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Summary. We describe algebras and varieties for which every ideal is a kernel of a 
le-block congruence. 
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The concept of Rees congruences was introduced for semigroups by D. Rees [3]. 

R.F. Tichy [5] generalized this concept to universal algebras. The author with J. 

Duda described Rees algebras in [1] and, moreover, gave a characterization of vari

eties all of whose members are Rees algebras. Some particular results for lattices can 

be found in [2] and [4]. Our aim is to study the Rees congruences induced in algebras 

by ideals in the sense of A. Ursini [6]. We will describe such ideals and characterize 

varieties of algebras having Rees ideal congruences. 

1. PRELIMINARIES 

For an algebra A = (.4, F) we denote by Con A the lattice of congruences of 

A. By a,',i we denote the least congruence on A, i.e. U>A is the identity relation 

alias the diagonal of A. Further, we denote by LA the greatest congruence on A, 

i.e. IA = A x A. We call 0 £ Con A a one-block congruence if the partition of A 

induced by O contains at most one non singleton congruence class. Trivially, U>A and 

I-A are one-block congruences. 

L e m m a 1. Let © , $ 6 Con A be one-block congruences. Then 0 , $ are 

3-pennutabIe, i.e. 0 v<5 = 0 o $ o 0 = $ o 9 o $ . 

The p r o o f is elementary. • 
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R e m a r k 1. It is obvious that the join of two one-block congruences need n o t 

be a one-block congruence. 

Def ini t ion 1. Let B be a subalgebra of an algebra A = (A,F). B is called a 

Rees subalgebra whenever B2UUJ,\ £ Con A. Any congruence of the form B2UUA for 

some subalgebra B of A is called a Rees congruence. An algebra A is a Rees algebra 

if its every subalgebra is a Rees one. 

Hence, every Rees congruence is a one-block congruence and therefore, every two 

Rees congruences on an algebra A are 3-permutable. 

The concept of an ideal was generalized by A. Ursini [6] for algebras with 0. In 

what follows, let C be a class of algebras of a fixed similarity type r. For A £ C, the 

set of all fundamental operations of A will be denoted by F. We require that all 

algebras of C have a constant 0 which is either a miliary operation of F or at least, 

equationally defined. For A £ C. this constant will be denoted by 0A. 

An (71 + m)-ary term p(x\,... ,xn,yi,..., y,n) of type r is called an ideal term in 

V\, • • •, Vm if 
p ( z 1 , . . . , x n , 0 , . . . , 0 ) = 0 

is an identity in C. For A = (A,F) e C, a non-void subset I of A is called an ideal 

of A if for every ideal term p(xi,...,xn,yi,...,y,n) in yi,...,ym and all elements 

Oj . , . . . ,o„ of A and 61,. . ., b,n of / we have 

p((it,... ,an,bi,.. . ,b,„) £ / ; 

is such a case, we say that / is closed under the ideal term p. In other words, a 

non-void subset of A is an ideal of A if it is closed under every ideal term. 

It is worth mentioning that for rings and for lattices with 0 this concept coincides 

with common concept of an irleal in these algebras. For groups, it coincides with the 

concept of the normal subgroup. 

For an algebra A £ C, we denote by Id A the set of all ideals of A. Evidently, {0,\} 

and the whole algebra A are ideals of A. It is easy to show that Irl A is a complete 

lattice with respect to set inclusion where meet coincides with set intersection. 

Further, denote by IT (A) the set of all irleal terms of A £ C. It can be shown 

that TT(A) is a clone and, moreover, either TT(A) consists only of 0,4 and all the 

projections or TT(A) is infinite. We say that A has a finite basis of ideal terms if 

there exists a finite subset of TT(A) generating the clone TT(A). It is well-known 

that groups, rings or lattices with 0 have finite bases of ideal terms. 

For any 0 £ Con A, the congruence kernel [0]e is an ideal of A. On the other 

hand, there can exist ideals of A which are not congruence kernels. 

