0,у0) + (1 - n)ll+T"i-Tl
>i+2T 

Lif А 6 (-к,0) , 

where /f(:r0,Q - rco) and r*(Q ~~ J/0,Vo) a r e functions of tiie form (3.52) and (3.53), 

such that x = Xo G IT(a, A), :i; = j / 0 6 Jr(a, A) are the oniy roots of equations (3.41) 

and (3.46), respectively, while 

1 + r- ' 

1 - Г 
c = — - , r? = OJJB + (1 - a)Ь; 

1 + r-

7i = 7i (r, A) = 2 arctan ( — — tan -

7i e (0,TC) when A 6 (0,TC), 71 e (-TC,0) when A G (-Tt,0); 

(0 ,o) i f QЄ(0,7o/к) , 

f Ҷ o , A) = <J (0,70/к) if o Є (70/тc, 1 - 7o/тc), 

(o - 1 + 7o/к,7o/к) if Q Є (1 - 70/к, 1) 

70 = arctan 
2/- sin A 

(ОТ А 6 (0, к) апс17о € (0,тс/2); 
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(0,o) if ae (0,7jo/x), 

JT(a, X) = { (0,f)o/lt) if a 6 (?,0/rc, 1 - W * ) . 

(a - 1 + W'V ' /oA) if a € (1 - t)o/tt, 1), 

% = -7o £ (0,- /2) for A 6 (-it ,0). 

R e m a r k 3.2. Since the functions (3.1) belong to the class V(B,b,a), the 

estimates (3.54) are sharp. If z = r € (0,1), then in (3.1) one should put 7 = 7!, 

while for the set F C T one should take F* or F**, respectively (see (3.44) and 

(3.48)). This follows from (3.20), (3.24) and (3.28), (3.43), (3.45). If z = re1*, then 

one should take into account the argument <p - performing suitable rotations of the 

number e'71 as well as of the sets F* and F**. 

R e m a r k 3.3. Passing A -> 0 and A —> —71 in Theorem 3.1, we obtain the well-

known estimate from below and from above of Rep(z), p € V(B,b,a), ([8], Th.3) of 

the form 

h+m^i arctail fizi tan ̂ + ( i _ „)!_! s- Rep{z) 
it \l + r 2 } 1 + r 

, 2(B-b) / 1 + r n » \ „ . 1 + r 
< b + — - arctan I — - tan — I + (1 - i f ) - — . 

R e m a r k 3.4. Putting in the above-mentioned theorem A = ±rt/2, we obtain 

an estimate of Imp(z) in the class V(B, b, a), also well known ([8], Th.3), of the form 

B-b P r ( 7 o + 2ita - 2TC.T0) , , 2r 

IT ,0g ~ PT(y>-2*Xo) (1 " "'YzT- < lmP{z) 

^ ^ l o g g_7__2__) _ + ( 1 _ } _ 2 _ _ 
2K 6 Fr(7o + 2rca - 2rc:r0)

 { " l - r 2 

where x0 G 7 r(a, TC/2) C (0,7o/rt) is a root of the equation cos(7o - 2nx0 + ico) = 

COS70 • cos OK, cos 70 = 2 r / ( l + r 2 ) . 

D . From Theorem 3.1 one can, of course, obtain an estimate from below of the 

functional Re(eiXp(z)), that is, determine the bound (3.10). 

Let, for instance, A e (0,rc). Put A = A-rc. Then A € (—jc,0). Consequently, from 

(3.54) we get 

Re(eiXp(*)) < 6 cos A + ~M<* - vo.thJ) + (1 - n)(1 + ~ ^ + 2 r . 
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, ІЛ , чч , ч B-Ь , , ,л , ( l + r 2 ) c o s A - 2 » 
Re(e'Ap(г)) > òcos A - - ^ — Џr{a - y0,Уo,\ + я) + (1 - nУ 1 - r-

-Tt\ (\-r \ 

= 7 2 ( , - ,A)e(-7 i ,o) , 

7i (r, A) = 2 arctan I - — - tan — — - I = - 2 arctan I — — cot -

equation (3.46) for x = yo assumes the form 

r2sin(72(»", A) + 2KX - %a + \) - 2rsinA -cosTia - sin(72(r, A) + 2KX - na - A) = 0. 

Moreover, 

1 - r 2 1 - r 2 

Vo(r, A) = - arctan - — — = arctan - — r - r = 7o(>', A) 6 (0, rc/2), 
2rsm(A-7i) 2rsmA 

Jr(a\) = Ir(a,\). 

If A 6 (-7t, 0), then A = : IT + A 6 (0, n). SO, from (3.54) we have 

Re(e i Ap(z)) > ftcos A - - _ ^ P r ( x 0 , a - z 0,A) + (1 - >?) ( 1 + ^ c o a X ~ - t . 
2TC 1 — r -

Besides, 

7 i ( r , A ) = 7 2 ( r , A ) e ( 0 , 7 i ) . 

7&(r,A)=rto(r,A)6(0,Tt/2), 

therefore equation (3.41) for x = x0 will assume the form 

r sin(72 (r, A) — 2TU: + TI« + A) — 2r sin A • cos ua — sin(72 (r, A) — 2ra: + Ttcv — A) = 0, 

and _ 

Ir(a,\) = Jr(a,\). 

Prom the above considerations and (3.52), (3.53) we obtain 

Theorem 3.2. Let p e P(D,b,a), 0 ^ z 6 D, z = re1*, \ g (-71,71). Then 

' 6 cos A - & ^ ( « - s,0,ift>) + (1 - , , ) ( ' + ^ A ^ r 

i fAe(0,7t) , 
(3.56) Re{e l A p^)} > <̂  ' ' „ ,, , 

1 ^ l " I 6 cos A - S£H(x0,a - x0) + (1 - , ; ) " + ' 7 ^ A ^ 

.if A e (-7t,0), 
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where • 

jj(a ~ yo,yo) = - 2 cos A • arctan 

+ sin A • log 

cos тrø - a cos(72 + 2iuyo - кa) j 

1 - a cos(7г + 2-yo - 2тra) 

и,(хо,а — Хо) = — 2 соя А • агс1ап 

+ 8111 А • 1о§ 

1 - acos(7 2 + 2TIJ/O) 

c sin TtQ' 

cos na — a cos (72 — 2TT.TO + TCO) J 

1 - a c o s ( 7 2 - 2K3,'O) 

1 - (icos(72 - 2M.'O + 2na) ' 

x = ;i/o 6 Ir(a, A) satisfies the equation 

r2 sin(7'2 + 2KX - TCO + A) - 2r sin A • cos m - sin(72 + 2TU: - na - A) = 0 , 

x = xo G JT(a, A) satisfies the equation 

r3 sin(72 — 2Tc.r + na + A) — 2rsin A • cosixa — sin(72 — 2K.)' + TCO: — A) = 0; 

72 = 72 (r, A) = - 2 arctan ( ——- cot -, ! + '• 2, 

72 £ (-7t,0) for A G ( 0 , K ) , 72 e <0,K) for A e ( - K , 0 ) ; 

To = 70 (r, A) = arctan — , 

70 G ( 0 , K / 2 ) for A 6 ( 0 , K ) , 70 € (-Jt/2,0) for A G (-K,0), 

* =Vo(r, A) = -70 ; 

Ir(a, A) and Jr(a, A) are defined by the formulae from (3.55). Estimates (3.56) arc 

sharp. 

E. Let B ^ 1 and po(z) = 1- Then p0 G V(B, b, a) for any admissible parameters 

b and a. As we know, functions (3.1) belong to V(B, b, a) (of course, for sets F C T 

of measure 2KO). It follows directly from the definition that the functions 

(3.57) qf}(z;1,-F)=!3p(z;1,¥) + (l-P)po(z), ~ G D, 0 6 ( 0 , 1 ) , 

belong to this class, too. 

Let 

(3-58) 
( (b - l)cosA + S^fi(x0,a- x0) + (1 - ' / ) " + r

]
) : ^ A + 2 r , A G ( 0 , K ) , 

" \ (6 - l)cosA + - | s - / . f a ) , a - ;/o) + (1 - /;) " + r 7 - " A + 2 ' ' > A e ( - K , 0 ) , 



with the notation and conditions from Theorem 3.1 being valid. Making use of the 

theorem just mentioned, we will determine the set 

(3.59) P = {p(z)-l, peV(B,b,a)}, O ^ e D , B ^ 1. 

We have 

T h e o r e m 3 .3 . The boundary of the set P of values of the functional H(p) = 

p(z) — 1, p € V(B,b,a), B ^ 1, is a curve with the equation 

(3.60) w=u(X)e~ix, A6(-rc ,7t) , 

where LO is defined by formula (3.58). 

P r o o f . Let 0 5* z G D , z = r e ^ . In virtue of Theorem 3.1 and (3.58), for any 

function p e V(B,b,a), A e (-Jt,w), 

(3.61) R e { e ' A ( p ( ; ) - l ) } ^ ' ( A ) , 

so that , in accordance with Remark 3.2, there exists 7* and a set F* C T of measure 

2na such that, for a function p* defined, by formula (3.1), 

(3.62) R e { e i A ( p * ( ; ) - l ) } = ^ ( A ) . 

Since the function po 6 V(B,b,a), therefore 0 6 P . Moreover, this and (3.61) imply 

that w(A) > 0 for A G ( -n ,n ) . 

If w(A0) = 0 for some A0, then Re{elA" (p(z) — 1)} ^ 0 for all functions p e 

V(B, b. a). Hence all points p(z) - 1 of the set P lie in one half-plane passing through 

the point 0 and inclined under the angle of rc/2 - A to the real axis. Consequently, 

the point uj(\0)e'x" = 0 is a boundary point of the set P . 

Let u(X) > 0 and p*(z) - 1 = \p*(z) - l | e ^ ' \ Then, by (3.62), 

(3.63) p * ( * ) - l = o > ( A ) e - i A . 

Since p* £ V(B,b,a), the point (3.63) belongs to the set (3.59). Besides, from (3.57) 

we deduce that, for each 0 e (0. 1), the function q% = flp* + (1 - /3)po £ V(B.b.a), 

therefore the point q*(z) - 1 = 0(p*(z) - 1) + (1 - 0)(po(z) - 1) = ,8u(\)e-ix e P 

for each 0 £ (0,1). 

Let p be an arbitrary fixed function of the class V(B,b.a). Put p(z) - 1 = 

\p(z) - lie"6 . Choose A = -if>. From (3.61) wc then have \p(z) - 1 |< w ( - ^ ) , hence 

the point p(z) - 1 lies on the segment (0,u)(—i/))e1^) = (0,uj(A)e~'A) C P . 

Since u! is a continuous function, u>(\) > 0, LO(-K) = lim u>(\), Theorem 3.3 has 

been proved. • 



Coro l l a ry 3 .1 . If B ^ 1, then the set Q of values of the function p(z), p 6 

V(B, b, a), results from the set P by translation by 1. 

R e m a r k 3.5. Separate considerations are needed in the case B > 1. In the 

proof of Theorem 3.3 we were using, among other things, the fact that po G V(B,b, o) 

and we managed to avoid an obstacle caused by the lack of convexity of the class 

V(B,b,a). 
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