An algebra A = (A, F) is said to have a finite type if F is a finite set. 
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2. R E E S IDEALS 

Definit ion 2 Let C be a class of algebras with 0. An ideal / of an algebra A E C 

is called a Rees ideal if I2 U u,\ £ Con A; any congruence of this form is called a 

Rees ideal congruence (induced by I). An algebra A is a Rees ideal algebra if every 

ideal of A is a Rees ideal. A class C is a Rees ideal class if each A 6 C is a Rees ideal 

algebra. 

Evidently, for any A € C, {0A} and A are Rees ideals of A and LOA, LA are Rees 

ideal congruences. 

Rees congruences were intensively studied on lattices, see [2], [4]. These results 

are summarized by J. Duda (see [2], Theorem 3): 

Propos i t i on . Let C be a class of lattices with 0. Then C is a Rees ideal class if 

and only if C is a cJass of chains. 

E x a m p l e 1. Consider the commutative groupoid Q = ({0 ,a ,6 ,c} , •) given as 

follows: 
0 а b c 

0 0 0 0 0 
а 0 6 а а 
b 0 а а b 
c 0 а b c 

Evidently, the subset {0, a, b] is a congruence kernel, thus {0}, {0, a, b}, {0, a, b, c} 

are ideals of Q. It is an easy exercise to check that Q has no other ideals. Evidently, 

each of these ideals is a Rees one, i.e. Q is a Rees ideal algebra. 

For an algebra A, denote by COURA the set of all Rees ideal congruences of A. 

We are able to characterize Rees ideal algebras by two-generated ideals as follows: 

L e m m a 2. Let A be an algebra with 0. Ti2e following conditions are equivalent: 

(1) A is a Rees ideal algebra; 

(2) every ideal of A generated by two elements is a Rees ideal; 

(3) for every unary polynomial p over A and for any elements a, b, of A we have 

either 

(i) p(a) =p(b), or 

(ii) there exist ideal terms q(x\, • • •,xn,y\,y2), r(xj,...,xn,y\,y2) in y\, y2 such 

that p(a) = q(ci,... ,cn,a,b), p(b) ~ r ( c i , . . . ,cn,a,b) for some elements a,... ,c„ 

of A. 

P r o o f . (1) => (2) is trivial. Prove (2) => (3): Let a, b be elements of A and 

j> a unary polynomial over A. Consider an ideal / of A generated by the set {a, b}. 

By (2), / is a Rees ideal, i.e. (-)/ = I2 U coA £ Con A. Moreover, a, b G I implies 
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(a, b) e 0 / . Hence also (p(o),p(6)) £ 0 / , i.e. either p(a) = p(6) or p(a.),p(b) e I, 

i.e. there exist ideal terms q, r as desired in (3), see [G] for some details. 

(3) => (1): Let / be an ideal of A. Evidently, 0 / = I2 UUM is an equivalence on A. 

To prove 0 / e Con A we need only to prove the substitution property of 0 / . Since 

0 / is reflexive and transitive, it remains only to show the substitution property with 

respect to unary polynomials over A. Let (a, b) e 0 / and let p be a unary polynomial 

over A. By (3), either p(a) = p(6) or p(a),p(b) e I, i.e. (p(o),p(6)) £ 0 / = I2 UUJA, 

which completes the proof. D 

L e m m a 3. Every homomorphic image of a Rees ideal algebra is a Rees ideal 

algebra. 

P r o o f . Let A be a Rees ideal algebra and let B — h(A) for some homomorphism 

h of A. Let I be an ideal of B. Let J = Ir^(I). It is a routine to show that J is an 

ideal of A, i.e. J2 U LOA e Con A. Since I2 Uton is an equivalence on B, it remains 

only to prove the substitution property of I2ULUB with respect to unary polynomials 

over B. Let p be a unary polynomial over B. Then p(x) = t(x, 6 i , . . . , &„) for some 

term function t over B and elements &i, . . . ,bn of B. Suppose (a, b) e I2 U toB. The 

case a = b is trivial. Let a ^ b. Then a, b e / , i.e. there are a', V e A with h(a') = a. 

h(b') = b. Hence a',b' e J, thus (a',b') e J2 U u>A and, by the assumption, also 

(t(a',ci,.. .,cn),t(b',ci,.. . , t „ ) ) e J2UuA for a e / i - 1(6j) , i = 1,. . -n. Since //. is a 

homomorphism, we conclude p(a) = p(b) or p(a),p(b) el. D 

R e m a r k 2. A class C of Rees ideal algebras of the same type need not be closed 

under direct products as one may check using Proposition 2. Moreover, C need not 

be closed under subalgebras as the following example shows. 

E x a m p l e 2. Let A = (A,-), where A = {0,«, b,c,d) and the binary operation 

• is defined as follows: 
0 a b c d 

0 0 0 0 0 0 
a 0 a a a d 
b 0 a a c d 
c 0 a b c d 
d 0 a b c d 

Evidently, {0} and A arc the only ideals of A, i.e. A is a Rees ideal algebra. 

Further, B = ({0, a, b, c}, •) is a subalgebra of A having an ideal I = {0, a}. However, 

I2 U u)n 4- Con B, i.e. B is not a. Rees ideal algebra. 



3. REES IDEAL VARIETIES 

Varieties of Rees algebras were characterized in [1]. It was proved that V is a 

variety of Rees algebras if and only if V is at most unary. We are going to establish a 

characterization of varieties of Rees ideal algebras showing that these varieties have 

not restricted their similarity types. 

Theorem. For a variety V with 0, the following conditions are equivalent: 

(1) V is a Rees ideal variety, 

(2) for any integer n ^ 1 and any n-ary term t and each i e { 1 , . . . , n} either t 

does not depend on the i-th variable or 

t(xi,... ,Xi-i,Q,xi+i,... ,x„) = 0 

is an identity of V. 

P r o o f . (1) => (2) Let t be an n-ary term of V and A = Fv(xx,...,xn,y) a free 

algebra of V. By (3) of Lemma 2, either 

(*) t(xi ,...,xi-i, xitXi+i,..., x„) = t ( x i , . . . , Xj_i, y, xi+i,..., x„) 

or there exists an ideal term q in the last two variables such that 

v(xi) = t(xi,..., Xi-i , Xi,xi+i,..., x„) = q(au..., ak,Xi,y) 

for some O i , . . . ,ak 6 A. Since v(xt) docs not depend on y, this implies also 

v(n) = q(ai,...,ak,Xi,Xi). 

In the case of (*), t does not depend on the i-th variable. The latter case gives 

« ( x i , . . . , x . _ i , 0 , x i + i , . . . , x „ ) = q(ai ak, 0.0) = 0. 

(2) -> (1): Let A eV and let I be an ideal of A. Set 0 ; = i ' u ^ . Since 0 / is an 

equivalence on A, it, remains to show the substitution property with respect to unary 

polynomials over A. Suppose (a. b) € 0 / and p is a unary polynomial over A. If a = b 

then p(a) = p(b). If a ^ b then a, b _ / . By (2), p is either constant, i.e. p(a) = p(b), 

or p(x) = t(a%,..., Oj_i, x, Oj+i , . . . , a„) for some n-ary term function t over A and 

for some elements „ i , . . . ,an of A. By (2), t is an ideal term in the i-th variable, 

so also p(0) = 0. Hence a,b 6 / implies p(a),p(b) 6 / . In all cases we conclude 

(p(a.),p(b)) e 0 / proving I'2 U u>A = 0 ; € Con A. D 
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E x a m p 1 e 3. (a) The variety of all A-semilattices with 0 is a Rees ideal variety -

(b) More generally, any variety of groupoids with 0 satisfying the identities x • 0 = 

0 = 0 • x is a Rees ideal variety, (c) Every variety of at most unary algebras with O 

satisfying / (0 ) = 0 for any unary fundamental operation / is a Rees ideal variety. 

Corollary. Let V be a Rees ideal variety of a Unite similarity type. Then V has 

a finite basis of ideal terms. 

P r o o f . By Theorem, every n-ary term either is an ideal term in the i-th variable 

or it does not depend on the i-th variable. Hence, for A = (A, F) 6 V and 0 =£• I C A, 

1 is an ideal of A if and only if / is closed under every ideal term which is of the form 

f(xi,... ,Xi-i,y,xi+i,... ,xn), where / e F and / depends on the i-th variable. 

Since F is finite and every / G F is finitary, we conclude the assertion. • 
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